留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多相流系统的离散玻尔兹曼研究进展

许爱国 陈杰 宋家辉 陈大伟 陈志华

许爱国, 陈杰, 宋家辉, 等. 多相流系统的离散玻尔兹曼研究进展[J]. 空气动力学学报, 2021, 39(3): 138−169 doi: 10.7638/kqdlxxb-2021.0021
引用本文: 许爱国, 陈杰, 宋家辉, 等. 多相流系统的离散玻尔兹曼研究进展[J]. 空气动力学学报, 2021, 39(3): 138−169 doi: 10.7638/kqdlxxb-2021.0021
XU A G, CHEN J, SONG J H, et al. Progress of discrete Boltzmann study on multiphase complex flows[J]. Acta Aerodynamica Sinica, 2021, 39(3): 138−169 doi: 10.7638/kqdlxxb-2021.0021
Citation: XU A G, CHEN J, SONG J H, et al. Progress of discrete Boltzmann study on multiphase complex flows[J]. Acta Aerodynamica Sinica, 2021, 39(3): 138−169 doi: 10.7638/kqdlxxb-2021.0021

多相流系统的离散玻尔兹曼研究进展

doi: 10.7638/kqdlxxb-2021.0021
基金项目: 国家自然科学基金(11772064,11702028);中国工程物理研究院创新发展基金创新项目(CX2019033);计算物理国防重点实验室稳定支持项目(W2018-05);爆炸科学与技术国家重点实验室开放课题(KFJJ21-16M)
详细信息
    作者简介:

    许爱国*(1970-),男,山东人,研究员,研究方向:理论物理,物理力学.E-mail:Xu_Aiguo@iapcm.ac.cn

  • 分子的平均自由程λ与平均分子间距l成正相关,所以克努森数Kn可视为重新标度的平均分子间距,描述的是系统的离散程度,其倒数描述的是系统的连续程度。对于非平衡流动,Kn又可视为两个分子发生碰撞的平均时间间隔与以分子平均速度通过关注的宏观特征尺度所需时间之比,因而可视为重新标度的分子碰撞平均时间间隔。因其与热力学弛豫时间成正相关,所以可进一步视为重新标度的热力学弛豫时间。从这个意义上,Kn描述的是系统偏离热力学平衡的程度。
  • 中图分类号: O359;O411.3

Progress of discrete Boltzmann study on multiphase complex flows

  • 摘要: 针对多相复杂流体系统模拟研究,简要介绍从格子气模型到离散玻尔兹曼方法的发展历程。从统计物理学基本原理出发,通过粗粒化建模思路,给出玻尔兹曼方程;分析Chapman-Enskog多尺度展开方法所蕴含的测量逐步细化的物理图像,给出离散玻尔兹曼建模的基本原则和主要步骤。简要介绍离散玻尔兹曼在相分离、燃烧、流体不稳定性等系统中的应用。对于多相复杂流体系统的动理学建模,技术关键是分子间作用力和化学反应贡献的引入。不同颜色的示踪粒子的引入,使得在单流体理论框架下即可实现混合过程中物质粒子来源的确定;示踪粒子在其速度相空间的分布所形成的结构蕴含丰富的流场信息,为复杂流场研究张开一个全新的视角。在多介质情形,离散玻尔兹曼建模与动理学宏观建模的对应关系是一对多。随着系统非平衡程度加深,相对于动理学宏观建模与模拟思路,离散玻尔兹曼建模与模拟的复杂度上升速度较慢。作为系统行为粗粒化描述的一种物理模型构建方法,离散玻尔兹曼根据研究需求,选取一个视角,研究系统的一组动理学性质,因而要求描述这组性质的动理学矩在模型简化过程中保值;是动理学直接建模方法的一种,为连续介质建模失效或物理功能不足、而分子动力学方法因适用尺度受限而无能为力的介尺度情形提供了一条方便、有效的研究途径。
    1)  分子的平均自由程λ与平均分子间距l成正相关,所以克努森数Kn可视为重新标度的平均分子间距,描述的是系统的离散程度,其倒数描述的是系统的连续程度。对于非平衡流动,Kn又可视为两个分子发生碰撞的平均时间间隔与以分子平均速度通过关注的宏观特征尺度所需时间之比,因而可视为重新标度的分子碰撞平均时间间隔。因其与热力学弛豫时间成正相关,所以可进一步视为重新标度的热力学弛豫时间。从这个意义上,Kn描述的是系统偏离热力学平衡的程度。
  • 图  1  质心坐标系中二体碰撞的分子运动轨迹

    Figure  1.  The molecular trajectory of two-body collision in the centroid coordinate system.

