自适应笛卡尔网格的曲率修正浸入边界方法

A curvature-corrected immersion boundary method for adaptive Cartesian meshes

  • 摘要: 在笛卡尔网格流体仿真中,由于笛卡尔网格的非贴体特性,物面边界处理的准确性成为影响模拟精度的关键。虚拟单元-浸入边界法通常将局部物面视为平板,采用对称技术来简化处理,没有考虑曲率效应引起的误差,易引入伪熵,导致物面附近流场计算精度下降。本文在虚拟单元-浸入边界处理方法基础上,发展参考点流动物理量双线性插值方法,并结合局部曲率信息进行外推重构虚拟点物理量,建立了笛卡尔网格下的曲率修正浸入边界方法。Prandtl-Meyer流动、无黏圆柱绕流和无黏翼型绕流算例数值测试结果表明,该方法有效抑制了高曲率区域的伪熵生成,整体保持二阶收敛,L_1、L_2和L_\infty 范数误差均下降约一个数量级,特别是在物面曲率较大的区域,相较传统对称技术表现出显著优势。

     

    Abstract: In Cartesian grid methods, the non-body-fitted nature between orthogonal grids and complex solid boundaries poses a significant challenge for accurately imposing boundary conditions, which directly impacts simulation accuracy. The proposed method addresses this by locating reference points along the outward normal direction of the boundary surface, applying bilinear interpolation to obtain the flow variables at those points, and incorporating local curvature information to extrapolate physical quantities. This approach enables accurate reconstruction of flow variables in virtual cells near the boundary, particularly enhancing accuracy in regions with high curvature. Validation on multiple benchmark cases demonstrates a substantial reduction in boundary-induced errors, with errors in the L_1、L_2 and L_\infty norms decreasing by approximately an order of magnitude. The overall method retains second-order convergence and effectively suppresses spurious entropy generation in regions of high curvature.

     

/

返回文章
返回