留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MSFLE与Liutex的涡合并实验研究

郭延昂 董祥瑞 蔡小舒 周骛

郭延昂, 董祥瑞, 蔡小舒, 周骛. 基于MSFLE与Liutex的涡合并实验研究[J]. 空气动力学学报, 2020, 38(3): 432-440. doi: 10.7638/kqdlxxb-2020.0012
引用本文: 郭延昂, 董祥瑞, 蔡小舒, 周骛. 基于MSFLE与Liutex的涡合并实验研究[J]. 空气动力学学报, 2020, 38(3): 432-440. doi: 10.7638/kqdlxxb-2020.0012
GUO Yanang, DONG Xiangrui, CAI Xiaoshu, ZHOU Wu. Experimental studies on vortices merging based on MSFLE and Liutex[J]. ACTA AERODYNAMICA SINICA, 2020, 38(3): 432-440. doi: 10.7638/kqdlxxb-2020.0012
Citation: GUO Yanang, DONG Xiangrui, CAI Xiaoshu, ZHOU Wu. Experimental studies on vortices merging based on MSFLE and Liutex[J]. ACTA AERODYNAMICA SINICA, 2020, 38(3): 432-440. doi: 10.7638/kqdlxxb-2020.0012

基于MSFLE与Liutex的涡合并实验研究

doi: 10.7638/kqdlxxb-2020.0012
基金项目: 

国家自然科学基金 51906154

国家自然科学基金 51576130

国家科技重大专项 2017-V-0016-0069

详细信息
    作者简介:

    郭延昂(1993-), 男, 山东济宁人, 硕士研究生, 研究方向:湍流边界层涡结构实验研究.E-mail:yanangguo00@qq.com

    通讯作者:

    蔡小舒(1955-), 男, 浙江杭州人, 博士, 教授, 研究方向:颗粒与两相流测量.E-mail:usst_caixs@163.com

  • 中图分类号: V211.7;O357.5

Experimental studies on vortices merging based on MSFLE and Liutex

  • 摘要: 应用具有拉格朗日性质的运动单帧长曝光(MSFLE)图像测量方法,对矩形管内湍流边界层涡结构合并现象开展了实验研究。研究了雷诺数Reθ在97到194之间管道湍流边界层流向-法向平面内涡合并现象。在实验中,测量系统以与涡运动速度相近的速度匀速移动,采用连续长曝光记录示踪粒子运动轨迹,以捕捉涡随时空的演变过程,骨架提取图像处理算法获得示踪粒子速度,并应用Liutex物理量表征涡的旋转强度。研究表明:MSFLE方法测量装置简单,对实验条件要求低,可从拉格朗日视角直观测量湍流边界层涡结构及周围流场的时空演变过程,MSFLE图像测量方法与Liutex涡识别算法结合可以很好地应用于湍流边界层涡结构的可视化与量化。矩形管内湍流边界层涡合并的条件是两个涡相邻、强度和尺寸基本相同且为同向旋转涡,合并中两个涡的强度呈反向变化,合并生成的新涡的强度和尺寸基本为初始合并时两个涡之和,且旋转方向与两个涡同向。
  • 图  1  MSFLE测量到的涡生成现象

    Figure  1.  Vortex generation measured by MSFLE

    图  2  实验测量系统示意图

    Figure  2.  Schematic diagram of the experimental measurement system

    图  3  轨迹识别处理流程图

    Figure  3.  Process flow chart of trajectory identification

    图  4  不同算法求轨迹长度的对比[32]

    Figure  4.  Comparison of trajectory length between two algorithms[32]

    图  5  x=400 mm与1300 mm处边界层法向平均速度分布

    Figure  5.  Dimensionless velocity profile of experimental results at x=400 mm and x=1300 mm

    图  6  U*=0.9时涡合并过程图像及处理结果

    Figure  6.  Experimental images and processing results of vortex merging when U*=0.9

    图  7  A涡和B涡合并过程中RInt随时间的变化

    Figure  7.  Temporal distributions of RInt during the merging process of A vortex and B vortex

    图  8  U*=0.8时涡合并图像及处理结果

    Figure  8.  Experimental images and processing results of vortex merging when U*=0.8

    图  9  E涡和F涡合并过程中RInt随时间的变化

    Figure  9.  Temporal distributions of RInt during the merging process of E vortex and F vortex

  • [1] 连祺祥.湍流边界层拟序结构的实验研究[J].力学进展, 2006, 36(3):373-388. doi: 10.3321/j.issn:1000-0992.2006.03.005

