基于AENS仿真平台的螺旋度修正湍流模型研究

Research on helicity modification turbulence model based on the AENS simulation platform

  • 摘要: 本文基于国产自主研发的多场耦合仿真平台(AeroEngine Numerical Simulation, AENS),针对叶轮机领域广泛应用的SA和SST湍流模型,以及研发团队提出的采用螺旋度修正的SA-Helicity和SST-Helicity湍流模型,开展对压气机复杂流动的预测性能研究。通过两个典型压气机算例,包括高负荷压气机叶栅NACA65 K48和跨声速轴流压气机转子NASA Rotor37,系统对比研究基于AENS开发的4种湍流模型对压气机三维角区分离等压气机复杂流动的模拟性能。结果表明,对于NACA65 K48叶栅,螺旋度修正的SA-Helicity和SST-Helicity模型有效提高了角区分离总压损失预测精度,相较原始SA和SST模型,栅后测量面的总压损失预测误差分别降低22.53%和27.19%;对于NASA Rotor37,SA-Helicity和SST-Helicity模型预测结果与实验测量总特性和气动参数展向分布呈现良好一致性,相比SA和SST模型,在近失速工况下的总压比分布预测误差分别减少79.20%和76.33%。总体而言,基于AENS平台发展的SA-Helicity和SST-Helicity模型在压气机气动性能预测及角区分离拓扑刻画方面具有良好表现,展现出其在压气机气动设计中的应用前景。

     

    Abstract: This study ‌evaluates‌ the predictive performance of ‌the‌ widely used Spalart-Allmaras (SA) and Shear Stress Transport (SST) turbulence models, ‌along with‌ the helicity-modified SA-Helicity and SST-Helicity models proposed by the research team, ‌for‌ complex compressor flows ‌using‌ the domestically developed multi-field coupled simulation platform AeroEngine Numerical Simulation (AENS). Two representative test cases, namely the highly loaded NACA65 K48 compressor cascade and the transonic axial compressor rotor NASA Rotor37, were employed to systematically assess the capabilities of these four turbulence models in capturing three-dimensional corner separation and other intricate flow phenomena. Results demonstrate that, for the NACA65 K48 cascade, the SA-Helicity and SST-Helicity models significantly improve the accuracy of total pressure loss prediction within corner separation regions, reducing the errors by 22.53% and 27.19%, respectively, compared to the original SA and SST models. For NASA Rotor37, the‌ SA-Helicity and SST-Helicity models ‌demonstrated‌ close agreement with experimental measurements in both overall performance and spanwise aerodynamic parameter distributions, ‌with‌ total pressure ratio errors near stall ‌decreasing‌ by 79.20% and 76.33%‌ relative to the SA and SST models. Overall, the SA-Helicity and SST-Helicity models developed on the AENS platform exhibit superior predictive capability for compressor aerodynamic performance and corner-separation topology, highlighting their potential for practical application in compressor aerodynamic design.

     

/

返回文章
返回