Numerical analysis of transition effect on a supercritical wing
-
摘要: 基于雷诺平均Navier-Stokes(RANS)方程耦合eN-Database转捩预测方法,对某超临界机翼风洞试验条件下自由转捩和固定转捩流动特性进行数值模拟,研究转捩对其气动性能的影响。计算结果和试验结果对比验证了本文计算方法的可靠性。计算表明:相同迎角下,机翼转捩位置前移,激波位置随之前移,超声速面积减小,机翼升力系数因而减小;Ma=0.8自由转捩时,在迎角0°~1°之间,机翼剖面上翼面压力分布由较为平坦变为尖峰型,造成转捩位置急剧前移,是小迎角升力线丧失线性的主要原因。
-
关键词:
- RANS方程 /
- eN-Database /
- 转捩预测 /
- 超临界机翼 /
- 自由转捩
Abstract: In order to study the influence of transition on the aerodynamics of a supercritical wing, both free transition and fixed transition conditions were simulated on the basis of the three-dimensional Reynolds-averaged Navier-Stokes(RANS) solver with a transition prediction method based on the eN-Database. The calculated results are consistent with the experiment data, which indicate that the numerical methods are reliable and feasible. According to the numerical results, the shock wave moves forward along the upper surface of the wing followed by forward moving transition point at the constant angle of attack(AOA), leading to an decrease in lift coefficient due to the reduced area of supersonic flow. The pressure distribution with free transition of the wing section changes from a flat to a peaky type at AOA between 1 and 1 degree at Ma=0.8. This change causes the transition point moves forward rapidly, and the approximate linear relation between the lift and the AOA is lost.-
Keywords:
- RANS equations /
- eN-Database /
- transition prediction /
- supercritical wing /
- free transition
-
-
-
[1] Whitcom B, Richard T. Review of NASA supercritical airfoils[R]. ICAS Paper No. 74-10, 1974. https://www.researchgate.net/publication/23819183_Review_of_NASA_supercritical_airfoils
[2] 沈克扬.关于超临界机翼Re数效应的机理研究[J].民用飞机设计研究, 1998, 3:7-16. http://health.nsfc.gov.cn/upload/2010-12/10122011125653.doc [3] 陈迎春, 司江涛, 韩先锂, 等.转捩对超临界机翼压力分布的影响分析[J].空气动力学学报, 2003, 21(4):470-475. http://www.kqdlxxb.com/CN/abstract/abstract10494.shtml Chen Y C, Si J T, Han X L, et al. Investigation of transition effect on the pressure distribution of super-critical wing[J]. Acta Aerodynamica Sinica, 2003, 21(4):470-475. (in Chinese) http://www.kqdlxxb.com/CN/abstract/abstract10494.shtml
[4] Xu X, Liu D W, Chen D H, et al. Numerical investigation on shock-induced separation structure of supercritical airfoil[J]. Advanced Materials Research, 2013, 756-759:4502-4505. doi: 10.4028/www.scientific.net/AMR.756-759
[5] 王菲, 额日其太, 王强, 等.三种典型翼型边界层稳定性对比分析[J].空气动力学学报, 2011, 29(4):481-485. http://www.airitilibrary.com/Publication/alDetailedMesh?DocID=7169155 Wang F, Eriqitai, Wang Q, et al. Boundary layers stability analysis of three typical airfoils[J]. Acta Aerodynamica Sinica, 2011, 29(4):481-485. (in Chinese) http://www.airitilibrary.com/Publication/alDetailedMesh?DocID=7169155
[6] 邓磊, 乔志德, 杨旭东, 等.基于N-S方程和自由转捩预测耦合求解的钝后缘翼型气动性能计算[J].空气动力学学报, 2011, 29(5):613-618. http://www.kqdlxxb.com/CN/abstract/abstract10827.shtml Deng L, Qiao Z D, Yang X D, et al. Computational aerodynamic analysis of thick flatback airfoils coupling RANS and transition prediction code[J]. Acta Aerodynamica Sinica, 2011, 29(5):613-618. (in Chinese) http://www.kqdlxxb.com/CN/abstract/abstract10827.shtml
[7] 黄章峰, 逯学志, 于高通.机翼边界层的横流稳定性分析和转捩预测[J].空气动力学学报, 2014, 32(1):14-20. doi: 10.7638/kqdlxxb-2012.0062 Huang Z F, Lu X Z, Yu G T. Crossflow instability analysis and transition prediction of airfoil boundary layer[J]. Acta Aerodynamica Sinica, 2014, 32(1):14-20. (in Chinese) doi: 10.7638/kqdlxxb-2012.0062
[8] 冯文梁, 陈斌, 吕凌英.超临界层流复合翼飞机Re数效应修正方法研究[J].空气动力学学报, 2015, 33(4):470-474. http://www.kqdlxxb.com/CN/abstract/abstract11695.shtml Feng W L, Chen B, Lyu L Y. Research Reynolds number effect correction for air supercritical laminar complex wing[J]. Acts Aerodynamica Sinica, 2015, 33(4):470-474. (in Chinese) http://www.kqdlxxb.com/CN/abstract/abstract11695.shtml
[9] Muppidi S, Mahesh K. DNS of transition in supersonic boundary layers. AIAA-2011-3564[R]. Reston: 2011.
