Progress of discrete Boltzmann study on multiphase complex flows
-
摘要: 针对多相复杂流体系统模拟研究,简要介绍从格子气模型到离散玻尔兹曼方法的发展历程。从统计物理学基本原理出发,通过粗粒化建模思路,给出玻尔兹曼方程;分析Chapman-Enskog多尺度展开方法所蕴含的测量逐步细化的物理图像,给出离散玻尔兹曼建模的基本原则和主要步骤。简要介绍离散玻尔兹曼在相分离、燃烧、流体不稳定性等系统中的应用。对于多相复杂流体系统的动理学建模,技术关键是分子间作用力和化学反应贡献的引入。不同颜色的示踪粒子的引入,使得在单流体理论框架下即可实现混合过程中物质粒子来源的确定;示踪粒子在其速度相空间的分布所形成的结构蕴含丰富的流场信息,为复杂流场研究张开一个全新的视角。在多介质情形,离散玻尔兹曼建模与动理学宏观建模的对应关系是一对多。随着系统非平衡程度加深,相对于动理学宏观建模与模拟思路,离散玻尔兹曼建模与模拟的复杂度上升速度较慢。作为系统行为粗粒化描述的一种物理模型构建方法,离散玻尔兹曼根据研究需求,选取一个视角,研究系统的一组动理学性质,因而要求描述这组性质的动理学矩在模型简化过程中保值;是动理学直接建模方法的一种,为连续介质建模失效或物理功能不足、而分子动力学方法因适用尺度受限而无能为力的介尺度情形提供了一条方便、有效的研究途径。Abstract: The development of lattice gas model to discrete Boltzmann method is briefly introduced for modeling multiphase complex fluid systems. Based on the basic principles of statistical physics, the Boltzmann equation is given through the idea of coarse-grained modeling. The physical images of progressively refined measurements contained in the Chapman-Enskog multi-scale expansion method are analyzed, and the basic principles and main steps of Discrete Boltzmann Modeling (DBM) are given. The applications of discrete Boltzmann in phase separation, combustion and hydrodynamic instability systems are briefly reviewed. For the kinetic modeling of multiphase complex fluid systems, the key techniques are the introduction of intermolecular forces and the contribution of chemical reactions. The introduction of tracer particles of different colors makes it possible to determine the source of material particles in the mixing process under the framework of single-fluid theory. The structure formed by the distribution of tracer particles in their velocity space contains rich flow field information, which opens a new perspective for the study of complex flow field. In the case of multi-media, the correspondence between discrete Boltzmann modeling and Kinetic Macro Modeling (KMM) is one-to-several, where KMM means that to derive the macroscopic model equations from kinetic theory. As the degree of non-equilibrium of the system deepens, the complexity of discrete Boltzmann modeling and simulation increases more slowly than that of KMM and simulation. As a coarse-grained physical modeling method, discrete Boltzmann selects a perspective to study a set of kinetic properties of the system according to research requirements, so it is required that the kinetic moments describing this set of properties maintain their values in the process of model simplification. It provides a convenient and effective way to investigate the mesoscale situations where continuum modeling fails or physical functions are insufficient and molecular dynamics method is unable to do so due to the limited applicable scale.1) 分子的平均自由程λ与平均分子间距l成正相关,所以克努森数Kn可视为重新标度的平均分子间距,描述的是系统的离散程度,其倒数描述的是系统的连续程度。对于非平衡流动,Kn又可视为两个分子发生碰撞的平均时间间隔与以分子平均速度通过关注的宏观特征尺度所需时间之比,因而可视为重新标度的分子碰撞平均时间间隔。因其与热力学弛豫时间成正相关,所以可进一步视为重新标度的热力学弛豫时间。从这个意义上,Kn描述的是系统偏离热力学平衡的程度。
-
图 4 RT与RM不稳定性演化过程中系统内不同类型的非平衡强度与密度、温度、流速不均匀度之间关联程度的对比[56, 62](更多细节参见文献[62])
Figure 4. Comparison of the correlation degree between different types of non-equilibrium strength and density, temperature and flow rate unevenness in the evolution of RT and RM instability[56, 62] (see Ref. [62] for more details)
图 11 耦合RTKHI系统(
$g = 0.005$ ,${u_0} = 0.05$ )的温度图像、图灵斑图,以及${u_0} = 0.05$ 的纯KHI的图灵斑图 [63]Figure 11. A coupled RTKHI with
$g = 0.005$ and${u_0} = 0.05$ . (a) and (b) are the temperature and the corresponding Turing pattern (${T_{th}} = 1.0$ ) of the RTKHI, respectively. (c) is the temperature Turing pattern of pure KHI with${u_0} = 0.05$ [63]图 20 两种熵产生速率幅值之间的关系曲线,图中箭头指向热传导系数(1/Pr)、黏性系数(
