基于条件扩散的变形结构气动热预测方法

An aeroheating prediction method for deformed structures based on conditional diffusion model

  • 摘要: 伸缩变形结构飞行器外形复杂,气动热数据分布差异较大,代理模型难以准确捕获其物面气动热数据的分布。为了对变形结构飞行器物面气动热进行准确预测,本文基于条件扩散模型提出了一种变形结构气动热预测方法(heating-MLP diffusion, HMD)。该方法包括前向扩散与逆向去噪两个过程。在前向扩散过程中,对原始气动热数据进行逐步加噪,直至成为纯高斯噪声;在逆向去噪过程中,将变形结构外形和工况参数作为条件,利用全连接神经网络预测扩散过程中每步添加的噪声,从而学习隐含的气动热数据分布特性,最终实现飞行器伸缩变形机翼物面网格点的气动热预测。基于数值仿真数据的模型验证结果表明,相较于高斯过程、神经过程和全连接神经网络,基于条件扩散模型的气动热预测方法能够取得更好的预测效果,平均绝对百分比误差在10%左右。该方法可为伸缩变形结构高速飞行器机翼物面气动热计算提供一种精确预测模型。

     

    Abstract: The shape of aircraft with ‌telescopic deformed structures‌ is complex, and the distribution of ‌aerothermal‌ data varies ‌significantly‌. Traditional surrogate models to capture the ‌aerothermal‌ heating distribution of ‌telescopic structures‌, hindering effective prediction struggle on structural surfaces. Based on ‌the conditional diffusion model, ‌the Heating-MLP Diffusion (HMD) method for deformable structures‌ was proposed, comprising two processes: forward diffusion and reverse denoising. In the forward diffusion process, the original ‌aerothermal‌ data is gradually ‌corrupted‌ until it becomes pure Gaussian noise. In the reverse denoising process, ‌using‌ the shape and operating conditions of the deformed structure as ‌conditional inputs‌, a fully connected neural network predicts the noise added at each diffusion step, thereby learning the implicit ‌distribution characteristics of aerothermal‌ heating data, thus enabling ‌the prediction of aerothermal heating‌ on the surface grid points of ‌aircraft telescopic deformed wings‌. Numerical simulation data validated the proposed model. Experimental results demonstrate that compared with Gaussian processes, neural processes, and neural networks, the ‌conditional diffusion model-based‌ aerothermal prediction method achieves higher accuracy, with a mean absolute percentage error of ~10%. This evidence proves its effectiveness in predicting ‌aerothermal heating‌ on ‌high-speed aircraft‌ wings with telescopic deformed structures providing an accurate prediction model for engineering applications.

     

/

返回文章
返回