留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

五种湍流涡粘模型在二维方柱绕流数值模拟中的对比研究

张显雄 张志田 张伟峰 陈政清

张显雄, 张志田, 张伟峰, 陈政清. 五种湍流涡粘模型在二维方柱绕流数值模拟中的对比研究[J]. 空气动力学学报, 2018, 36(2): 339-349. doi: 10.7638/kqdlxxb-2015.0197
引用本文: 张显雄, 张志田, 张伟峰, 陈政清. 五种湍流涡粘模型在二维方柱绕流数值模拟中的对比研究[J]. 空气动力学学报, 2018, 36(2): 339-349. doi: 10.7638/kqdlxxb-2015.0197
ZHANG Xianxiong, ZHANG Zhitian, ZHANG Weifeng, CHEN Zhengqing. Comparison of five eddy viscosity turbulence models in numerical simulation of flow over a two-dimensional square cylinder[J]. ACTA AERODYNAMICA SINICA, 2018, 36(2): 339-349. doi: 10.7638/kqdlxxb-2015.0197
Citation: ZHANG Xianxiong, ZHANG Zhitian, ZHANG Weifeng, CHEN Zhengqing. Comparison of five eddy viscosity turbulence models in numerical simulation of flow over a two-dimensional square cylinder[J]. ACTA AERODYNAMICA SINICA, 2018, 36(2): 339-349. doi: 10.7638/kqdlxxb-2015.0197

五种湍流涡粘模型在二维方柱绕流数值模拟中的对比研究

doi: 10.7638/kqdlxxb-2015.0197
基金项目: 

国家自然科学基金 51178182

国家自然科学基金 51578233

详细信息
    作者简介:

    张显雄(1986-), 男, 湖南人, 博士研究生, 主要从事桥梁风工程研究.E-mail:z_xianxiong@hun.edu.cn

    通讯作者:

    张志田(1974-), 男, 湖南人, 教授, 主要从事桥梁抗风减震研究.E-mail:zhangzhitian@hnu.edu.cn

  • 中图分类号: V211.3

Comparison of five eddy viscosity turbulence models in numerical simulation of flow over a two-dimensional square cylinder

  • 摘要: 为研究不同雷诺时均Navier-Stokes(RANS)模型在求解钝体绕流场的差异,采用五种两方程湍流涡粘模型计算了二维方柱的绕流场(雷诺数Re=22 000),得到了不同湍流模型在不同网格离散方案下的方柱气动力与流场特性。结合以往文献数据,通过对比不同湍流模型计算结果的差异,揭示了不同湍流模型的特点。研究结果表明:网格离散方案对方柱绕流数值模拟结果有重要影响;RNG k-ε湍流模型的计算效率最高,SST k-ω湍流模型的计算效率最低;Standard k-ε湍流模型的计算结果准确程度整体弱于其余湍流模型;RNG k-ε湍流模型、Realizable k-ε湍流模型与Standard k-ω湍流模型的计算结果大致相当,较接近大涡模拟结果;SST k-ω湍流模型的模拟结果优于其余湍流模型,其尾流区速度场与试验结果吻合较好;两方程湍流模型计算的二维方柱绕流结果与试验结果以及大涡模拟结果相比,存在不可忽略的差异。
  • 图  1  计算域布置方式

    Figure  1.  Arrangement of computational domain

    图  2  方柱近壁处网格

    Figure  2.  Grid near the square cylinder

    图  3  方柱表面压力测点布置图

    Figure  3.  Gaging point of static pressure

    图  4  不同工况下的Strouhal对比图

    Figure  4.  Compariosn of Strouhal under various cases

    图  5  不同工况下的阻力系数平均值对比图

    Figure  5.  Comparison of $ {\overline C _D} $ under various cases

    图  6  不同工况下的回流区长度对比图

    Figure  6.  Comparison of Lr under various cases

    图  7  不同工况下的升力系数脉动均方根对比图

    Figure  7.  Comparison of CLrms under various cases

    图  8  不同工况下的阻力系数脉动均方根对比图

    Figure  8.  Comparison of CDrms under various cases

    图  9  方柱表面压力系数平均值

    Figure  9.  $ {\overline C _p} $ around the square cylinder

    图  10  方柱表面压力系数均方根

    Figure  10.  Cprms around the square cylindert

    图  11  尾流中心线湍动能分布

    Figure  11.  Turbulence kinetic energy along the center line in the wake

    图  12  尾流中心线流向速度平均值

    Figure  12.  Uavg along the center line in the wake

    图  13  尾流中心线流向速度脉动均方根

    Figure  13.  urms along the center line in the wake

    图  14  尾流中心线横向速度脉动均方根

    Figure  14.  vrms along the center line in the wake

    图  15  尾流区不同截面处流向速度平均值

    Figure  15.  Comparison of Uavg in the wake

    图  16  尾流区不同截面处横向速度平均值

    Figure  16.  Comparison of Vavg in the wake

    图  17  尾流特征半厚度流程变化

    Figure  17.  Half self-similar profile of the wake

    表  1  网格离散参数

    Table  1.   Parameters of discretization

    离散方案 Case 1 Case 2 Case 3 Case 4 Case 5
    方柱每边长等分数 20 40 60 80 100
    网格总层数 273 273 273 273 273
    最大等角偏斜率 0.45 0.45 0.45 0.45 0.45
    总网格数 21 840 43 680 65 520 87 360 109 200
    下载: 导出CSV

