Comparison of five eddy viscosity turbulence models in numerical simulation of flow over a two-dimensional square cylinder
-
摘要: 为研究不同雷诺时均Navier-Stokes(RANS)模型在求解钝体绕流场的差异,采用五种两方程湍流涡粘模型计算了二维方柱的绕流场(雷诺数Re=22 000),得到了不同湍流模型在不同网格离散方案下的方柱气动力与流场特性。结合以往文献数据,通过对比不同湍流模型计算结果的差异,揭示了不同湍流模型的特点。研究结果表明:网格离散方案对方柱绕流数值模拟结果有重要影响;RNG k-ε湍流模型的计算效率最高,SST k-ω湍流模型的计算效率最低;Standard k-ε湍流模型的计算结果准确程度整体弱于其余湍流模型;RNG k-ε湍流模型、Realizable k-ε湍流模型与Standard k-ω湍流模型的计算结果大致相当,较接近大涡模拟结果;SST k-ω湍流模型的模拟结果优于其余湍流模型,其尾流区速度场与试验结果吻合较好;两方程湍流模型计算的二维方柱绕流结果与试验结果以及大涡模拟结果相比,存在不可忽略的差异。Abstract: In order to investigate differences of RANS turbulence models on solving flow over bluff bodies, flow past a two-dimensional square cylinder at Re=22 000 is simulated, and results are obtained respectively by using five two-equation Eddy Viscosity Turbulence Models. By comparing with available data and comparing between each other, the advantages as well as weaknesses of these models are revealed. It is found that the results are significantly affected by the employed meshes. The RNG k-ε model is of the highest efficiency while the SST k-ω turbulence model is of the worst. The results of Standard k-ε turbulence model are generally worse than those of other models. The results from RNG k-ε, realizable k-ε and standard k-ω models are very close to those from the large-eddy-simulation. The SST k-ω model yields better numerical results than the other models, and its flow field properties in the wake fit experimental results well. However, compared with results from the experiment and the large-eddy-simulation, un-negligible differences can be found in the results of the five models.
-
Key words:
- aerodynamic force /
- turbulent model /
- numerical simulation /
- square cylinder /
- statistics
-
表 1 网格离散参数
Table 1. Parameters of discretization
离散方案 Case 1 Case 2 Case 3 Case 4 Case 5 方柱每边长等分数 20 40 60 80 100 网格总层数 273 273 273 273 273 最大等角偏斜率 0.45 0.45 0.45 0.45 0.45 总网格数 21 840 43 680 65 520 87 360 109 200 表 2 网格Y+极值
Table 2. Extreme values of Y+
模型 Standard
k-εRNG
k-εRealizable
k-εStandard
k-ωSST
k-ω极小值 0.026 0.057 0.057 0.021 0.040 极大值 0.609 0.629 0.645 0.618 0.689 -
[1] Miranda S D, Patruno L, Ricci M, et al. Numerical study of a twin box bridge deck with increasing gap ration by using RANS and LES approaches[J]. Engineering Structrues, 2015, 99:546-558. doi: 10.1016/j.engstruct.2015.05.017 [2] 祝志文.基于二维RANS模型计算扁平箱梁漩涡脱落的可行性分析[J].中国公路学报, 2015, 28(6):24-33. http://www.cqvip.com/QK/96141X/201506/665264119.htmlZhu Zhiwen. Feasibility investigation on prediction of vortex shedding of flat box girders based on 2D RANS models[J]. Chinese Journal of Highway and Transport, 2015, 28(6):24-33. (in Chinese) http://www.cqvip.com/QK/96141X/201506/665264119.html [3] Giuseppe V. A numerical model for wind loads simulation on long-span bridges[J]. Simulation Modelling Practice and Theory, 2003, 11:315-351. doi: 10.1016/S1569-190X(03)00053-4 [4] Lin Huang, Haili Liao, Bin Wang, et al. Numerical simulation for aerodynamic derivatives of bridge deck[J]. Simulation Modelling Practice and Theory, 2009, 17:719-729. doi: 10.1016/j.simpat.2008.12.004 [5] Tominaga Y, Mochida A, Yoshie R, et al. AIJ guiderlindes for practical applications of CFD to pedestrian wind environment around buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11):1749-1761. https://www.sciencedirect.com/science/article/pii/S0167610508000445 [6] Sohankar A. Large eddy simulation of flow past rectangular-section cylinders:Side ratio effects[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96:640-655. doi: 