    图  2  三维分子碰撞截面和散射示意图

    Figure  2.  Schematic of 3D molecular collision cross section and scattering

    图  3  非平衡特征量张开的非平衡相空间

    Figure  3.  Phase space opened by non-equilibrium characteristic quantities

    图  4  RT与RM不稳定性演化过程中系统内不同类型的非平衡强度与密度、温度、流速不均匀度之间关联程度的对比[56, 62](更多细节参见文献[62])

    Figure  4.  Comparison of the correlation degree between different types of non-equilibrium strength and density, temperature and flow rate unevenness in the evolution of RT and RM instability[56, 62] (see Ref. [62] for more details)

    图  5  RM不稳定性演化过程中热传导对相关度的影响[62](更多细节参见文献[62])

    Figure  5.  Effect of heat conduction on the degree of correlation in the evolution of RM instability[62] (see Ref. [62] for more details)

    图  6  RTI与RMI共存系统界面反转现象出现机制的示意图[62]

    Figure  6.  The schematic diagram of the collaboration and competition relations between RM and RT instability[62]

    图  7  RTI与RMI共存系统界面反转现象出现与否的数值模拟密度云图[62]

    Figure  7.  Numerical simulation density nephogram of interface inversion in RTI and RMI coexistence system[62]

    图  8  RTI与RMI共存系统宏观特征[62]

    Figure  8.  Macrocharacteristics of the RTI and RMI coexistence system[62]

    图  9  不同重力场下RTI与RMI共存系统的非平衡行为特征[62]

    Figure  9.  Non-equilibrium characteristics of RTI and RMI coexistence system under different gravity fields[62]

    图  10  马赫数对RTI与RMI共存系统TNE强度、宏观量梯度与非平衡特征相关度的影响[62]

    Figure  10.  Influence of Mach number on thermodynamic non-equilibrium strength, macroscopic gradient and non-equilibrium characteristic correlation of RTI and RMI coexistence system[62]

    图  11  耦合RTKHI系统($g = 0.005$, ${u_0} = 0.05$)的温度图像、图灵斑图,以及${u_0} = 0.05$ 的纯KHI的图灵斑图 [63]

    Figure  11.  A coupled RTKHI with $g = 0.005$ and ${u_0} = 0.05$. (a) and (b) are the temperature and the corresponding Turing pattern (${T_{th}} = 1.0$) of the RTKHI, respectively. (c) is the temperature Turing pattern of pure KHI with ${u_0} = 0.05$[63]

    图  12  振幅 A、振幅增长率${{{\rm{d}}A} / {{\rm{d}}t}}$ 和形态边界长度 L 与时间 t 的关系[63]

    Figure  12.  Perturbation amplitude A, growth rate ${{{\rm{d}}A} / {{\rm{d}}t}}$, and morphological boundary length L vs time t [63]

    图  13  根据温度场的形态分析早期主要机制[63]

    Figure  13.  Morphological analysis of the main mechanism in the early stage[63]

    图  14  RTKHI系统($g = 0.005$, ${u_0} = 0.1$),不同视角的非平衡特征[63]

    Figure  14.  Non-equilibrium characteristics of the RTKHI system ($g = 0.005$, ${u_0} = 0.1$) [63]

    图  15  耦合RTKHI系统的非平衡特征在早期主要机理判断和过渡点捕获中的应用[63]

    Figure  15.  The applications of non-equilibrium characteristics in the early main mechanism judgment and transition point capture[63]

    图  16  等温与非等温相分离过程熵产生速率演化特征的对比[44]

    Figure  16.  Comparison of entropy generation rate evolution characteristics between isothermal and non-isothermal phase separation processes[44]

    图  17  热流对热相分离过程中SD阶段持续时间和熵产生速率的影响[44]

