[1] |
Lele S K, Direct numerical simulation of compressible free shear flows; AIAA 89-0374[R]. Reston:AIAA, 1989.
|
[2] |
Sarkar S. The stabilizing effect of compressibility in turbulent shear flow[J]. J. Fluid Mech., 1995, 282:163-186.
|
[3] |
Vreman B. Direct and Large-eddy simulation of the compressible turbulent mixing layer[R]. University of Twente, Department of Applied Mathematics,Thesis, 1995.
|
[4] |
Vreman A, Sandham N, et al. Compressible mixing layer growth rate and turbulence characteristics[J].J. Fluid Mech., 1996. 320:235-258.
|
[5] |
Freund J, Lele S, et al. Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate[J].J. Fluid Mech., 2000, 421:229-267.
|
[6] |
Freund J, Moin P, et al. Compressibility effects in a turbulent annular mixing layer. Part 2. Mixing of a passive scalar[J]. J. Fluid Mech., 2000, 421:269-292.
|
[7] |
Li Q, Fu S. Numerical simulation of high-speed planar mixing layer[J]. Computers & Fluids. 2003,32(10):1357-1377.
|
[8] |
Cockburn B, Lin S Y, et al. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III:one dimensional systems[J]. J. Comp. Phys., 1989, 84:90-113.
|
[9] |
Cockburn B, Shu C-W. The Runge-Kutta discontinuous Galerkin method for conservation Laws:multidimensional systems. J. Comput. Phys, 1998,141(2):199-224.
|
[10] |
Shi X T, Chen J, et al. Numerical simulations of compressible mixing layers with a discontinuous Galerkin method[J]. Acta Mechanica Sinica, 2019, 27(3):318-329.
|
[11] |
Jeong J, Hussain F. On the identification of a vortex[J]. Journal of Fluid Mech., 285:69-94.
|
[12] |
Bassi F, Rebay S.Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations[J]. Int. J. Numer. Meth. Fluids,2000, 40:197-207.
|
[13] |
Xu Z, Shu C-W. Anti-diffusive flux corrections for high order finite difference WENO schemes[J]. J. Comp. Phys., 2005, 205:458-485.
|
[14] |
Shu C-W, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. J. Comp. Phys., 1988. 77:439-471.
|
[15] |
Fu D X, Ma Y W. Direct numerical simulation of coherent structures in planar mixing layer[J]. Science in China A, 1996, 26(7):657-664.
|
[16] |
Papamoschou D, Roshko A. The compressible turbulent shear layer:an experimental study[J]. J. Fluid Mech., 1988, 197:453-477.
|
[17] |
Clemens N T, Mungal M G. Large-scale structure and entrainment in the supersonic mixing layer[J]. J. Fluid Mech., 1995, 284:171-216.
|
[18] |
Rogers M M, Moser R D. Direct simulation of a self-smilar turbulent mixing layer[J. Phys. Fluids, 1994,6(2):903-923.
|
[19] |
Bell J, Mehta R. Development of a two-stream mixing layer from tripped and untripped boundary layers[J]. AIAA Journal, 1990,28(12):2034-2042.
|
[20] |
Pantano C, Sarkar S. A study of compressibility effects in the high-speed turbulent shear layer using direct simulation[J]. J. Fluid Mech., 2002,451.
|
[21] |
Hadjadj A, Yee H C, Sjogreen B. LES of temporally evolving mixing layers by an eighth-order filter scheme[J]. Int. J. Num. Meth. in Fluids. 2012, 70(11):1405-27.
|
[22] |
Spencer B W, Jones B. Statistical investigation of pressure and velocity fields in the turbulent two-stream mixing layer; AIAA-71613[R]. Reston:AIAA, 1971.
|