喷管结构形式对两级PDE性能的影响分析

付春光, 曾昊, 何立明, 孙超娇, 赵坤

付春光, 曾昊, 何立明, 孙超娇, 赵坤. 喷管结构形式对两级PDE性能的影响分析[J]. 空气动力学学报, 2016, 34(6): 770-777. DOI: 10.7638/kqdlxxb-2016.0063
引用本文: 付春光, 曾昊, 何立明, 孙超娇, 赵坤. 喷管结构形式对两级PDE性能的影响分析[J]. 空气动力学学报, 2016, 34(6): 770-777. DOI: 10.7638/kqdlxxb-2016.0063
Fu Chunguang, Zeng Hao, He Liming, Sun Chaojiao, Zhao Kun. Investigation on the influence of nozzle configuration on performance of a 2-stage PDE[J]. ACTA AERODYNAMICA SINICA, 2016, 34(6): 770-777. DOI: 10.7638/kqdlxxb-2016.0063
Citation: Fu Chunguang, Zeng Hao, He Liming, Sun Chaojiao, Zhao Kun. Investigation on the influence of nozzle configuration on performance of a 2-stage PDE[J]. ACTA AERODYNAMICA SINICA, 2016, 34(6): 770-777. DOI: 10.7638/kqdlxxb-2016.0063

喷管结构形式对两级PDE性能的影响分析

基金项目: 国家自然科学基金(51406234,91541109);陕西省基金(2015JQ5124)
详细信息
    作者简介:

    付春光(1992-),男,内蒙古呼和浩特人,研究生,研究方向为脉冲爆震发动机、涡轴发动机评估.E-mail:240918536@qq.com

    通讯作者:

    曾昊(1983-),男,新疆乌鲁木齐人,讲师,研究领域:飞机推进系统气动热力学理论与工程.E-mail:zwda369@163.com

  • 中图分类号: V43

Investigation on the influence of nozzle configuration on performance of a 2-stage PDE

