湍流边界层大尺度相干运动的阵列TRPIV测量

Arrayed TRPIV measurement of large-scale coherent motions in turbulent boundary layer

  • 摘要: 使用高时间分辨粒子图像测速技术,研究湍流边界层中大尺度相干运动。由于大尺度运动的流向空间尺度与边界层厚度δ有关,因此沿流向排列4个高速相机进行拍摄,得到了约6.7δ×1.2δ的湍流边界层大视场,实验雷诺数Reτ = 422。针对流场中不同法向高度的流向脉动速度,采用沿流向方向进行空间小波变换的方法,得到不同空间尺度分量的脉动速度,并计算其占总流向脉动动能的比例,发现湍流边界层外区存在流向最大能量流向尺度,约为1δ。通过小波分解将湍流脉动速度场分为大尺度分量和小尺度分量。使用速度门限法,沿时间序列提取大尺度相干运动,利用泰勒冻结假设,将时间结构转化为空间结构,并与直接从空间得到的大尺度相干结构做对比。使用相位平均法测得大尺度相干结构的几何形态,发现从时间维度和直接从空间维度得到的喷射事件的流向尺度相近,而直接从空间提取的扫掠事件要比从时间提取的大。结果表明:流场中1δ尺度左右的大尺度运动是湍动能的主要贡献者;利用泰勒冻结假设可以从时间中提取出大尺度相干结构,与从流场空间直接提取的结果有着良好的一致性。

     

    Abstract: Time-resolved particle image velocimetry (TRPIV) is employed to study the large-scale coherent motions (LSM) in the turbulent boundary layer. Since the spatial scale of LSM in the streamwise direction is related to the boundary layer thickness \delta , four high-speed cameras are arranged sequentially along the streamwise direction to obtain a view field of size about 6.7\delta \times 1.2\delta , sufficient to study LSM at the experimental Reynolds number of Re _\tau = 422. For streamwise velocity fluctuations at different wall-normal heights, the spatial wavelet transform along the streamwise direction is used to obtain the velocity fluctuations of different spatial scales and the corresponding energy proportion to the total streamwise kinetic energy. It is found that there exists a scale of maximum energy in the outer region of the turbulent boundary layer, whose length is about 1\delta . The turbulent velocity fluctuation field is decomposed into large- and small-scale components using the wavelet transform. The temporal coherent structure is extracted from the large-scale components in the time series using the threshold method, then transformed into a spatial one using the Taylor's frozen turbulence hypothesis and compared with the large-scale coherent structure captured directly in the spatial domain. The geometry of large-scale coherent structures is measured using the phase averaging method, and it is found that the streamwise scales of the ejection events obtained from the temporal and spatial domains are similar, while the scale of the sweep event extracted directly from the spatial domain is larger than that from the temporal domain. The results show that LSM with the streamwise length of 1\delta is the main contributor to turbulent kinetic energy. The large-scale coherent structure can be extracted from the temporal domain using the Taylor's frozen turbulence hypothesis and is in good agreement with the that extracted directly from the spatial domain.

     

/

返回文章
返回