基于间断有限元方法的可压缩混合层中大尺度结构和压缩性效应的数值模拟研究

时晓天, 王伟, 张桂茹, 王铁进, 舒其望

时晓天, 王伟, 张桂茹, 王铁进, 舒其望. 基于间断有限元方法的可压缩混合层中大尺度结构和压缩性效应的数值模拟研究[J]. 空气动力学学报, 2016, 34(2): 224-231. DOI: 10.7638/kqdlxxb-2016.0004
引用本文: 时晓天, 王伟, 张桂茹, 王铁进, 舒其望. 基于间断有限元方法的可压缩混合层中大尺度结构和压缩性效应的数值模拟研究[J]. 空气动力学学报, 2016, 34(2): 224-231. DOI: 10.7638/kqdlxxb-2016.0004
Xiaotian Shi, Wei Wang, Guiru Zhang, Tiejin Wang, Chi-wang Shu. Numerical Simulation of Large Scale Structures and Compressibility Effect in Compressible Mixing Layers with a Discontinuous Galerkin Method[J]. ACTA AERODYNAMICA SINICA, 2016, 34(2): 224-231. DOI: 10.7638/kqdlxxb-2016.0004
Citation: Xiaotian Shi, Wei Wang, Guiru Zhang, Tiejin Wang, Chi-wang Shu. Numerical Simulation of Large Scale Structures and Compressibility Effect in Compressible Mixing Layers with a Discontinuous Galerkin Method[J]. ACTA AERODYNAMICA SINICA, 2016, 34(2): 224-231. DOI: 10.7638/kqdlxxb-2016.0004

基于间断有限元方法的可压缩混合层中大尺度结构和压缩性效应的数值模拟研究

基金项目: Supported by the National Natural Science Foundation (No.11302213)
详细信息
    通讯作者:

    时晓天

  • 中图分类号: V211.3

Numerical Simulation of Large Scale Structures and Compressibility Effect in Compressible Mixing Layers with a Discontinuous Galerkin Method

Funds: Supported by the National Natural Science Foundation (No.11302213)
More Information
    Corresponding author:

    Xiaotian Shi: 时晓天

  • 摘要: 基于间断有限元方法(DGM),对二维和三维、对流马赫数Mc=0.4和0.8的空间发展的可压缩混合层进行了数值模拟,并对混合层中的大尺度结构及压缩性效应进行了研究。重点观察了大尺度结构随压缩性变化的全景图像,文中采用λ2方法定义三维流动中的大尺度结构,流场中能够观察到大尺度的涡结构森林。当前数值模拟表明混合层的湍动能和雷诺应力随对流马赫数的增加而降低,这对RANS和LES模型的建立具有一定的参考意义。本研究也表明,间断有限元方法能够成功地应用于可压缩湍流的数值模拟。
    Abstract: Large scale structures in two or three dimensional spatially developing compressible mixing layers, as well as compressibility effect in supersonic mixing layers under the convective Mach number Mc=0.4 and Mc=0.8 respectively are numerical studied with a discontinuous Galerkin method. Special attention is paid on the panorama of spatial evolution of large scale structures and the compressibility effect. The λ2 structure extraction method is utilized in this paper, the "forest" structures are evident. The turbulence and Reynolds stress of the mixing layers are found decreasing with Mc in current simulations, which is expected to offer useful guidance for turbulent modeling in RANS and LES. The current study also shows the success of discontinuous Galerkin method to do compressible turbulence simulation.
  • [1] Lele S K, Direct numerical simulation of compressible free shear flows; AIAA 89-0374[R]. Reston:AIAA, 1989.
    [2] Sarkar S. The stabilizing effect of compressibility in turbulent shear flow[J]. J. Fluid Mech., 1995, 282:163-186.
    [3] Vreman B. Direct and Large-eddy simulation of the compressible turbulent mixing layer[R]. University of Twente, Department of Applied Mathematics,Thesis, 1995.
    [4] Vreman A, Sandham N, et al. Compressible mixing layer growth rate and turbulence characteristics[J].J. Fluid Mech., 1996. 320:235-258.
    [5] Freund J, Lele S, et al. Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate[J].J. Fluid Mech., 2000, 421:229-267.
    [6] Freund J, Moin P, et al. Compressibility effects in a turbulent annular mixing layer. Part 2. Mixing of a passive scalar[J]. J. Fluid Mech., 2000, 421:269-292.
    [7] Li Q, Fu S. Numerical simulation of high-speed planar mixing layer[J]. Computers & Fluids. 2003,32(10):1357-1377.
    [8] Cockburn B, Lin S Y, et al. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III:one dimensional systems[J]. J. Comp. Phys., 1989, 84:90-113.
    [9] Cockburn B, Shu C-W. The Runge-Kutta discontinuous Galerkin method for conservation Laws:multidimensional systems. J. Comput. Phys, 1998,141(2):199-224.
    [10] Shi X T, Chen J, et al. Numerical simulations of compressible mixing layers with a discontinuous Galerkin method[J]. Acta Mechanica Sinica, 2019, 27(3):318-329.
    [11] Jeong J, Hussain F. On the identification of a vortex[J]. Journal of Fluid Mech., 285:69-94.
    [12] Bassi F, Rebay S.Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations[J]. Int. J. Numer. Meth. Fluids,2000, 40:197-207.
    [13] Xu Z, Shu C-W. Anti-diffusive flux corrections for high order finite difference WENO schemes[J]. J. Comp. Phys., 2005, 205:458-485.
    [14] Shu C-W, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. J. Comp. Phys., 1988. 77:439-471.
    [15] Fu D X, Ma Y W. Direct numerical simulation of coherent structures in planar mixing layer[J]. Science in China A, 1996, 26(7):657-664.
    [16] Papamoschou D, Roshko A. The compressible turbulent shear layer:an experimental study[J]. J. Fluid Mech., 1988, 197:453-477.
    [17] Clemens N T, Mungal M G. Large-scale structure and entrainment in the supersonic mixing layer[J]. J. Fluid Mech., 1995, 284:171-216.
    [18] Rogers M M, Moser R D. Direct simulation of a self-smilar turbulent mixing layer[J. Phys. Fluids, 1994,6(2):903-923.
    [19] Bell J, Mehta R. Development of a two-stream mixing layer from tripped and untripped boundary layers[J]. AIAA Journal, 1990,28(12):2034-2042.
    [20] Pantano C, Sarkar S. A study of compressibility effects in the high-speed turbulent shear layer using direct simulation[J]. J. Fluid Mech., 2002,451.
    [21] Hadjadj A, Yee H C, Sjogreen B. LES of temporally evolving mixing layers by an eighth-order filter scheme[J]. Int. J. Num. Meth. in Fluids. 2012, 70(11):1405-27.
    [22] Spencer B W, Jones B. Statistical investigation of pressure and velocity fields in the turbulent two-stream mixing layer; AIAA-71613[R]. Reston:AIAA, 1971.
  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  190
  • HTML全文浏览量:  1
  • PDF下载量:  368
  • 被引次数: 1
出版历程
  • 收稿日期:  2015-12-14
  • 修回日期:  2016-01-09
  • 网络出版日期:  2021-01-07
  • 刊出日期:  2016-04-24

目录

    /

    返回文章
    返回