[10] 潘宏禄, 马汉东, 沈清.基于LES方法的平板非定常激波/湍流边界层干扰研究[J].航空学报, 2011, 32(2):242-248. (in Chinese) http://d.wanfangdata.com.cn/Periodical_hkxb201102007.aspx Pan H L, Ma H D, Shen Q. LES application to unsteady flat plate shock wave/turbulent boundary layer interaction[J]. Acts Aeronautica et Astronautica Sinica, 2011, 32:242-248. (in Chinese) http://d.wanfangdata.com.cn/Periodical_hkxb201102007.aspx
[11] Smith A M O, Gamberoni N. Transition pressure gradient and stability theory[R]. Douglas AirCraft Co., CA Rept. ES 26388, Long Beach, CA, 1956. http://www.researchgate.net/publication/248151584_Transition_Pressure_Gradient_and_Stability_Theory
[12] VanIngen J L. A suggested semi-empirical method for the calculation of the Boundary-Layer transition region[R]. Univ. of Delft. Rept. VTH-74, Dept. of Aerospace Engineering, 1956. https://www.researchgate.net/publication/27342530_A_suggested_semi-empirical_method_for_the_calculation_of_boundary_layer_transition_region
[13] 王刚, 刘毅, 王光秋, 等.采用γ-Reθt模型的转捩流动计算分析[J].航空学报, 2014, 01:70-79. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201401006&dbname=CJFD&dbcode=CJFQ Wang G, Liu Y, Wang G Q, et al. Transitional flow simulation based on γ-Reθt transition model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 01:70-79. (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201401006&dbname=CJFD&dbcode=CJFQ
[14] 孟德虹, 张玉伦, 王光学, 等. γ-Reθt转捩模型在二维低速问题中的应用[J].航空学报, 2011, 32(5):792-801. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201105004&dbname=CJFD&dbcode=CJFQ Mend D H, Zhang Y L, Wang G X, et al. Application of γ-Reθt transition model to two-dimensional low speed flows[J]. Acts Aeronautica et Astronautica Sinica, 2011, 32(5):792-801. (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201105004&dbname=CJFD&dbcode=CJFQ
[15] Jean-Pierre Archambaud, Raffaele Donelli. Automatic transition prediction using simplified methods[C]//47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, 2009.
[16] Cambier L, Heib S, Plot S. ONERA else CFD input from research and feed-back from industry[R]. 28th International Congress of The aeronautical Sciences, 2012.
[17] Andreas Krumbein. Automatic transition prediction and application to 3D wing configuration[J]. Journal of Aircraft, 2007, 44(1):119-133. doi: 10.2514/1.22254
[18] Andreas Krumbein. Automatic transition prediction and application to hight-lift multi-element configurations[J]. Journal of Aircraft, 2004, 4(5):1362-1366. http://www.researchgate.net/publication/239414465_Automatic_Transition_Prediction_and_Application_to_High-Lift_MultiElement_Configurations
[19] Normann Krimmelbein, Andreas Krumbein. Automatic transition prediction for three-dimensional configurations with focus on industrial application[C]//40th Fluid Dynamics Conference and Exhibit, 2010.
[20] 张坤, 宋文萍. eN方法在无限展长后掠翼边界层转捩判断中的初步应用[J].西北工业大学学报, 2011, 01:142-147. doi: 10.3969/j.issn.1000-2758.2011.01.027 Zhang K, Song W P. Application of the full eN transition method to the infinite swept-wing's transition prediction[J]. Journal of Northwestern Polytechnical University, 2011, 01:142-147. (in Chinese) doi: 10.3969/j.issn.1000-2758.2011.01.027
[21] 宋文萍, 朱震, 张坤, 等.耦合转捩自动判断的机翼粘性绕流计算与优化设计[J].航空科学技术, 2015, 26(11):23-29. doi: 10.3969/j.issn.1007-5453.2015.11.004 Song Wenping, Zhu Zhen, Zhang Kun, et al. Simulations of the viscous flow around swept wings and optimization design using the RANS solver with automatic transition prediction[J]. Aeronautical Science & Technology, 2015, 26(11):23-29. (in Chinese) doi: 10.3969/j.issn.1007-5453.2015.11.004
[22] 董军, 高德峰, 任园军, 等. eN-Database转捩预测方法在三维非结构求解器中的耦合与应用[J].沈阳航空航天大学学报, 2015, 32(2):11-17. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkgx201502003&dbname=CJFD&dbcode=CJFQ Dong J, Gao D F, Ren Y J, et al. Coupling and appli-cation of eN-database method to transition prediction in a 3D unstructured solver[J]. Journal of Shenyang Aerospace University, 2015, 32(2):11-17. (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkgx201502003&dbname=CJFD&dbcode=CJFQ
[23] Elsenaar A, Binion TW, Stamewsky E. Reynolds number effects in transonic flows[R]. AGARD AG-303, December 1988.
-
期刊类型引用(0)
其他类型引用(1)