    Figure  17.  Effect of heat flow on duration of SD stage and entropy generation rate in thermal phase separation[44]

    图  19  表面张力对热相分离过程中SD阶段持续时间和熵产生速率的影响[44]

    Figure  19.  Effect of surface tension on duration of SD stage and entropy generation rate in thermal phase separation process[44]

    图  18  黏性对热相分离过程中SD阶段持续时间和熵产生速率的影响[44]

    Figure  18.  Effect of viscosity on duration of SD stage and entropy generation rate in thermal phase separation[44]

    图  20  两种熵产生速率幅值之间的关系曲线,图中箭头指向热传导系数(1/Pr)、黏性系数($\tau $)和表面张力系数(K)增大的方向[44]

    Figure  20.  The relationship curve between the amplitude of two kinds of entropy production rate, the arrow in the figure points to the increasing direction of heat conduction coefficient (1/Pr), viscosity coefficient ($\tau $) and surface tension coefficient (K) [44]

    图  21  四种反应速率系数随温度变化特征图[70]

    Figure  21.  Profiles of k in function of temperature for four different cases[70]

    图  22  非平衡量$\varDelta _{2,xx}^ * $ 与黏性应力张量${\textit{Π}} _{xx}$ 对比图[70]

    Figure  22.  Comparisons of non-equilibrium quantity $\varDelta _{2,xx}^ * $ and viscous stress${\textit{Π}} _{xx}$[70]

    图  23  非平衡量$\varDelta _{3,1,x}^ * $ 与热流$ {{j}_{q,x}} $ 对比图[70]

    Figure  23.  Comparisons of non-equilibrium quantity $\varDelta _{3,1,x}^ * $ and heat flux $ {{j}_{q,x}} $[70]

    图  24  情形1与情形2下的三种局域熵产生率分布[70]

    Figure  24.  Three kinds of profiles of entropy productions for case1 and case2[70]

    图  25  情形3与情形4下的三种局域熵产生率分布[70]

    Figure  25.  Three kinds of profiles of entropy productions for case3 and case4[70]

    图  26  四种反应速率情形下的全局熵产生率[70]

    Figure  26.  Three kinds of profiles of global entropy productions for four cases[70]

