Abstract:
Theory study of viscous interaction effect is reviewed, and aerodynamics data of a complex hypersonic wing-body configuration is obtained by numerical simulation, then the viscous interaction model of longitudinal aerodynamic force coefficient in the condition of perfect gas is established. The quantitative uncertainty of the prediction by viscous interaction model, which is in the form of relative normal distance, is also presented. The results demonstrate that the means combining the theory of viscous interaction parameter and numerical simulation is practicable to assess the viscous interaction effect for hypersonic complex configurations. The viscous interaction model which associated viscous interaction parameter and angle of attack is established, with the ability of correlating varied hypersonic aerodynamics data in different attitudes, Mach numbers and angles of attack; The method in this paper is highly efficient and economic to obtain aerodynamics data during engineering design process. The results using Euler solver efficiently and corrected by presented viscous interaction model can be used to establish massive aerodynamics database for aircraft design in the future.