Rudder effect of near-space hypersonic gliding vehicle with different control surfaces
-
摘要: 在升力体构形的基础上,构造了3种不同布局方式的气动舵作为控制面,通过数值模拟手段对FLAP舵、后缘舵及全动舵的舵效进行了比较分析,并对带全动舵滑翔飞行器的气动特性进行了风洞试验研究。数据显示全动舵在纵向通道内调节压心位置的能力较大,有足够的配平能力,在偏航及滚转控制时舵效均高于FLAP舵及后缘舵,同时可有效降低对舵机载荷的要求。研究表明对于升力体构形的飞行器而言,全动舵在临近空间高超声速范围内作为气动控制舵面具有一定优势。Abstract: One of the key points of vehicle aerodynamic configuration design is aerodynamic control surfaces design. The pressure center of gliding vehicle varied signifacantly with the flight height and Mach numbers in near-space. Aerodynamic configuration is needed to be designed carefully to ensure both high lift to drag ratio and high control surface efficiency, and hinge moment of control surface restrictions should also be considered, so it is very important to choose suitable control surfaces for near-space hypersonic gliding vehicle at hypersonic speed. Three kinds of different aerodynamic rudders were matched for liftbody shaped vehicle as control surfaces, namely as FLAP rudder、trailing edge rudder and all-movable rudder. The numerical simulation method was employed to analyse rudder effect, and wind tunnel investigation of gliding vehicle with all-movable rudder was carried out to obtain its aerodynamic characteristics. The results showed that all-movable rudder has a higher capacity to adjust pressure centre in longitudinal direction, which implied enough trim ability. Rudder effect of all-movable rudder is found to be higher than that of the other two rudders as yaw and roll control devices. At the same time, all-movable rudder can reduce effectively the demands of steering engine load.The research indicated that all-movable rudder has some advantages over the other rudders as aerodynamic control surfaces for near-space hypersonic liftbody shaped vehicle.
-
Key words:
- near-space /
- gliding vehicle /
- aerodynamic control surfaces /
- rudder effect
-
叶友达. 高空高速飞行器气动特性研究[J]. 力学进展, 2009, 39(4): 387-397.
[2] 刘建霞, 侯中喜, 陈小庆. 高超声速远程滑翔飞行器外形设计方法[J]. 导弹与航天运载技术, 2011, (3): 1-5.SPENCER B. Supersonic aerodynamic characteristics of hypersonic low-wave-drag elliptical body-tail combinations as effected by changes in stabilized configuration[R]. NASA-TM-X-2747, 1973.
[4] 祝立国, 王永丰, 庄逢甘, 等. 高速高机动飞行器的横航向偏离预测判据分析[J]. 宇航学报, 2007, 28(6): 1550-1553.
[5] 蔡巧言, 杜涛, 朱广生. 新型高超声速飞行器的气动设计技术探讨[J]. 宇航学报, 2009, 30 (6): 2086-2091.
[6] 杨永健, 张来平, 高树椿, 等. 带控制舵弹体气动特性分析[J]. 空气动力学学报, 2003, 21(4): 482-488.
[7] 和争春, 国义军, 车竞, 等. 机动弹头的旋钮式气动舵面布局新概念研究[J]. 空气动力学学报, 2010, 28(3): 328-331.
[8] 王霄婷, 周军, 林鹏. 再入飞行器变质心/RCS复合控制策略研究[J]. 西北工业大学学报, 2011, 29(2): 212-216.
[9] 王元元, 张彬乾, 沈冬. W型无尾布局复合式气动舵面设计研究[J]. 西北工业大学学报, 2008, 26(6): 698-702.
[10]唐伟, 桂业伟. 带控制舵钝双锥削面体的气动特性研究[J]. 空气动力学学报, 2009, 27(1): 93-96.
[11]唐伟, 张勇, 马强, 等. 带控制舵椭圆截面飞行器的气动设计[J]. 空气动力学学报, 2006, 24(2): 223-226.
[12]唐伟, 马强, 张勇, 等. 带控制舵飞行器机动特性研究[J]. 空气动力学学报, 2006, 24(1): 80-84.
[13]唐伟, 李为吉, 高晓成, 等. 削面/配平翼飞行器的气动计算及分析[J]. 西北工业大学学报, 2004, 22(5): 541-544.
[14]马强, 唐伟, 张鲁民. 带控制舵双锥体气动力工程计算方法研究[J]. 宇航学报, 2003, 24(6): 552-554. -

计量
- 文章访问数: 687
- HTML全文浏览量: 15
- PDF下载量: 6386
- 被引次数: 0