  • [1] ALDER B J, WAINWRIGHT T E. Phase Transition for a Hard Sphere System[J]. Journal of Chemical Physics, 1957, 27(5): 1208-1209. doi: 10.1063/1.1743957
    [2] ALDER B J, WAINWRIGHT T E. Studies in Molecular Dynamics. I. General Method[J]. The Journal of Chemical Physics, 1959, 31(2): 459-466. doi: 10.1063/1.1730376
    [3] RAHMAN A. Correlations in the Motion of Atoms in Liquid Argon[J]. Physical Review, 1964, 136(2A): A405--A411. doi: 10.1103/PhysRev.136.A405
    [4] RYCKAERT J P, CICCOTTI G, BERENDSEN H J C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes[J]. Journal of Computational. Physics, 1977, 23(3): 327-341. doi: 10.1016/0021-9991(77)90098-5
    [5] ANDERSEN H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. The Journal of Chemical Physics, 1980, 72(4): 2384-2393. doi: 10.1063/1.439486
    [6] PARRINELLO M, RAHMAN A. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study[J]. Physical review letters, 1980, 45(14): 1196-1199. doi: 10.1103/PhysRevLett.45.1196
    [7] CAR R, PARRINELLO M. Unified Approach for Molecular Dynamics and Density-Functional Theory[J]. Physical Review Letters, 1985, 55(22): 2471. doi: 10.1103/PhysRevLett.55.2471
    [8] CAGIN T, PETTITT B M. Grand Molecular Dynamics: A Method for Open Systems[J]. Molecular Simulation, 1991, 6(1-3): 5-26. doi: 10.1080/08927029108022137
    [9] KARBALAEI A, KUMAR R, CHO H J. Thermocapillarity in Microfluidics—A Review[J]. Micromachines, 2016, 7(1): 13. doi: 10.3390/mi7010013
    [10] CRISTINI V, TAN Y C. Theory and numerical simulation of droplet dynamics in complex flows--a review[J]. Lab on A Chip, 2004, 4(4): 257-264. doi: 10.1039/B403226H
    [11] TEZDUYAR T E. Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(23/24): 2983-3000.
    [12] SZEWC K, POZORSKI J, MINIER J P. Simulations of single bubbles rising through viscous liquids using Smoothed Particle Hydrodynamics[J]. International Journal of Multiphase Flow, 2013, 50(Complete): 98-105.
    [13] JACQMIN D. Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling[J]. Journal of Computational Physics, 1999, 155(1): 96-127. doi: 10.1006/jcph.1999.6332
    [14] GUNSTENSEN A K, ROTHMAN D H, ZALESKI S, et al. Lattice Boltzmann model of immiscible fluids[J]. Physical Review A, 1991, 43(8): 4320-4327. doi: 10.1103/PhysRevA.43.4320
    [15] SHAN X W, CHEN H D. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E, 1993, 47(3): 1815-1819. doi: 10.1103/PhysRevE.47.1815
    [16] SWIFT M R, OSBORN W R, YEOMANS J M. Lattice Boltzmann Simulation of Non-Ideal Fluids[J]. Physical Review Letters, 1995, 75(5): 830-833. doi: 10.1103/PhysRevLett.75.830
    [17] HE X Y, CHEN S Y, ZHANG R Y. A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh–Taylor Instability[J]. Journal of Computational Physics, 1999, 152(2): 642-663. doi: 10.1006/jcph.1999.6257
    [18] GONNELLA G, LAMURA A, SOFONEA V. Lattice Boltzmann simulation of thermal nonideal fluids[J]. Physical Review E, 2007, 76(3): 036703. doi: 10.1103/PhysRevE.76.036703
    [19] LI Q, LUO K H, KANG Q J, et al. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer[J]. Progress in Energy and Combustion Science, 2016, 52: 62-105. doi: 10.1016/j.pecs.2015.10.001
    [20] LI Q, LUO K H, GAO Y J, et al. Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows[J]. Physical Review E, 2012, 85(2): 026704. doi: 10.1103/PhysRevE.85.026704
    [21] SUN D K, ZHU M F, WANG J, et al. Lattice Boltzmann modeling of bubble formation and dendritic growth in solidification of binary alloys[J]. International Journal of Heat and Mass Transfer, 2016, 94(MAR.): 474-487.
    [22] MILLER W, SUCCI S, MANSUTTI D. Lattice Boltzmann Model for Anisotropic Liquid-Solid Phase Transition[J]. Physical Review Letters, 2001, 86(16): 3578. doi: 10.1103/PhysRevLett.86.3578
    [23] SUCCI S. The lattice Boltzmann equation for fluid dynamics and beyond[M]. Oxford: Oxford univeristy press, 2001.
    [24] 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2009.

    HE Y L, WANG Y, LI Q. Lattice Boltzmann method: Theory and applications[M]. Beijing: Science Press, 2009(in Chinese).
    [25] 郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2009.

    GUO Z L, ZHENG C G. Theory and applications of lattice Boltzmann method[M]. Beijing: Science Press, 2009(in Chinese).
    [26] HUANG H B, SUKOP M C, LU X Y. Multiphase lattice Boltzmann methods: Theory and application[M], John Wiley & Sons, Ltd, 2015.
    [27] 许爱国, 张广财, 应阳君. 燃烧系统的离散Boltzmann建模与模拟研究进展[J]. 物理学报, 2015, 64(18): 35-60.

