叶轮机械流固热耦合仿真及自主可控软件研制

Fluid-structure-thermal coupling simulation of turbomachinery and development of autonomous and controllable software

  • 摘要: 叶轮机械作为动力能源领域的关键设备部件,其性能和效率直接关系到动力系统的服役表现。随着高性能计算机系统硬件水平的高速发展,以及流体、强度和传热领域数值仿真能力的不断提升,流固热耦合仿真技术对于叶轮机械的设计优化、性能预测以及故障预防起着越来越关键的作用。本文对叶轮机械流体、强度以及流固和流热仿真领域的主要数值方法和挑战问题进行了分析,以国产自主涡轮动力叶轮机械流固热耦合仿真软件(AeroEngine Numerical Simulation, AENS)为载体,介绍了同构/异构流固热耦合仿真软件架构,以及高效的耦合算法和鲁棒的网格技术。通过典型叶轮机械AENS流固/流热耦合仿真结果与试验数据的对比分析,表明AENS具备在高温、高压、高转速条件下的流固热耦合模拟能力,其应用前景广阔,为叶轮机械正向多学科耦合设计提供了重要支撑。

     

    Abstract: Turbomachinery serves as a pivotal equipment component in the power energy sector, with its performance and efficiency directly influencing the operational performance of power systems. Thanks to the substantial enhancement of hardware capabilities in high-performance computing systems and the continuous advancement of numerical simulation capabilities in fluid dynamics, strength, and heat transfer, fluid-structure-thermal coupling (FST) simulation technology has become increasingly crucial for the design optimization, performance prediction, and fault prevention of turbomachinery. This paper provides an analysis of the primary numerical methods and challenging issues in the fields of fluid dynamics, strength, and fluid-structure-thermal coupling simulation of turbomachinery. Leveraging the domestic self-developed AENS (AeroEngine Numerical Simulation) software for fluid-structure-thermal coupling simulation of turbo-power turbomachinery, it introduces the homogeneous/heterogeneous fluid-structure-thermal coupling simulation software architecture, alongside efficient coupling algorithms and robust grid technologies. By analyzing and comparing experimental data with typical turbomachinery AENS fluid-structure/fluid-thermal coupling simulation results, it is demonstrated that AENS possesses the capability to simulate fluid-structure-thermal coupling of aeroengine blades under high-temperature, high-pressure, and high-speed conditions. This shows the promising prospects of AENS in the field of fluid-structure-thermal coupling of turbomachinery, offering vital support for forward multiphysic coupling design of turbomachinery.

     

/

返回文章
返回