    表  2  网格Y+极值

    Table  2.   Extreme values of Y+

    模型Standard
    k-ε
    RNG
    k-ε
    Realizable
    k-ε
    Standard
    k-ω
    SST
    k-ω
    极小值0.0260.0570.0570.0210.040
    极大值0.6090.6290.6450.6180.689
    下载: 导出CSV
  • [1] Miranda S D, Patruno L, Ricci M, et al. Numerical study of a twin box bridge deck with increasing gap ration by using RANS and LES approaches[J]. Engineering Structrues, 2015, 99:546-558. doi: 10.1016/j.engstruct.2015.05.017
    [2] 祝志文.基于二维RANS模型计算扁平箱梁漩涡脱落的可行性分析[J].中国公路学报, 2015, 28(6):24-33. http://www.cqvip.com/QK/96141X/201506/665264119.html

    Zhu Zhiwen. Feasibility investigation on prediction of vortex shedding of flat box girders based on 2D RANS models[J]. Chinese Journal of Highway and Transport, 2015, 28(6):24-33. (in Chinese) http://www.cqvip.com/QK/96141X/201506/665264119.html
    [3] Giuseppe V. A numerical model for wind loads simulation on long-span bridges[J]. Simulation Modelling Practice and Theory, 2003, 11:315-351. doi: 10.1016/S1569-190X(03)00053-4
    [4] Lin Huang, Haili Liao, Bin Wang, et al. Numerical simulation for aerodynamic derivatives of bridge deck[J]. Simulation Modelling Practice and Theory, 2009, 17:719-729. doi: 10.1016/j.simpat.2008.12.004
    [5] Tominaga Y, Mochida A, Yoshie R, et al. AIJ guiderlindes for practical applications of CFD to pedestrian wind environment around buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11):1749-1761. https://www.sciencedirect.com/science/article/pii/S0167610508000445
    [6] Sohankar A. Large eddy simulation of flow past rectangular-section cylinders:Side ratio effects[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96:640-655. doi: 10.1016/j.jweia.2008.02.009
    [7] Yu D H, Butler K, Kareem A, et al. Simulation of the influence of aspect rations on the aerodynamics of rectangular prisms[J]. Journal of Engineering Mechanics, 2013, 139(4):429-438. doi: 10.1061/(ASCE)EM.1943-7889.0000494
    [8] Bruno L, Salvetti M V, Ricciardelli F. Benchmark on the aerodynamics of a rectangular 5:1 cylinder:An overview after the first four years of activiey[J]. Journal of Wind Engineering and Industrial Aerodynamic, 2014, 126:87-106. doi: 10.1016/j.jweia.2014.01.005
    [9] Markatos N C. The mathematical modelling of turbulent flows[J]. Applied Mathematical Modelling, 1986, 10(3):190-220. doi: 10.1016/0307-904X(86)90045-4
    [10] Launder B E, Spalding D B. Lectures in mathematical models of turbulence[M]. London:Academic Press, 1972.
    [11] Yakhot V, Orszag S A. Renormalization group analysis of turbulence. I. Basic theory[J]. Journal of Scientific Computing, 1986, 1(1):3-51. doi: 10.1007/BF01061452
    [12] Shih T H, Liou W W, Shabbir A, et al. A new k-ε eddy viscosity model for high reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3):227-238. doi: 10.1007/BF03035103.pdf
    [13] Wilcox D C. Turbulence modeling for CFD[M]. California:DCW Industries, Inc., 1998.
    [14] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA, 1994, 32(8):1598-1605. doi: 10.2514/3.12149
    [15] Tamura T, Itoh Y, Wada A, et al. Numerical study of pressure fluctuations on a rectangular cylinder in aerodynamic oscillation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54:239-250. https://www.sciencedirect.com/science/article/pii/016761059400044E
    [16] Tominaga Y, Mochida A, Yoshie R, et al. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10):1749-1761. http://www.researchgate.net/publication/223457528_AIJ_guidelines_for_practical_applications_of_CFD_to_pedestrian_wind_environment_around_buildings
    [17] Kader B. Temperature and concentration profiles in fully turbulent boundary layers[J]. International Journal of Heat Mass Transfer, 1981, 24(9):1541-1544. doi: 10.1016/0017-9310(81)90220-9
    [18] Lyn D A, Einav S, Rodi W, et al. A laser-doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder[J]. Journal of Fluid Mechanics, 1995, 304:285-319. doi: 10.1017/S0022112095004435
    [19] Lyn D A, Rodi W. The flapping shear layer formed by flow separation from the forward corner of a square cylinder[J]. Journal of fluid Mechanics, 1994, 267:353-376. doi: 10.1017/S0022112094001217
    [20] Franke R, Rodi W. Calculation of vortex shedding past a square cylinder with various turbulence models[M]//Turbulent Shear Flows 8. Springer Berlin Heidelberg, 1993: 189-204.
    [21] Grigoriadis D G E, Bartzis J G, Goulas A. LES of the flow past a rectangular cylinder using the immersed boundary concept[J]. International Journal for Numerical Methods in Fluids, 2003, 41(6):615-632. doi: 10.1002/(ISSN)1097-0363
    [22] Chen J M, Liu C H. Vortex shedding and surface pressures on a square cylinder at incidence to a uniform air stream[J]. International Journal of Heat and Fluid Flow, 1999, 20(6):592-597. doi: 10.1016/S0142-727X(99)00047-8
    [23] Norberg C. Interaction between freestream turbulence and vortex shedding for a single tube in cross-flow[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1986, 23:501-514. doi: 10.1016/0167-6105(86)90066-8
    [24] Bouris D, Bergeles G. 2D LES of vortex shedding from a square cylinder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 80(1):31-46. https://www.sciencedirect.com/science/article/pii/S0167610598002001
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  286
  • HTML全文浏览量:  41
  • PDF下载量:  361
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-15
  • 修回日期:  2016-12-26
  • 刊出日期:  2018-04-25

目录

    /

    返回文章
    返回