飞行器表面测压试验设计及分区重构方法

Experimental design and regional reconstruction method for wind tunnel pressure measurements on flight vehicles

  • 摘要: 针对飞行器多工况风洞测压试验的试验设计及重构问题,提出了一种融合先验信息的测压试验设计及重构方法框架。首先发展了先验信息的提取方法、基于聚类方法的试验设计和基于面元均匀性的优化方法,建立了先验信息与试验设计的定量关联,形成融合先验信息的测压试验设计方法。其次,针对表面压力各部分分布特性的显著差异,基于POD方法发展了匹配先验信息基模态与测点数量的分区化重构方法,对典型高速飞机构型的测试结果显示重构均值误差小于0.2%、均方根误差小于4%、最大误差小于30%,且各工况重构性能基本一致。多工况重构特性一致对升力线斜率等关键参数具有重要意义。采用融合先验信息的试验设计可进一步提高重构精度,不同工况下的最大误差可降低0~10%。本文提出的方法和框架输入仅包含数值结果及少量经验超参数,依赖人工经验的程度较低,降低了测压试验设计和重构难度,适用于复杂构型飞行器。

     

    Abstract: This paper introduces an a priori-embedded framework for the design of experiments and regional reconstruction in wind tunnel pressure testing for flight vehicles. We propose an experimental design methodology that integrates prior information, enabling a quantitative translation of prior knowledge to pressure design sites. This approach encompasses the extraction of features from prior pressure distributions, a clustering process for multiple scenarios, and an optimization strategy for the uniformity of triangular facets in the initial design. To capture variations in local pressure distributions, we introduce a proper orthogonal decomposition (POD)-based reconstruction technique that aligns the number of base modal shapes with the number of design sites. Evaluations on a typical high-speed aircraft demonstrate a mean reconstruction error of less than 0.2%, a root mean square error below 4%, and a maximum error not exceeding 30%. The consistent reconstruction performance across various cases is significant for the accurate determination of the lift curve slope. The incorporation of a priori-embedded design further refines the maximum error reduction by 0~10%. The framework requires only numerical outcomes and minimal empirical parameters, rendering it well-suited for complex configuration flight vehicles in pressure measurement testing.

     

/

返回文章
返回