基于各向异性四叉树网格的CAD模型快速三角化算法

Fast tessellation algorithm for CAD models on anisotropic quadtree grids

  • 摘要: 计算机辅助设计(computer-aided design, CAD)模型的三角化在工程应用和科学研究领域中有重要应用,它为模型可视化提供底层数据表征,也可作为CAE、CAM等CAD下游应用的输入,支持诸如网格生成、数值模拟、快速原型设计等关键领域的研究与应用。本研究提出了一种基于各向异性四叉树背景网格的CAD模型快速三角化算法。该算法通过自底向上构建的算法流程,确保结果的二维流形,在可控容差的曲线离散阶段,通过设计一种基于曲率和曲率一阶导的尺寸函数有效识别特征,而在自适应四叉树快速曲面三角化阶段,通过设计各向异性四叉树,使得三角化的结果满足最小化网格单元的要求,另一方面,通过后验的混合多阶容差条件实现了与原始CAD输入在不同连续性上的一致性。复杂CAD模型输入下的数值对比实验表明,相比OCC、Gmsh等开源软件以及Ansys等商业软件中同类算法,该算法在几何保形精度、背景网格规模、算法时间效率体现了不同程度的优势,具有应用实际工程的潜力。

     

    Abstract: Tessellation of CAD models is essential in engineering applications and scientific research, providing foundational data for model visualization and serving as input for CAD downstream applications such as CAE and CAM. This study introduces a rapid tessellation algorithm for CAD models based on an anisotropic quadtree background grid. The algorithm, building from the bottom up, ensures that the results are two-dimensional manifolds. It incorporates a size function based on curvature and its first derivative for identifying features with controllable tolerance during curve discretization. In the adaptive quadtree stage for rapid surface tessellation, the design minimizes mesh elements while maintaining consistency with the original CAD input through a posteriori hybrid multi-order tolerance conditions. Comparative numerical experiments demonstrate that this algorithm surpasses open-source software like OCC and Gmsh, as well as commercial offerings like Ansys, in terms of geometric conformal accuracy, background grid scale, and computational efficiency, highlighting its potential for practical engineering applications.

     

/

返回文章
返回