基于OPTICS聚类算法的流场结构特征分析方法

A modified OPTICS clustering algorithm for analyzing flow characteristics

  • 摘要: 为了改进现有的基于聚类分析的流场结构特征分析方法,使之更加适用于结构风工程领域的风场特征识别与分析,依托聚类分析的思想,结合一种基于密度的OPTICS聚类算法,并引入相关距离的概念替换了原算法中的欧氏距离,提出了采用一种基于相关距离的OPTICS聚类算法进行流场结构特征分析。实例分析利用基于大涡模拟的计算流体动力学数值模拟,对低雷诺数下经典圆柱绕流问题进行了瞬态求解,获取了2000个圆柱尾流中顺流向涡的瞬态涡量场样本。然后,以识别圆柱尾流中的顺流向涡旋涡脱落状态和顺流向涡A模式展向分布为目标,对比了k-means、原始的OPTICS算法和基于相关距离的OPTICS聚类算法等流场结构特征分析方法。分析实例的结果表明,基于相关距离的OPTICS算法能够在合适的初始参数设置下有效识别顺流向涡脱落状态和其A模式展向分布间距,相对k-means算法降低了对初始参数的敏感度,聚类结果稳定且唯一。

     

    Abstract: Current clustering-based methods still need improvement for the flow features identifying and analysis in the field of wind engineering. Therefore, this paper proposed a modified OPTICS (Ordering Points to Identify the Clustering Structure) algorithm to extract flow features. It is a density-based clustering method with the Euclidean distance replaced by the correlation distance. It is employed to study the streamwise vortex shedding and the spanwise distribution of the A-mode in a low-Reynolds-number circular cylinder wake flow obtained by Large Eddy Simulation. Its performance is further compared with the k-means, and the original OPTICS method. The results indicated that the OPTICS algorithm based on the correlation distance can identify the streamwise vortex shedding and the spanwise distribution of the A-mode effectively with reasonable initial parameters. Compared with the k-means, this method is insensitive to the initialization parameters and its results are consequently more stable and well-determined.

     

/

返回文章
返回