Abstract:
To study wing-body rock of canard-configuration aircrafts, a model for wind tunnel test was designed having a chine forebody, canard wings, strake wings, main wings, and a vertical fin. This model was tested by different methods including free rolling motion, static force balance test, dynamic derivative test, and smoke wire technique. First, the complete rock process was studied by free-to-roll experiment in the range of pitch angel
θ=12°~52° and
Δ=1°. The results show that, rolling motions of the canard-configuration aircraft have several different mean roll angles and motion forms vary with different pitch angles. Second, the results of the static force balance test and dynamic derivative test confirm that the rolling motion can occur around zero or nonzero equilibrium roll angles with limit-cycle forms or nolimit cycle ones due to the influence of multi-vortex structures. Finally, the flow visualization tests show that the main vortices generate the wing-body rock at different stages. The possible mechanism for the wing-body rock was also analyzed for the canard-configuration aircraft.