    XU A G, ZHANG G C, YING Y J. Progress of discrete Boltzmann modeling and simulation of combustion system[J]. Acta Physica Sinica, 2015, 64(18): 35-60.
    [28] XU A G, ZHANG G C, ZHANG Y D. Discrete Boltzmann modeling of compressible flows, Chapter 2[M]//KYZAS G Z, MITROPOULOS A C, edited. Kinetic Theory. Croatia: InTech, 2018.
    [29] XU A G, ZHANG G C, GAN Y B, et al. Lattice Boltzmann modeling and simulation of compressible flows[J]. Frontiers of Physics, 2012, 7(5): 582-600. doi: 10.1007/s11467-012-0269-5
    [30] XU A G, LIN C D, ZHANG G C, et al. Multiple-relaxation-time lattice Boltzmann kinetic model for combustion[J]. Physical Review E, 2015, 91(4): 043306. doi: 10.1103/PhysRevE.91.043306
    [31] XU A G, ZHANG G C, YING Y J, et al. Complex fields in heterogeneous materials under shock: modeling, simulation and analysis[J]. Science China Physics, 2016, 59(5): 650501. doi: 10.1007/s11433-016-5801-0
    [32] LIN C D, LUO K H. Discrete Boltzmann modeling of unsteady reactive flows with nonequilibrium effects[J]. Physical Review E, 2019, 99(1): 012142. doi: 10.1103/PhysRevE.99.012142
    [33] GAN Y B, XU A G, ZHANG G C, et al. Discrete Boltzmann trans-scale modeling of high-speed compressible flows[J]. Physical Review E, 2018, 97(5): 053312. doi: 10.1103/PhysRevE.97.053312
    [34] ZHANG Y D, XU A G, ZHANG G C, et al. Discrete Boltzmann method for non-equilibrium flows: Based on Shakhov model[J]. Computer Physics Communications, 2019, 238: 50-65. doi: 10.1016/j.cpc.2018.12.018
    [35] LEE T D, YANG C N. Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model[J]. Physical Review, 1952, 87(3): 410--419. doi: 10.1103/PhysRev.87.410
    [36] 聂小波. 模拟可压缩流体的二维格子气模型[D]. 北京: 应用物理与计算数学研究所, 1988.

    NIE X B. A two-dimensional lattice gas model for compressible fluid simulation[D]. Bei Jing: Institute of Applied Physics and Computational Mathematics, 1988(in Chinese).
    [37] CHOPARD B, DROZ M. Cellular automata modeling of physical systems[M]. Cambridge: Cambridge University Press, 1998.
    [38] FRISCH U, HASSLACHER B, POMEAU Y. Lattice-Gas Automata for the Navier-Stokes Equation[J]. Physical Review Letters, 1986, 56(14): 1505-1508. doi: 10.1103/PhysRevLett.56.1505
    [39] BHATNAGAR P L, GROSS E P, KROOK M. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems[J]. Physical Review, 1954, 94(3): 511--525. doi: 10.1103/PhysRev.94.511
    [40] HOLWAY, L H. New Statistical Models for Kinetic Theory: Methods of Construction[J]. Physics of Fluids, 1966, 9(9): 1658-1673. doi: 10.1063/1.1761920
    [41] SHAKHOV E M. Generalization of the Krook kinetic relaxation equation[J]. Fluid Dynamics, 1968, 3(5): 142-145.
    [42] LARINA I N, RYKOV V A. Kinetic model of the Boltzmann equation for a diatomic gas with rotational degrees of freedom[J]. Computational Mathematics and Mathematical Physics, 2010, 50(12): 2118-2130. doi: 10.1134/S0965542510120134
    [43] LIU G J. A method for constructing a model form for the Boltzmann equation[J]. Physics of Fluids A, 1990, 2(2): 277-280. doi: 10.1063/1.857777
    [44] ZHANG Y D, XU A G, ZHANG G C, et al. Entropy production in thermal phase separation: a kinetic-theory approach[J]. Soft Matter, 2019, 15(10): 2245-2259. doi: 10.1039/C8SM02637H
    [45] ONUKI A. Phase transition dynamics[M]. Cambridge: Cambridge University Press, 2002.
    [46] 张玉东. 非平衡流与多相流的建模与研究—基于离散Boltzmann方法[D]. 南京: 南京理工大学, 2019.
    [47] KLIMONTOVICH Y L. Kinetic theory of nonideal gases & nonideal plasmas[M]. Oxford: Pergamon, 1982.
    [48] CARNAHAN N F, STARLING K E. Equation of State of Non Attracting Rigid Spheres[J]. The Journal of Chemical Physics, 1969, 51(2): 635-636. doi: 10.1063/1.1672048
    [49] 许爱国, 张广财, 李英骏, 等. 非平衡与多相复杂系统模拟研究——Lattice Boltzmann动理学理论与应用[J]. 物理学进展, 2014, 34(03): 136-167.