  • 摘要: 为了研究喷管结构形式对两级PDE性能的影响及作用规律,以氢气和空气混合物为例,采用FLUENT软件中的k-ε湍流模型,使用非平衡壁面函数、PISO算法及基于梯度的动态自适应网格加密方法,对收敛、扩张、收扩等不同喷管结构形式的凹面腔内环形向心射流聚心碰撞产生激波会聚起爆爆震波的过程进行了数值模拟,并对两级脉冲爆震发动机产生的推力和冲量进行了计算。通过对不同时间点凹面腔产生的推力和冲量、喷管产生的推力和冲量、两级PDE总的推力和冲量三者之间的对比和分析,发现凹面腔产生的推力和冲量是两级PDE总的推力和冲量的主要来源,不同喷管结构形式对两级PDE推力和冲量性能的影响有较大的差别。以冲量为例,收敛喷管可以提高凹面腔的冲量,但是由于自身同时产生过多负的喷管冲量,因而总冲量较小;扩张喷管虽然对凹面腔冲量的提高作用不大,但是由于其自身可以提供正的喷管冲量,所以总冲量较大;收扩喷管的收敛段也可以较小幅度的提高凹面腔冲量,但同时产生的负喷管冲量会和扩张段产生的正喷管冲量发生抵消,使总的喷管冲量比较低,发动机总冲量也较小。综合考虑各方面因素,扩张喷管性能最优。可见在两级PDE喷管结构形式的选择上,要同时考虑凹面腔冲量和喷管冲量,权衡两者,才能选择出合适的喷管。
    Abstract: In order to investigate the influence of nozzle configuration on detonation initiation in a two-stage pulse detonation engine, detonation initiation processes using hydrogen-air mixture were simulated with different structural forms of nozzle including converging nozzle, converging-diverging nozzle, and diverging nozzle. A finite volume method with unstructured meshes refined moving self-adaptation and realizable k-ε turbulence model in software FLUENT were employed in the simulation. The non-equilibrium wall functions were used near wall and the PISO algorithm was employed in the calculation. Then the thrust and impulse performance of the two-stage pulse detonation engine with different structural forms of nozzle were calculated. Through comparative analysis of the thrust and impulse performance among the reflector, the nozzle, and the 2-stage PDE at different points during the detonation procedure the simulation results indicate that the thrust and impulse produced by the reflector is the major source of the total thrust and impulse produced by the 2-stage PDE, and the three nozzles have different influence on the two-stage pulse detonation engine. Take example for impulse, the converging nozzle is conducive to increasing the impulse of the reflector, but there is bigger negative nozzle impulse produced by itself at the same time, so the total impulse produced by the 2-stage PDE is smaller. And the convergent section of the converging-diverging nozzle is also in favor of smaller increase in the impulse of the reflector, but the negative nozzle impulse produced by itself at the same time offsets the positive nozzle impulse produced by the divergent section of the converging-diverging nozzle, as a result, the total impulse produced by the converging-diverging nozzle and the 2-stage PDE are both smaller. While the diverging nozzle hardly helps the increase in the reflector impulse, there is bigger positive nozzle impulse produced by itself, so the total impulse produced by the 2-stage PDE is bigger. With comprehensive consideration of various factors, the 2-stage PDE with the diverging nozzle is the best one. Therefore, compromise between reflector impulse and nozzle impulse is needed to select an appropriate nozzle configuration for this 2-stage PDE.
  • [1] Eidelman B S. Pulse detonation engine: a status review and technology development road map[R]. AIAA 97-2740, 1997.
    [2] Barbour E A, Hanson R K. A pulsed detonation tube with a converging-diverging nozzle operating at different pressure ratios[R]. AIAA 2005-1307.
    [3] Barbour E A, Owens Z C, Morris C I. The impact of a converging-diverging nozzle on PDE performance and its associated flowfield[R]. AIAA 2004-867.
    [4] Daniel E Paxson. Optimal area profiles for ideal single nozzle air-breathing pulse detonation engines[R]. AIAA 2003-4512.
    [5] Zachary C O, Ronald K Hanson. Unsteady nozzle design for pulse detonation engines[R]. AIAA 2005-3649.
    [6] Yungster S. Analysis of nozzle effects on pulse detonation engine performance[R]. AIAA 2003-1316.
    [7] Ivett A Leyva, Venkat Tangirala. Investigation of unsteady flow field in a 2-Stage PDE resonator[R]. AIAA 2003-715.
    [8] Keith R M Manus, Anthony J. Dean experimental evaluation of a two-stage pulse detonation combustor[R]. AIAA 2005-3773.
    [9] Wang D. Numerical investigation of the working process in PDE[D]. Nanjing: Nanjing University of Science and Technology, 2007. (in Chinese)王栋. 脉冲爆震发动机工作过程数值模拟研究[D]. 南京: 南京理工大学, 2007.
    [10] Jiang R H, Wu X S, Wang D. Matching research of resonant PDE's resonator and jet[J]. Journal of Aerospace Power, 2009, 24(5): 1006-1010. (in Chinese)姜日红, 武晓松, 王栋. 共振型PDE谐振腔喷嘴匹配关系研究[J]. 航空动力学报, 2009, 24(5): 1006-1010.
    [11] Zhou H. Performance study of two-stage PDE[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008. (in Chinese)周鸿. 两步法高频爆震发动机机理与特性研究[D]. 南京: 南京航空航天大学, 2008.
    [12] Li H P, He L M, Zeng H, et al. Numerical investigation of detonation initiation by shock wave focusing over paraboloid reflector[J]. Journal of Propulsion Technology, 2010, 31(1): 87-91. (in Chinese)李海鹏, 何立明, 曾昊, 等. 凹面腔内激波聚焦起爆爆震波过程的数值模拟[J]. 推进技术, 2010, 31(1): 87-91.
    [13] Zeng H, He L M, Zhang X W, et al. Investigation on the influence of jet flow pressure on detonation initiation via imploding annular shock waves[J]. Journal of Aerospace Power, 2010, 25(9). (in Chinese)曾昊, 何立明, 章雄伟, 等. 入射压力对环形射流激波聚焦起爆爆震的影响分析[J]. 航空动力学报, 2010, 25(9).
    [14] Zeng H. Experimental study and numerical simulation of two-stage pulse detonation engine[D]. Xi'an: Air Force Engineering University, 2011. (in Chinese). 曾昊. 两级脉冲爆震发动机的实验研究与数值模拟[D]. 西安: 空军工程大学, 2011.
    [15] Zeng H, Chen X, He L M, et al. Investigation on two-dimensional shock wave focusing[J]. Aata Aerodynamica Sinica, 2013, 31(3): 316-320. (in Chinese)曾昊, 陈鑫, 何立明, 等. 凹面腔内二维激波会聚特性研究[J]. 空气动力学学报, 2013, 31(3): 316-320.
    [16] Zeng H, He L M, Zhang X W, et al. Investigation on the effects of nozzles with different convergent-divergent angle on PDE performance[J]. Journal of Propulsion Technology, 2011, 32(1): 97-102. (in Chinese). 曾昊, 何立明, 章雄伟, 等. 喷管收敛-扩张角对爆震发动机性能影响分析[J]. 推进技术, 2011, 32(1): 97-102.
    [17] Zeng H, He L M, Wu C H,et al. Investigation for effects of diverging nozzles on two-stage PDE performance[J]. Journal of Propulsion Technology, 2013, 34(8): 1139-1146. (in Chinese)曾昊, 何立明, 吴春华, 等. 不同形式扩张喷管对两级PDE性能的影响[J]. 推进技术, 2013, 34(8): 1139-1146.
    [18] Zhang Q, He L M, Li H P, et al. Investigation into the effect of nozzle on the 2-stage PDE performance through numerical simulation[J]. Journal of Air Force Engineering University (Natural Science Edition), 2011, 12(1): 10-14. (in Chinese)张强, 何立明, 李海鹏, 等. 尾喷管对2-stage PDE性能影响的数值模拟[J]. 空军工程大学学报(自然科学版), 2011, 12(1): 10-14.
    [19] Konnov A A. Refinement of the kinetic mechanism of mydrogen combustion[J]. Khimicheskaya Fizika, 2004, 23(8): 5-18.
    [20] Konnov A A. Remaining uncertainties in the kinetic mechanism of hydrogen combustion[J]. Combust and Flame, 2008, 152 (4): 507-528.
    [21] Yan C J, Fan W. The principle and key technology of pulse detonation engine[M]. Xi'an: Northwestern Polytechnical University Press, 2005: 20-22. (in Chinese)严传俊, 范玮. 脉冲爆震发动机原理及关键技术[M]. 西北工业大学出版社, 2005: 20-22.
    [22] Daunenhofer J F, Baron J R. Gird adaption for the 2D Euler equati ons[R]. AIAA 85-0484, 1985.
    [23] Achasov O V, Penyazkov O G. Some gasdynamic method for control of detonation initiation and propagation[C]//High Speed Deflagration and Detonation Fundamentals and Control. Moscow, 2001: 31-44.
  • 期刊类型引用(0)

    其他类型引用(3)

计量
  • 文章访问数:  186
  • HTML全文浏览量:  9
  • PDF下载量:  216
  • 被引次数: 3
出版历程
  • 收稿日期:  2016-04-17
  • 修回日期:  2016-07-24
  • 网络出版日期:  2021-01-07
  • 刊出日期:  2016-12-24

目录

    /

    返回文章
    返回