    LIAN Q X. Experimental studies on coherent structures in turbulent boundary layers[J]. Advances in Mechanics, 2006, 36(3):373-388. doi: 10.3321/j.issn:1000-0992.2006.03.005
    [2] KÜCHEMANN D. Report on the I. U. T. A. M. symposium on concentrated vortex motions in fluids[J]. Journal of Fluid Mechanics, 1965, 21(1):1. https://doi.org/10.1017/s0022112065000010 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112065000010
    [3] THEODORSEN T. Mechanism of turbulence[C]//Proceedings of the Second Midwestern Conference on Fluid Mechanics. Columbus, Ohio, USA, 1952.
    [4] KLINE S J, REYNOLDS W C, SCHRAUB F A, et al. The structure of turbulent boundary layers[J]. Journal of Fluid Mechanics, 1967, 30(4):741-773. https://doi.org/10.1017/s0022112067001740 doi: 10.1017/S0022112067001740
    [5] PRATURI A K, BRODKEY R S. A stereoscopic visual study of coherent structures in turbulent shear flow[J]. Journal of Fluid Mechanics, 1978, 89(2):251-272. https://doi.org/10.1017/s0022112078002608 doi: 10.1017/S0022112078002608
    [6] LIAN Q X. A visual study of the coherent structure of the turbulent boundary layer in flow with adverse pressure gradient[J]. Journal of Fluid Mechanics, 1990, 215:101. https://doi.org/10.1017/s0022112090002579 doi: 10.1017/S0022112090002579
    [7] 张兆顺, 崔桂香, 许春晓.走进湍流[J].力学与实践, 2002, 24(1):1-8. doi: 10.3969/j.issn.1000-0879.2002.01.001

    ZHANG Z S, CUI G X, XU C X. Approach to turbulence[J]. Mechanics in Engineering, 2002, 24(1):1-8. (in Chinese) doi: 10.3969/j.issn.1000-0879.2002.01.001
    [8] ADRIAN R J, MEINHART C D, TOMKINS C D. Vortex organization in the outer region of the turbulent boundary layer[J]. Journal of Fluid Mechanics, 2000, 422:1-54. https://doi.org/10.1017/s0022112000001580 doi: 10.1017/S0022112000001580
    [9] ADRIAN R J. Hairpin vortex organization in wall turbulence[J]. Physics of Fluids, 2007, 19(4):041301. https://doi.org/10.1063/1.2717527 doi: 10.1063/1.2717527
    [10] ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387:353-396. https://doi.org/10.1017/s002211209900467x doi: 10.1017/S002211209900467X
    [11] KINZEL M, WOLF M, HOLZNER M, et al. Simultaneous two-scale 3D-PTV measurements in turbulence under the influence of system rotation[J]. Experiments in Fluids, 2011, 51(1):75-82. https://doi.org/10.1007/s00348-010-1026-6 doi: 10.1007/s00348-010-1026-6
    [12] HUTCHINS N, HAMBLETON W T, MARUSIC I. Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers[J]. Journal of Fluid Mechanics, 2005, 541:21. https://doi.org/10.1017/s0022112005005872 doi: 10.1017/S0022112005005872
    [13] WANG W, GUAN X L, JIANG N. TRPIV investigation of space-time correlation in turbulent flows over flat and wavy walls[J]. Acta Mechanica Sinica, 2014, 30(4):468-479. https://doi.org/10.1007/s10409-014-0060-7 doi: 10.1007/s10409-014-0060-7
    [14] 姜楠, 于培宁, 管新蕾.湍流边界层相干结构空间拓扑形态的层析TRPIV测量[J].航空动力学报, 2012, 27(5):1113-1121. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201205023

    JIANG N, YU P N, GUAN X L. Tomo-TRPIV measurement of coherent structure spatial topology in turbulent boundary layer[J]. Journal of Aerospace Power, 2012, 27(5):1113-1121. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201205023
    [15] SCHRÖDER A, GEISLER R, STAACK K, et al. Eulerian and Lagrangian views of a turbulent boundary layer flow using time-resolved tomographic PIV[J]. Experiments in Fluids, 2011, 50(4):1071-1091. https://doi.org/10.1007/s00348-010-1014-x doi: 10.1007/s00348-010-1014-x
    [16] 王洪平, 高琪, 王晋军.基于层析PIV的湍流边界层涡结构统计研究[J].中国科学:物理学力学天文学, 2015, 45(12):73-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cg201512007