    XU A G, ZHANG G C, LI Y J, et al. Modeling and Simulation of Nonequilibrium and Multiphase Complex Systems -Lattice Boltzmann kinetic Theory and Application[J]. Progress in Physics, 2014, 34(03): 136-167.
    [50] ZHANG D J, XU A G, ZHANG Y D, et al. Two-fluid discrete Boltzmann model for compressible flows: Based on ellipsoidal statistical Bhatnagar–Gross–Krook[J]. Physics of Fluids, 2020, 32(12): 126110. doi: 10.1063/5.0017673
    [51] ZHANG G, XU A G, LI Y J, et al. Particle tracking manifestation of compressible flow and mixing induced by Rayleigh-Taylor instability. arXiv: 1912.13181.
    [52] ANDRIES P, AOKI K, PERTHAME B. A consistent BGK-type model for gas mixtures[J]. Journal of Statistical Physics, 2002, 106(5-6): 993-1018.
    [53] HAACK J R, HAUCK C D, MURILLO M S. A Conservative, Entropic Multispecies BGK Model[J]. Journal of Statistical Physics, 2017, 168(9): 1-31.
    [54] LAI H L, XU A G, ZHANG G C, et al. Non-equilibrium thermo-hydrodynamic effects on the Rayleigh-Taylor instability in compressible flows[J]. Physical Review E, 2016, 94(2): 023106. doi: 10.1103/PhysRevE.94.023106
    [55] 李德梅, 赖惠林, 许爱国, 等. 可压流体Rayleigh-Taylor不稳定性的离散Boltzmann模拟[J]. 物理学报, 2018, 067(008): 080501. doi: 10.7498/aps.67.20171952

    LI D M, LAI H L, XU A G, et al. Discrete Boltzmann simulation of Rayleigh-Taylor instability in compressible flows[J]. Acta Physica Sinica, 2018, 067(008): 080501. doi: 10.7498/aps.67.20171952
    [56] CHEN F, XU A G, ZHANG G C. Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh-Taylor Instability[J]. Frontiers of Physics, 2016, 11(6): 114703. doi: 10.1007/s11467-016-0603-4
    [57] GAN Y B, XU A G, ZHANG G C, et al. Nonequilibrium and morphological characterizations of Kelvin-Helmholtz instability in compressible flows[J]. Frontiers of Physics, 2019, 4(14): 83-99.
    [58] XU A G, ZHANG G C, PAN X F, et al. Morphological characterization of shocked porous material[J]. Journal of Physics D Applied Physics, 2009, 42(7): 075409. doi: 10.1088/0022-3727/42/7/075409
    [59] GAN Y B, XU A G, ZHANG G C, et al. Phase separation in thermal systems: A lattice Boltzmann study and morphological characterization[J]. Physical Review E, 2011, 84(4): 046715. doi: 10.1103/PhysRevE.84.046715
    [60] GAN Y B, XU A G, ZHANG G C, et al. Lattice Boltzmann study on Kelvin-Helmholtz instability: the roles of velocity and density gradients[J]. Physical Review E, 2010, 83(2): 056704.
    [61] LIN C D, XU A G, ZHANG G C, et al. Discrete Boltzmann modeling of Rayleigh-Taylor instability in two-component compressible flows[J]. Physical Review E, 2017, 96(5): 053305. doi: 10.1103/PhysRevE.96.053305
    [62] CHEN F, XU A G, ZHANG G C. Collaboration and Competition Between Richtmyer-Meshkov instability and Rayleigh-Taylor instability[J]. Physics of Fluids, 2018, 30(10): 102105. doi: 10.1063/1.5049869
    [63] CHEN F, XU A G, ZHANG Y D, et al. Morphological and non-equilibrium analysis of coupled Rayleigh–Taylor–Kelvin–Helmholtz instability[J]. Physics of Fluids, 2020, 32(10): 104111. doi: 10.1063/5.0023364
    [64] GAN Y B, XU A G, ZHANG G C, et al. Lattice Boltzmann study of thermal phase separation: Effects of heat conduction, viscosity and Prandtl number[J]. EPL, 2012, 97(4): 44002. doi: 10.1209/0295-5075/97/44002
    [65] GAN Y B, XU A G, ZHANG G C, et al. Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects[J]. Soft Matter, 2015, 11: 5336-5345. doi: 10.1039/C5SM01125F
    [66] 许爱国 张广财, 甘延标. 相分离过程的离散Boltzmann方法研究进展[J]. 力学与实践, 2016, 38(4): 361-374. doi: 10.6052/1000-0879-16-006

