基于各向异性四叉树网格的CAD模型快速三角化算法

Fast tessellation algorithm for CAD models on anisotropic quadtree grids

  • 摘要: 计算机辅助设计(computer-aided design, CAD)模型的三角化在工程和科学研究领域中有重要应用,它为模型可视化提供底层数据表征,也可作为计算机辅助工程、计算机辅助制造等CAD下游应用的输入,支持诸如网格生成、数值模拟、快速原型设计等关键领域的研究与应用。本研究提出了一种基于各向异性四叉树背景网格的CAD模型快速三角化算法。该算法通过自底向上构建的算法流程,确保结果的二维流形;在可控容差的曲线离散阶段,通过设计一种基于曲率和曲率一阶导的尺寸函数有效识别特征;而在自适应四叉树快速曲面三角化阶段,通过设计各向异性四叉树,使得三角化的结果满足最小化网格单元的要求。此外,通过后验的混合多阶容差条件实现了与原始CAD输入在不同连续性上的一致性。复杂CAD模型输入下的数值对比实验表明,相比OCC、Gmsh等开源软件以及Ansys等商业软件中同类算法,该算法在几何保形精度、背景网格规模、算法时间效率等方面均体现出不同程度的优势,具有实际工程应用的潜力。

     

    Abstract: Tessellation of computer-aided design (CAD) models plays a crucial role in engineering and scientific domains, offering foundational data for model visualization and serving as input for downstream CAD applications, including computer-aided engineering (CAE) and computer-aided manufacturing (CAM). This research presented a rapid tessellation algorithm for CAD models that employs an anisotropic quadtree background grid. The algorithm, constructed from the ground up, guaranteed the output as two-dimensional manifolds. It featureed a size function reliant on curvature and its first derivative to accurately identify geometric featureed within a controllable tolerance during curve discretization. During the adaptive quadtree phase for swift surface tessellation, it minimized mesh elements, ensuring alignment with the original CAD input through a posteriori hybrid multi-order tolerance criteria. Comparative numerical experiments indicate that this algorithm outperforms existing open-source software, such as OCC and Gmsh, and commercial solutions like Ansys, in geometric accuracy, background grid scale, and computational efficiency, highlighting its potential for practical engineering applications.

     

/

返回文章
返回