旋翼流动的块结构化网格自适应方法

肖中云, 郭永恒, 张露, 崔兴达

肖中云, 郭永恒, 张露, 等. 旋翼流动的块结构化网格自适应方法[J]. 空气动力学学报, 2022, 40(5): 158−165. DOI: 10.7638/kqdlxxb-2021.0255
引用本文: 肖中云, 郭永恒, 张露, 等. 旋翼流动的块结构化网格自适应方法[J]. 空气动力学学报, 2022, 40(5): 158−165. DOI: 10.7638/kqdlxxb-2021.0255
XIAO Z Y, GUO Y H, ZHANG L, et al. Block structured adaptive mesh refinement for rotor flows[J]. Acta Aerodynamica Sinica, 2022, 40(5): 158−165. DOI: 10.7638/kqdlxxb-2021.0255
Citation: XIAO Z Y, GUO Y H, ZHANG L, et al. Block structured adaptive mesh refinement for rotor flows[J]. Acta Aerodynamica Sinica, 2022, 40(5): 158−165. DOI: 10.7638/kqdlxxb-2021.0255

旋翼流动的块结构化网格自适应方法

基金项目: 国家数值风洞工程(NNW)
详细信息
    作者简介:

    肖中云(1977-),男,四川大竹人,研究员,研究方向:旋翼计算流体力学. E-mail:scxiaozy@sina.cn

    通讯作者:

    郭永恒*,助理研究员,研究方向:计算流体力学网格技术. E-mail:matrixspace@163.com

  • 中图分类号: V211.3

Block structured adaptive mesh refinement for rotor flows

  • 摘要: 从旋翼的旋转运动和旋涡环绕流场特点出发,探讨了流场计算中的双网格建模方法,即采用结构化贴体网格随桨叶一起运动,采用背景网格的自适应加密模拟旋涡的空间演化。发展了块结构化的背景笛卡尔网格生成方法,网格以块为单位进行加密或稀疏变化,所有网格块的网格维数相同,采用八叉树数据结构和空间填充Z曲线进行管理,满足自适应加密和并行分区的需求。采用该方法对UH-60A旋翼进行了网格建模,在以桨叶贴体网格为输入的前提下自动生成了初始笛卡尔背景网格,同时针对旋翼的悬停和前飞状态流场,分别采用Landgrebe和Beddoes尾迹模型为网格加密提供线索。在此基础上对空间背景网格进行了自适应加密,最大允许网格加密层次为9层,桨尖涡目标区域的网格尺度为0.01倍弦长。结果表明,当前笛卡尔自适应网格方法足够灵活,能够根据桨尖涡位置变化进行网格加密或稀疏操作, 自适应网格加密受最大加密层次、目标加密区域的大小和目标区域的网格间距等因素决定。本文的自适应方法具有网格调整效率高的特点,在提高非定常桨尖涡模拟精度方面有一定的应用前景。
    Abstract: Focusing on the rotating motion and vortex flow of rotors, a dual grid modelling method is discussed, in which body fitted moving structured grids are used to capture the boundary layer flow and background grids with adaptive mesh refinement (AMR) are used for the blade tip vortex flow. A method of generating block structured Cartesian grids is developed, in which the grid refinement or coarsening is performed on blocks with identical grid dimensions. All Cartesian blocks are organized by the octree data structure and spatial filling Z curves, which meets the requirements of adaptive refinement and parallel partition. The dual grid method is applied for the UH-60A rotor simulation. The initial Cartesian background grid is automatically generated with the body fitted blade grid as the input. For rotor flows in hovering and forward flight conditions, the Landgrebe and Beddoes wake models are introduced respectively to adaptively refine the background grids. The maximum allowed number of grid layer is 9 and the grid spacing for the tip vortex filament in the target area is 1% of the chord length. Results show that the present Cartesian grid adaptive method is able to flexibly refine or coarsen grids for the blade tip vortex by controlling the maximum refinement level, the size and grid spacing of the target refinement area for the vortex capturing. The present AMR method is highly efficient in grid adjustment, and shows convincing prospects in improving the simulation accuracy of unsteady blade tip vortices.
  • 图  1   块结构网格划分方法示意图

    Figure  1.   Schematic of block structured grid splitting

    图  2   八叉树数据结构示意图

    Figure  2.   Schematic of octree data structure

    图  3   多层网格的Z填充曲线

    Figure  3.   Z filling curves of multi-layer grids

    图  4   多层网格的并行分区

    Figure  4.   Parallel partition of multi-layer grids

    图  5   网格加密过程示意图

    Figure  5.   Schematic of mesh refinement

    图  6   局部加密网格的Z填充曲线

    Figure  6.   Z filling curves for local mesh refinement

    图  7   桨叶贴体网格

    Figure  7.   Body fitted grids of the blade

    图  8   贴体网格与背景网格

    Figure  8.   Body fitted and background grids

    图  9   笛卡尔网格的几何自适应

    Figure  9.   Geometric adaption of the Cartesian grids

    图  10   近物面区域的网格分布

    Figure  10.   Grid distribution in the near wall region

    图  11   悬停状态的桨尖和桨根涡线

    Figure  11.   Root and tip vortex lines of the blade in hover

    图  12   悬停状态的自适应网格加密

    Figure  12.   Adaptive mesh refinement of the rotor in hover

    图  13   前飞状态的桨尖涡线

    Figure  13.   Tip vortex lines of the rotor in forward flight

    图  14   前飞状态的自适应网格加密

    Figure  14.   Adaptive mesh refinement of the rotor in forward flight

    图  15   自适应网格的多层结构

    Figure  15.   Multi-layer structure of adaptive mesh refinement

    图  16   块结构笛卡尔网格的并行分区

    Figure  16.   Parallel partition of the block structured Cartesian grids

  • [1]

