张浩杰, 刘建新, 赵磊. 高超声速钝楔边界层最优增长扰动及其二次失稳研究[J]. 空气动力学学报, 2024, 42(8): 23−33. DOI: 10.7638/kqdlxxb-2023.0193
引用本文: 张浩杰, 刘建新, 赵磊. 高超声速钝楔边界层最优增长扰动及其二次失稳研究[J]. 空气动力学学报, 2024, 42(8): 23−33. DOI: 10.7638/kqdlxxb-2023.0193
ZHANG H J, LIU J X, ZHAO L. Optimal growth and secondary instability of hypersonic blunt wedge boundary layers[J]. Acta Aerodynamica Sinica, 2024, 42(8): 23−33. DOI: 10.7638/kqdlxxb-2023.0193
Citation: ZHANG H J, LIU J X, ZHAO L. Optimal growth and secondary instability of hypersonic blunt wedge boundary layers[J]. Acta Aerodynamica Sinica, 2024, 42(8): 23−33. DOI: 10.7638/kqdlxxb-2023.0193

高超声速钝楔边界层最优增长扰动及其二次失稳研究

Optimal growth and secondary instability of hypersonic blunt wedge boundary layers

  • 摘要: 最优增长扰动理论是近年来高超声速边界层非模态失稳现象研究中的主要理论之一,可被看作一种对非模态扰动增长的工程化估计。本文以高超声速钝楔边界层为研究对象,采用最优增长理论和二次失稳分析方法,对钝楔边界层的非模态失稳特性进行了研究。结果表明,在平楔面各个工况的有限计算域中无法找到不稳定模态扰动,非模态的最优增长扰动可获得较大的能量增益。研究还发现,最优扰动的能量增益随马赫数的增加逐渐减小,而壁面曲率对最优扰动的增长起促进作用。但是,由于不同曲率条件下对应的最大能量增长扰动的展向波数存在一定差异,因此变曲率的等熵压缩面不存在统一的变化规律。进一步,研究还采用非线性抛物化稳定性方程研究了零频率最优扰动的非线性演化,并以最优扰动形成的条纹边界层的二次稳定性为基本流,采用线性理论进行了二次失稳分析,发现最优增长扰动形成的条纹结构具有较强的二次失稳增长率,这有利于下游边界层转捩成湍流。该研究结果对设计高速飞行器前体进气道的强制转捩装置有一定参考意义。

     

    Abstract: The optimal growth disturbance theory has been one of the main theories in recent years for studying non-modal instability phenomena in hypersonic boundary layers. This theory can be viewed as an engineering estimation of the growth of non-modal disturbances. The entire study focuses on hypersonic blunt wedge boundary layer, and employs the optimal growth disturbance theory and secondary instability analysis to investigate the non-modal instability characteristics of the blunt wedge boundary layer. The analysis reveals that no unstable modal disturbances can be found in the finite computational domains for various conditions on the flat wedge surface. However, non-modal optimal growth disturbances can acquire significant energy gains. The study also finds that the energy gain of the optimal disturbance gradually decreases with the increase in Mach number, while the wall curvature promotes the growth of the optimal disturbance. However, the spanwise wavenumber of disturbance with the maximum energy gain varies with the curvature condition, thus there is no uniform trend in curved isentropic compression surfaces. Furthermore, the study investigates the nonlinear evolution of the stationary optimal disturbance using the non-parallel parabolized stability equations and analyzes the secondary stability characteristics of the streaky boundary layer based on the linear stability theory. The results indicate that the streaky structure associated with the optimal growth has strong secondary instability, which is conducive to the transition of the downstream boundary layer to turbulence. These research findings have significant implications for the design of forced transition devices in the forebody inlets of hypersonic vehicles.

     

/

返回文章
返回