    XU A G, ZHANG G C, GAN Y B. Progress in studies on discrete Boltzmann modeling of phase separation process[J]. Mechanics in engineering, 2016, 38(4): 361-374. doi: 10.6052/1000-0879-16-006
    [67] YAN B, XU A G, ZHANG G C, et al. Lattice Boltzmann model for combustion and detonation[J]. Frontiers of Physics, 2013, 8(1): 94-110. doi: 10.1007/s11467-013-0286-z
    [68] LIN C D, XU A G, ZHANG G C, et al. Polar Coordinate Lattice Boltzmann Kinetic Modeling of Detonation Phenomena[J]. Communications in Theoretical Physics, 2014, 62(5): 737-748. doi: 10.1088/0253-6102/62/5/18
    [69] LIN C D, XU A G, ZHANG G C, et al. Double-distribution-function discrete Boltzmann model for combustion[J]. Combustion and Flame, 2016, 164: 137-151. doi: 10.1016/j.combustflame.2015.11.010
    [70] ZHANG Y D, XU A G, ZHANG G C, et al. Kinetic modeling of detonation and effects of negative temperature coefficient[J]. Combustion and Flame, 2016, 173: 483-492. doi: 10.1016/j.combustflame.2016.04.003
    [71] LIN C D, LUO K H, FEI L, et al. A multi-component discrete Boltzmann model for nonequilibrium reactive flows[J]. Scientific Reports, 2017, 7(1): 14580. doi: 10.1038/s41598-017-14824-9
    [72] LIN C D, LUO K H. MRT discrete Boltzmann method for compressible exothermic reactive flows[J]. Computers and Fluids, 2018, 166: 176-183. doi: 10.1016/j.compfluid.2018.02.012
    [73] LIN C D, LUO K H. Mesoscopic Simulation of Nonequilibrium Detonation With Discrete Boltzmann Method[J]. Combustion and Flame, 2018, 198: 356-362. doi: 10.1016/j.combustflame.2018.09.027
    [74] ZHANG Y D, XU A G, ZHANG G C, et al. A One-Dimensional Discrete Boltzmann Model for Detonation and an Abnormal Detonation Phenomenon[J]. Communications in Theoretical Physics, 2019, 71: 117-126. doi: 10.1088/0253-6102/71/1/117
    [75] LIN C D, LUO K H. Kinetic Simulation of Unsteady Detonation with Thermodynamic Nonequilibrium Effects[J]. Combustion Explosion and Shock Waves, 2020, 56(4): 435-443. doi: 10.1134/S0010508220040073
    [76] LIU H, KANG W, ZHANG Q, et al. Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium[J]. Frontiers of Physics, 2016, 11(6): 1-11. DOI: 10.1007/s11467-016-0590-5
    [77] LIU H, ZHANG Y, KANG W, et al. Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons[J]. Physical Review E, 2017, 95(2-1): 023201. DOI: 10.1103/PhysRevE.95.023201
    [78] 刘浩, 康炜, 段慧玲, 等. 流体中强冲击波的微观结构数值模拟研究进展[J]. 中国科学: 物理学 力学 天文学, 2017, 47(7): 19-27.

    LIU H, KANG W, DUAN H L, et al. Recent progresses on numerical investigations of microscopic structure of strong shock waves in fluid[J]. Scientia Sinica (Physica,Mechanica & Astronomica), 2017, 47(7): 19-27.(in Chinese)
  • 加载中
图(27)
计量
  • 文章访问数:  690
  • HTML全文浏览量:  213
  • PDF下载量:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-25
  • 录用日期:  2021-04-08
  • 修回日期:  2021-04-05
  • 网络出版日期:  2021-06-25
  • 刊出日期:  2021-06-25

目录

    /

    返回文章
    返回