$\tau $ )和表面张力系数(K)增大的方向[44]Figure 20. The relationship curve between the amplitude of two kinds of entropy production rate, the arrow in the figure points to the increasing direction of heat conduction coefficient (1/Pr), viscosity coefficient (
$\tau $ ) and surface tension coefficient (K) [44] -
[1] ALDER B J, WAINWRIGHT T E. Phase Transition for a Hard Sphere System[J]. Journal of Chemical Physics, 1957, 27(5): 1208-1209. doi: 10.1063/1.1743957 [2] ALDER B J, WAINWRIGHT T E. Studies in Molecular Dynamics. I. General Method[J]. The Journal of Chemical Physics, 1959, 31(2): 459-466. doi: 10.1063/1.1730376 [3] RAHMAN A. Correlations in the Motion of Atoms in Liquid Argon[J]. Physical Review, 1964, 136(2A): A405--A411. doi: 10.1103/PhysRev.136.A405 [4] RYCKAERT J P, CICCOTTI G, BERENDSEN H J C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes[J]. Journal of Computational. Physics, 1977, 23(3): 327-341. doi: 10.1016/0021-9991(77)90098-5 [5] ANDERSEN H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. The Journal of Chemical Physics, 1980, 72(4): 2384-2393. doi: 10.1063/1.439486 [6] PARRINELLO M, RAHMAN A. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study[J]. Physical review letters, 1980, 45(14): 1196-1199. doi: 10.1103/PhysRevLett.45.1196 [7] CAR R, PARRINELLO M. Unified Approach for Molecular Dynamics and Density-Functional Theory[J]. Physical Review Letters, 1985, 55(22): 2471. doi: 10.1103/PhysRevLett.55.2471 [8] CAGIN T, PETTITT B M. Grand Molecular Dynamics: A Method for Open Systems[J]. Molecular Simulation, 1991, 6(1-3): 5-26. doi: 10.1080/08927029108022137 [9] KARBALAEI A, KUMAR R, CHO H J. Thermocapillarity in Microfluidics—A Review[J]. Micromachines, 2016, 7(1): 13. doi: 10.3390/mi7010013 [10] CRISTINI V, TAN Y C. Theory and numerical simulation of droplet dynamics in complex flows--a review[J]. Lab on A Chip, 2004, 4(4): 257-264. doi: 10.1039/B403226H [11] TEZDUYAR T E. Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(23/24): 2983-3000. [12] SZEWC K, POZORSKI J, MINIER J P. Simulations of single bubbles rising through viscous liquids using Smoothed Particle Hydrodynamics[J]. International Journal of Multiphase Flow, 2013, 50(Complete): 98-105. [13] JACQMIN D. Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling[J]. Journal of Computational Physics, 1999, 155(1): 96-127. doi: 10.1006/jcph.1999.6332 [14] GUNSTENSEN A K, ROTHMAN D H, ZALESKI S, et al. Lattice Boltzmann model of immiscible fluids[J]. Physical Review A, 1991, 43(8): 4320-4327. doi: 10.1103/PhysRevA.43.4320 [15] SHAN X W, CHEN H D. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E, 1993, 47(3): 1815-1819. doi: 10.1103/PhysRevE.47.1815 [16] SWIFT M R, OSBORN W R, YEOMANS J M. Lattice Boltzmann Simulation of Non-Ideal Fluids[J]. Physical Review Letters, 1995, 75(5): 830-833. doi: 10.1103/PhysRevLett.75.830 [17] HE X Y, CHEN S Y, ZHANG R Y. A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh–Taylor Instability[J]. Journal of Computational Physics, 1999, 152(2): 642-663. doi: 10.1006/jcph.1999.6257 [18] GONNELLA G, LAMURA A, SOFONEA V. Lattice Boltzmann simulation of thermal nonideal fluids[J]. Physical Review E, 2007, 76(3): 036703. doi: 10.1103/PhysRevE.76.036703 [19] LI Q, LUO K H, KANG Q J, et al. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer[J]. Progress in Energy and Combustion Science, 2016, 52: 62-105. doi: 10.1016/j.pecs.2015.10.001 [20] LI Q, LUO K H, GAO Y J, et al. Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows[J]. Physical Review E, 2012, 85(2): 026704. doi: 10.1103/PhysRevE.85.026704 [21] SUN D K, ZHU M F, WANG J, et al. Lattice Boltzmann modeling of bubble formation and dendritic growth in solidification of binary alloys[J]. International Journal of Heat and Mass Transfer, 2016, 94(MAR.): 474-487. [22] MILLER W, SUCCI S, MANSUTTI D. Lattice Boltzmann Model for Anisotropic Liquid-Solid Phase Transition[J]. Physical Review Letters, 2001, 86(16): 3578. doi: 10.1103/PhysRevLett.86.3578 [23] SUCCI S. The lattice Boltzmann equation for fluid dynamics and beyond[M]. Oxford: Oxford univeristy press, 2001. [24] 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2009.HE Y L, WANG Y, LI Q. Lattice Boltzmann method: Theory and applications[M]. Beijing: Science Press, 2009(in Chinese). [25] 郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2009.GUO Z L, ZHENG C G. Theory and applications of lattice Boltzmann method[M]. Beijing: Science Press, 2009(in Chinese). [26] HUANG H B, SUKOP M C, LU X Y. Multiphase lattice Boltzmann methods: Theory and application[M], John Wiley & Sons, Ltd, 2015. [27] 许爱国, 张广财, 应阳君. 燃烧系统的离散Boltzmann建模与模拟研究进展[J]. 物理学报, 2015, 64(18): 35-60.XU A G, ZHANG G C, YING Y J. Progress of discrete Boltzmann modeling and simulation of combustion system[J]. Acta Physica Sinica, 2015, 64(18): 35-60. [28] XU A G, ZHANG G C, ZHANG Y D. Discrete Boltzmann modeling of compressible flows, Chapter 2[M]//KYZAS G Z, MITROPOULOS A C, edited. Kinetic Theory. Croatia: InTech, 2018. [29] XU A G, ZHANG G C, GAN Y B, et al. Lattice Boltzmann modeling and simulation of compressible flows[J]. Frontiers of Physics, 2012, 7(5): 582-600. doi: 10.1007/s11467-012-0269-5 [30] XU A G, LIN C D, ZHANG G C, et al. Multiple-relaxation-time lattice Boltzmann kinetic model for combustion[J]. Physical Review E, 2015, 91(4): 043306. doi: 10.1103/PhysRevE.91.043306 [31] XU A G, ZHANG G C, YING Y J, et al. Complex fields in heterogeneous materials under shock: modeling, simulation and analysis[J]. Science China Physics, 2016, 59(5): 650501. doi: 10.1007/s11433-016-5801-0 [32] LIN C D, LUO K H. Discrete Boltzmann modeling of unsteady reactive flows with nonequilibrium effects[J]. Physical Review E, 2019, 99(1): 012142. doi: 10.1103/PhysRevE.99.012142 [33] GAN Y B, XU A G, ZHANG G C, et al. Discrete Boltzmann trans-scale modeling of high-speed compressible flows[J]. Physical Review E, 2018, 97(5): 053312. doi: 10.1103/PhysRevE.97.053312 [34] ZHANG Y D, XU A G, ZHANG G C, et al. Discrete Boltzmann method for non-equilibrium flows: Based on Shakhov model[J]. Computer Physics Communications, 2019, 238: 50-65. doi: 10.1016/j.cpc.2018.12.018 [35] LEE T D, YANG C N. Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model[J]. Physical Review, 1952, 87(3): 410--419. doi: 10.1103/PhysRev.87.410 [36] 聂小波. 模拟可压缩流体的二维格子气模型[D]. 北京: 应用物理与计算数学研究所, 1988.NIE X B. A two-dimensional lattice gas model for compressible fluid simulation[D]. Bei Jing: Institute of Applied Physics and Computational Mathematics, 1988(in Chinese). [37] CHOPARD B, DROZ M. Cellular automata modeling of physical systems[M]. Cambridge: Cambridge University Press, 1998. [38] FRISCH U, HASSLACHER B, POMEAU Y. Lattice-Gas Automata for the Navier-Stokes Equation[J]. Physical Review Letters, 1986, 56(14): 1505-1508. doi: 10.1103/PhysRevLett.56.1505 [39] BHATNAGAR P L, GROSS E P, KROOK M. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems[J]. Physical Review, 1954, 94(3): 511--525. doi: 10.1103/PhysRev.94.511 [40] HOLWAY, L H. New Statistical Models for Kinetic Theory: Methods of Construction[J]. Physics of Fluids, 1966, 9(9): 1658-1673. doi: 10.1063/1.1761920 [41] SHAKHOV E M. Generalization of the Krook kinetic relaxation equation[J]. Fluid Dynamics, 1968, 3(5): 142-145. [42] LARINA I N, RYKOV V A. Kinetic model of the Boltzmann equation for a diatomic gas with rotational degrees of freedom[J]. Computational Mathematics and Mathematical Physics, 2010, 50(12): 2118-2130. doi: 10.1134/S0965542510120134 [43] LIU G J. A method for constructing a model form for the Boltzmann equation[J]. Physics of Fluids A, 1990, 2(2): 277-280. doi: 10.1063/1.857777 [44] ZHANG Y D, XU A G, ZHANG G C, et al. Entropy production in thermal phase separation: a kinetic-theory approach[J]. Soft Matter, 2019, 15(10): 2245-2259. doi: 10.1039/C8SM02637H [45] ONUKI A. Phase transition dynamics[M]. Cambridge: Cambridge University Press, 2002. [46] 张玉东. 非平衡流与多相流的建模与研究—基于离散Boltzmann方法[D]. 南京: 南京理工大学, 2019. [47] KLIMONTOVICH Y L. Kinetic theory of nonideal gases & nonideal plasmas[M]. Oxford: Pergamon, 1982. [48] CARNAHAN N F, STARLING K E. Equation of State of Non Attracting Rigid Spheres[J]. The Journal of Chemical Physics, 1969, 51(2): 635-636. doi: 10.1063/1.1672048 [49] 许爱国, 张广财, 李英骏, 等. 非平衡与多相复杂系统模拟研究——Lattice Boltzmann动理学理论与应用[J]. 物理学进展, 2014, 34(03): 136-167.XU A G, ZHANG G C, LI Y J, et al. Modeling and Simulation of Nonequilibrium and Multiphase Complex Systems -Lattice Boltzmann kinetic Theory and Application[J]. Progress in Physics, 2014, 34(03): 136-167. [50] ZHANG D J, XU A G, ZHANG Y D, et al. Two-fluid discrete Boltzmann model for compressible flows: Based on ellipsoidal statistical Bhatnagar–Gross–Krook[J]. Physics of Fluids, 2020, 32(12): 126110. doi: 10.1063/5.0017673 [51] ZHANG G, XU A G, LI Y J, et al. Particle tracking manifestation of compressible flow and mixing induced by Rayleigh-Taylor instability. arXiv: 1912.13181. [52] ANDRIES P, AOKI K, PERTHAME B. A consistent BGK-type model for gas mixtures[J]. Journal of Statistical Physics, 2002, 106(5-6): 993-1018. [53] HAACK J R, HAUCK C D, MURILLO M S. A Conservative, Entropic Multispecies BGK Model[J]. Journal of Statistical Physics, 2017, 168(9): 1-31. [54] LAI H L, XU A G, ZHANG G C, et al. Non-equilibrium thermo-hydrodynamic effects on the Rayleigh-Taylor instability in compressible flows[J]. Physical Review E, 2016, 94(2): 023106. doi: 10.1103/PhysRevE.94.023106 [55] 李德梅, 赖惠林, 许爱国, 等. 可压流体Rayleigh-Taylor不稳定性的离散Boltzmann模拟[J]. 物理学报, 2018, 067(008): 080501. doi: 10.7498/aps.67.20171952LI D M, LAI H L, XU A G, et al. Discrete Boltzmann simulation of Rayleigh-Taylor instability in compressible flows[J]. Acta Physica Sinica, 2018, 067(008): 080501. doi: 10.7498/aps.67.20171952 [56] CHEN F, XU A G, ZHANG G C. Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh-Taylor Instability[J]. Frontiers of Physics, 2016, 11(6): 114703. doi: 10.1007/s11467-016-0603-4 [57] GAN Y B, XU A G, ZHANG G C, et al. Nonequilibrium and morphological characterizations of Kelvin-Helmholtz instability in compressible flows[J]. Frontiers of Physics, 2019, 4(14): 83-99. [58] XU A G, ZHANG G C, PAN X F, et al. Morphological characterization of shocked porous material[J]. Journal of Physics D Applied Physics, 2009, 42(7): 075409. doi: 10.1088/0022-3727/42/7/075409 [59] GAN Y B, XU A G, ZHANG G C, et al. Phase separation in thermal systems: A lattice Boltzmann study and morphological characterization[J]. Physical Review E, 2011, 84(4): 046715. doi: 10.1103/PhysRevE.84.046715 [60] GAN Y B, XU A G, ZHANG G C, et al. Lattice Boltzmann study on Kelvin-Helmholtz instability: the roles of velocity and density gradients[J]. Physical Review E, 2010, 83(2): 056704. [61] LIN C D, XU A G, ZHANG G C, et al. Discrete Boltzmann modeling of Rayleigh-Taylor