    JOHNSON W. Milestones in rotorcraft aeromechanics[R]. NASA/TP-2011-215971, 2011. https://rotorcraft.arc.nasa.gov/Johnson_TP-2011-215971_final.pdf

    [2]

    PULLIAM T H, JESPESEN D C. Large scale aerodynamic calculation on Pleiades[R]. NAS-09-004, 2009. https://www.nas.nasa.gov/assets/pdf/techreports/2009/nas-09-004.pdf

    [3]

    HARIHARAN N S, EGOLF T A, SANKAR L N. Simulation of rotor in hover: Current state and challenges[C]//52nd Aerospace Sciences Meeting, 2014. AIAA 2014-0041. doi: 10.2514/6.2014-0041

    [4]

    ABRAS J, HARIHARAN N S, NARDUCCI R P. Wake breakdown of high-fidelity simulations of a rotor in hover[C]//AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-0593

    [5] 唐志共, 陈浩, 毕林, 等. 自适应笛卡尔网格超声速黏性流动数值模拟[J]. 航空学报, 2018, 39(5): 121697.

    TANG Z G, CHEN H, BI L, et al. Numerical simulation of supersonic viscous flow based on adaptive Cartesian grid[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121697. (in Chinese)

    [6] 桑树浩, 孙振航, 陈仁良, 等. 基于自适应非结构嵌套网格的旋翼流场模拟[J]. 南京航空航天大学学报, 2018, 50(4): 528-535.

    SANG S H, SUN Z H, CHEN R L, et al. Computing flows around rotor by using time-depended adaptive grid based on unstructured-Cartesian overset mesh system[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(4): 528-535. (in Chinese)

    [7]

    DUBEY A, ALMGREN A, BELL J, et al. A survey of high level frameworks in block-structured adaptive mesh refinement packages[J]. Journal of Parallel and Distributed Computing, 2014, 74(12): 3217-3227. DOI: 10.1016/j.jpdc.2014.07.001

    [8]

    KIRK B S, PETERSON J W, STOGNER R H, et al. libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations[J]. Engineering With Computers, 2006, 22(3-4): 237-254. DOI: 10.1007/s00366-006-0049-3

    [9]

    BURSTEDDE C, WILCOX L C, GHATTAS O. p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees[J]. SIAM Journal on Scientific Computing, 2011, 33(3): 1103-1133. DOI: 10.1137/100791634

    [10]

    COLELLA P, GRAVES D T. Chombo software package for AMR applications design document[R]. Lawrence Berkeley National Laboratory Deposit Manage, 2013. https://crd.lbl.gov/assets/pubs_presos/chomboDesign.pdf

    [11]

    MACNEICE P, OLSON K M, MOBARRY C, et al. PARAMESH: a parallel adaptive mesh refinement community toolkit[J]. Computer Physics Communications, 2000, 126(3): 330-354. DOI: 10.1016/S0010-4655(99)00501-9

    [12]

    WISSINK A M, HORNUNG R D, KOHN S R, et al. Large scale parallel structured AMR calculations using the SAMRAI framework[C]//SC '01: Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, Denver, CO, USA. IEEE, 2001: 22. doi: 10.1145/582034.582040

    [13]

    JI H, LIEN F S, YEE E. Parallel adaptive mesh refinement combined with additive multigrid for the efficient solution of the Poisson equation[J]. ISRN Applied Mathematics, 2012, 2012: 1-24. DOI: 10.5402/2012/246491

    [14]

    KAMKAR S J, WISSINK A M, JAMESON A, et al. Feature-driven cartesian adaptive mesh refinement in the helios code[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2010. AIAA 2010-171. http://aero-comlab.stanford.edu/Papers/AIAA-2010-171-748.pdf

    [15] 刘超群. Liutex-涡定义和第三代涡识别方法[J]. 空气动力学学报, 2020, 38(3): 413-431, 478. doi: 10.7638/kqdlxxb-2020.0015

    LIU C Q. Liutex-third generation of vortex definition and identification methods[J]. Acta Aerodynamica Sinica, 2020, 38(3): 413-431, 478. (in Chinese) doi: 10.7638/kqdlxxb-2020.0015

    [16]

    BEDDOES T S. A wake model for high resolution airloads[C]//Proceedings of the 2nd international conference on basic rotorcraft research, Triangle Park, USA, 1985.

    [17]

    BURSTEDDE C, ISAAC T. Morton curve segments produce no more than two distinct face-connected subdomains[R/OL]. arXiv: 1505.05055v2 [cs. CG] 2015.

  • 期刊类型引用(2)

    1. 赵宁,刘剑明,田琳琳,王镇明. 可压缩流动问题笛卡尔网格模拟方法研究进展与展望. 力学学报. 2025(02): 285-314 . 百度学术
    2. 郑泓弟,赵大志,李伟斌,刘钒,肖中云,马率,牟永飞. 基于DMD方法的旋翼流场分解与重构. 空气动力学学报. 2025(03): 110-119 . 本站查看

    其他类型引用(2)

图(16)
计量
  • 文章访问数:  437
  • HTML全文浏览量:  161
  • PDF下载量:  68
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-09-23
  • 修回日期:  2021-11-21
  • 录用日期:  2021-11-24
  • 网络出版日期:  2022-01-03
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回