10.1016/j.jweia.2008.02.009 [7] Yu D H, Butler K, Kareem A, et al. Simulation of the influence of aspect rations on the aerodynamics of rectangular prisms[J]. Journal of Engineering Mechanics, 2013, 139(4):429-438. doi: 10.1061/(ASCE)EM.1943-7889.0000494 [8] Bruno L, Salvetti M V, Ricciardelli F. Benchmark on the aerodynamics of a rectangular 5:1 cylinder:An overview after the first four years of activiey[J]. Journal of Wind Engineering and Industrial Aerodynamic, 2014, 126:87-106. doi: 10.1016/j.jweia.2014.01.005 [9] Markatos N C. The mathematical modelling of turbulent flows[J]. Applied Mathematical Modelling, 1986, 10(3):190-220. doi: 10.1016/0307-904X(86)90045-4 [10] Launder B E, Spalding D B. Lectures in mathematical models of turbulence[M]. London:Academic Press, 1972. [11] Yakhot V, Orszag S A. Renormalization group analysis of turbulence. I. Basic theory[J]. Journal of Scientific Computing, 1986, 1(1):3-51. doi: 10.1007/BF01061452 [12] Shih T H, Liou W W, Shabbir A, et al. A new k-ε eddy viscosity model for high reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3):227-238. doi: 10.1007/BF03035103.pdf [13] Wilcox D C. Turbulence modeling for CFD[M]. California:DCW Industries, Inc., 1998. [14] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA, 1994, 32(8):1598-1605. doi: 10.2514/3.12149 [15] Tamura T, Itoh Y, Wada A, et al. Numerical study of pressure fluctuations on a rectangular cylinder in aerodynamic oscillation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54:239-250. https://www.sciencedirect.com/science/article/pii/016761059400044E [16] Tominaga Y, Mochida A, Yoshie R, et al. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10):1749-1761. http://www.researchgate.net/publication/223457528_AIJ_guidelines_for_practical_applications_of_CFD_to_pedestrian_wind_environment_around_buildings [17] Kader B. Temperature and concentration profiles in fully turbulent boundary layers[J]. International Journal of Heat Mass Transfer, 1981, 24(9):1541-1544. doi: 10.1016/0017-9310(81)90220-9 [18] Lyn D A, Einav S, Rodi W, et al. A laser-doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder[J]. Journal of Fluid Mechanics, 1995, 304:285-319. doi: 10.1017/S0022112095004435 [19] Lyn D A, Rodi W. The flapping shear layer formed by flow separation from the forward corner of a square cylinder[J]. Journal of fluid Mechanics, 1994, 267:353-376. doi: 10.1017/S0022112094001217 [20] Franke R, Rodi W. Calculation of vortex shedding past a square cylinder with various turbulence models[M]//Turbulent Shear Flows 8. Springer Berlin Heidelberg, 1993: 189-204. [21] Grigoriadis D G E, Bartzis J G, Goulas A. LES of the flow past a rectangular cylinder using the immersed boundary concept[J]. International Journal for Numerical Methods in Fluids, 2003, 41(6):615-632. doi: 10.1002/(ISSN)1097-0363 [22] Chen J M, Liu C H. Vortex shedding and surface pressures on a square cylinder at incidence to a uniform air stream[J]. International Journal of Heat and Fluid Flow, 1999, 20(6):592-597. doi: 10.1016/S0142-727X(99)00047-8 [23] Norberg C. Interaction between freestream turbulence and vortex shedding for a single tube in cross-flow[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1986, 23:501-514. doi: 10.1016/0167-6105(86)90066-8 [24] Bouris D, Bergeles G. 2D LES of vortex shedding from a square cylinder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 80(1):31-46. https://www.sciencedirect.com/science/article/pii/S0167610598002001 -