instability in two-component compressible flows[J]. Physical Review E, 2017, 96(5): 053305. doi: 10.1103/PhysRevE.96.053305 [62] CHEN F, XU A G, ZHANG G C. Collaboration and Competition Between Richtmyer-Meshkov instability and Rayleigh-Taylor instability[J]. Physics of Fluids, 2018, 30(10): 102105. doi: 10.1063/1.5049869 [63] CHEN F, XU A G, ZHANG Y D, et al. Morphological and non-equilibrium analysis of coupled Rayleigh–Taylor–Kelvin–Helmholtz instability[J]. Physics of Fluids, 2020, 32(10): 104111. doi: 10.1063/5.0023364 [64] GAN Y B, XU A G, ZHANG G C, et al. Lattice Boltzmann study of thermal phase separation: Effects of heat conduction, viscosity and Prandtl number[J]. EPL, 2012, 97(4): 44002. doi: 10.1209/0295-5075/97/44002 [65] GAN Y B, XU A G, ZHANG G C, et al. Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects[J]. Soft Matter, 2015, 11: 5336-5345. doi: 10.1039/C5SM01125F [66] 许爱国 张广财, 甘延标. 相分离过程的离散Boltzmann方法研究进展[J]. 力学与实践, 2016, 38(4): 361-374. doi: 10.6052/1000-0879-16-006XU A G, ZHANG G C, GAN Y B. Progress in studies on discrete Boltzmann modeling of phase separation process[J]. Mechanics in engineering, 2016, 38(4): 361-374. doi: 10.6052/1000-0879-16-006 [67] YAN B, XU A G, ZHANG G C, et al. Lattice Boltzmann model for combustion and detonation[J]. Frontiers of Physics, 2013, 8(1): 94-110. doi: 10.1007/s11467-013-0286-z [68] LIN C D, XU A G, ZHANG G C, et al. Polar Coordinate Lattice Boltzmann Kinetic Modeling of Detonation Phenomena[J]. Communications in Theoretical Physics, 2014, 62(5): 737-748. doi: 10.1088/0253-6102/62/5/18 [69] LIN C D, XU A G, ZHANG G C, et al. Double-distribution-function discrete Boltzmann model for combustion[J]. Combustion and Flame, 2016, 164: 137-151. doi: 10.1016/j.combustflame.2015.11.010 [70] ZHANG Y D, XU A G, ZHANG G C, et al. Kinetic modeling of detonation and effects of negative temperature coefficient[J]. Combustion and Flame, 2016, 173: 483-492. doi: 10.1016/j.combustflame.2016.04.003 [71] LIN C D, LUO K H, FEI L, et al. A multi-component discrete Boltzmann model for nonequilibrium reactive flows[J]. Scientific Reports, 2017, 7(1): 14580. doi: 10.1038/s41598-017-14824-9 [72] LIN C D, LUO K H. MRT discrete Boltzmann method for compressible exothermic reactive flows[J]. Computers and Fluids, 2018, 166: 176-183. doi: 10.1016/j.compfluid.2018.02.012 [73] LIN C D, LUO K H. Mesoscopic Simulation of Nonequilibrium Detonation With Discrete Boltzmann Method[J]. Combustion and Flame, 2018, 198: 356-362. doi: 10.1016/j.combustflame.2018.09.027 [74] ZHANG Y D, XU A G, ZHANG G C, et al. A One-Dimensional Discrete Boltzmann Model for Detonation and an Abnormal Detonation Phenomenon[J]. Communications in Theoretical Physics, 2019, 71: 117-126. doi: 10.1088/0253-6102/71/1/117 [75] LIN C D, LUO K H. Kinetic Simulation of Unsteady Detonation with Thermodynamic Nonequilibrium Effects[J]. Combustion Explosion and Shock Waves, 2020, 56(4): 435-443. doi: 10.1134/S0010508220040073 [76] LIU H, KANG W, ZHANG Q, et al. Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium[J]. Frontiers of Physics, 2016, 11(6): 1-11. DOI: 10.1007/s11467-016-0590-5 [77] LIU H, ZHANG Y, KANG W, et al. Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons[J]. Physical Review E, 2017, 95(2-1): 023201. DOI: 10.1103/PhysRevE.95.023201 [78] 刘浩, 康炜, 段慧玲, 等. 流体中强冲击波的微观结构数值模拟研究进展[J]. 中国科学: 物理学 力学 天文学, 2017, 47(7): 19-27.LIU H, KANG W, DUAN H L, et al. Recent progresses on numerical investigations of microscopic structure of strong shock waves in fluid[J]. Scientia Sinica (Physica,Mechanica & Astronomica), 2017, 47(7): 19-27.(in Chinese) -