    WANG H P, GAO Q, WANG J J. The statistical study of vortex structure in turbulent boundary layer flow based on Tomographic PIV[J]. Scientia Sinica(Physica, Mechanica & Astronomica), 2015, 45(12):73-86. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cg201512007
    [17] 高琪, 王洪平.层析PIV技术及其合成射流测量[J].中国科学:技术科学, 2013, 43(7):828-835. https://doi.org/10.1360/092013-360 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201307015
    [18] KATZ J, SHENG J. Applications of holography in fluid mechanics and particle dynamics[J]. Annual Review of Fluid Mechanics, 2010, 42(1):531-555. https://doi.org/10.1146/annurev-fluid-121108-145508 doi: 10.1146/annurev-fluid-121108-145508
    [19] 曲宁宁, 蔡小舒, 周骛, 等.运动单帧图像法湍流边界层相干结构的实验测量[J].化工学报, 2017, 68(11):4088-4094. doi: 10.11949/j.issn.0438-1157.20170469

    QU N N, CAI X S, ZHOU W, et al. Experimental measurement of coherent structures of turbulent boundary layer by motion single frame imaging method[J]. CIESC Journal, 2017, 68(11):4088-4094. (in Chinese) doi: 10.11949/j.issn.0438-1157.20170469
    [20] EPPS B. Review of vortex identification methods[C]//55th AIAA Aerospace Sciences Meeting, Grapevine, Texas. Reston, Virginia: AIAA. AIAA 2017-0989. https://doi.org/10.2514/6.2017-0989
    [21] JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285:69-94. https://doi.org/10.1017/s0022112095000462 doi: 10.1017/S0022112095000462
    [22] HUNT J C R, WRAY A A, MOIN P. Eddies, streams, and convergence zones in turbulent flows[C]//Proceedings of the Summer Program in Center for Turbulence Research. Stanford University, USA, 1988: 193-208.
    [23] LIU C Q, WANG Y Q, YANG Y, et al. New omega vortex identification method[J]. Science China Physics, Mechanics & Astronomy, 2016, 59(8):684711. https://doi.org/10.1007/s11433-016-0022-6 http://d.old.wanfangdata.com.cn/Periodical/sdlxyjyjz-e201803012
    [24] 潘翀, 王晋军, 张草.湍流边界层Lagrangian拟序结构的辨识[J].中国科学(G辑), 2009(4):627-636.doi: 10.1360/2009-39-4-627.
    [25] HALLER G. An objective definition of a vortex[J]. Journal of Fluid Mechanics, 2005, 525:1-26. https://doi.org/10.1017/s0022112004002526 doi: 10.1017/S0022112004002526
    [26] GAO Y S, LIU C Q. Rortex and comparison with eigenvalue-based vortex identification criteria[J]. Physics of Fluids, 2018, 30(8):085107. https://doi.org/10.1063/1.5040112 doi: 10.1063/1.5040112
    [27] LIU C Q, GAO Y S, TIAN S L, et al. Rortex:a new vortex vector definition and vorticity tensor and vector decompositions[J]. Physics of Fluids, 2018, 30(3):035103. https://doi.org/10.1063/1.5023001 doi: 10.1063/1.5023001
    [28] GAO Y S, LIU C Q. Rortex based velocity gradient tensor decomposition[J]. Physics of Fluids, 2019, 31(1):011704. https://doi.org/10.1063/1.5084739 doi: 10.1063/1.5084739
    [29] DONG X R, GAO Y S, LIU C Q. New normalized Rortex/vortex identification method[J]. Physics of Fluids, 2019, 31(1):011701. https://doi.org/10.1063/1.5066016 doi: 10.1063/1.5066016
    [30] WANG Y Q, GAO Y S, LIU J M, et al. Explicit formula for the Liutex vector and physical meaning of vorticity based on the Liutex-Shear decomposition[J]. Journal of Hydrodynamics, 2019, 31(3):464-474. https://doi.org/10.1007/s42241-019-0032-2 doi: 10.1007/s42241-019-0032-2
    [31] 周雷, 周骛, 郭延昂, 等.射流卷吸边界层内相干结构的实验研究[J].化工学报, 2019, 70(7):2520-2527. doi: 10.11949/0438-1157.20190048

    ZHOU L, ZHOU W, GUO Y A, et al. Experimental studies on coherent structures in jet entrainment boundary layers[J]. CIESC Journal, 2019, 70(7):2520-2527. (in Chinese) doi: 10.11949/0438-1157.20190048
    [32] 吴凡, 周骛, 蔡小舒.粒子运动轨迹的图像处理及流场重构算法研究[J].实验流体力学, 2019, 33(4):100-107. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201904014

    WU F, ZHOU W, CAI X S. Image processing algorithm for particle trajectory image and reconstruction study on flow field[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4):100-107. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201904014
    [33] 范宝春, 董刚, 张辉.湍流控制原理[M].北京:国防工业出版社, 2011.

    FAN B C, DONG G, ZHANG H. Principles of turbulence control[M]. Beijing:National Defense Industry Press, 2011. (in Chinese)
  • 加载中
图(9)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  25
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-16
  • 修回日期:  2020-03-15
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回