Abstract:
Based on the aerodynamic characteristics of blended wing body configuration, an analysis is carried out on aerodynamic design requirements for a required super critical airfoil, and problems are extracted for the airfoil design of transonic blended wing body. A multi-target multi-constraint optimization design platform for super critical airfoil of belnded wing body is established on the basis of the concept of multi-iteration optimization. In this platform, class function/shape function transformation method is used for the airfoil parameterization, and the CCFD-MB based on three-dimensional Reynolds average Navier-Stokes equations (RANS) is used to solve aerodynamic force. For the computation grid and grid update, c-structured grid is used together with transfinite interpolation method(TFI)and elliptic equationsmoothing algorithm. Non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) is adopted as the present optimization algorithm. It is found that the optimized airfoil has the capabilities of possessing basic aerodynamic characteristics of traditional super critical airfoil and satisfying the requirements for drag divergence, vibration boundary, and low-speed characteristics. Moreover, this optimized airfoil has characteristics of front loading, significantly higher pitch moment coefficient compared with that of traditional super critical airfoil, and satisfying the aerodynamic requirements for an aircraft with belnded wing body configuration.