基于多支微射流的超声速射流主动控制

Active control of supersonic jet based on multiple microjets

  • 摘要: 在国家大力发展航空航天产业的背景下,研究超声速射流主动控制技术具有重要意义。以增强超声速射流混合为目标,针对经典圆形超声速射流混合开展主动控制实验研究。使用侧向注入微射流作为激励装置,研究主射流出口处压比、微射流与主射流质量流量比和微射流注入支数这3个关键参数对超声速射流核心区长度的影响规律。结果表明:固定质量流量和微射流支数,核心区长度的控制效果随着微射流出口处的压比增加逐渐减弱;微射流支数和出口处压比不变,核心区长度与微射流及主射流的质量流量呈较为复杂的非线性关系;固定微射流出口处压比时,增加微射流支数,并未显著提升射流混合效果;射流的控制效果随出口压比的增加而减弱,当出口压比为2.5、3、3.67、5和7时,射流核心区长度可分别减小62%、60%、53%、46%和8%。此外,还基于泰勒展开和反向传播(back propagation, BP)神经网络算法建立两种预测射流核心区长度模型。结果表明:在微射流控制下获得的最优值 L_\textc,opt^\text* = 8.7附近,两者均表现出较好的预测能力;而当远离最优值时,BP神经网络对超声速射流核心区长度的预测结果具有更高的准确性,误差仅为基于泰勒展开方法的6%。本文将实验结果与BP神经网络相结合,为超声速射流的主动控制与工程优化提供了高精度智能预测方法,显著提升混合效果并降低了实验成本。

     

    Abstract: This study experimentally investigates the active control of a Mach 1.5 round jet using multiple steady radial microjets to enhance jet mixing. The control parameters include the expansion ratio of the main jet exit, the mass flow ratio of microjet to main jet, and the number of microjets. The effect of these parameters on supersonic jet mixing is revealed through experimental results. First, as the expansion ratio increases, the control performance of the supersonic jet gradually decreases from under-expanded to over-expanded conditions. Second, there is a complex nonlinear relationship between the mass flow ratio and the core length of the supersonic jet. Third, increasing the number of microjets does not enhance the supersonic jet mixing. Fourth, given the expansion ratio of the main jet is 2.5, 3, 3.67, 5, and 7, the optimal control parameters can reduce the length of the jet potential core by 62%, 60%, 53%, 46%, and 8%, respectively. This result indicates that the optimal control effect decreases with the increase of the expansion ratio of the main jet. Two prediction models are proposed to link the control parameters with the control targets based on the Taylor expansion and BP neural network algorithm. Both models exhibit better prediction ability near the optimal value. When the prediction results are far from the optimal value, the length of the core region of the supersonic jet predicted by the BP neural network is more accurate, with a prediction error that is only 6% of that based on the Taylor expansion method.

     

/

返回文章
返回