Dynamic characteristics analysis of refueling drogue at various docking velocities
-
摘要: 采用CFD数值模拟的手段,模拟了飞机在不同对接速度下加油锥套的运动情况。空间离散采用了Osher格式,紊流模型采用了S-A一方程紊流模型,动网格采用了适合柔性变形的基于Delauney图的动网格技术,运用“刚杆-球铰”模型离散方法对软管锥套系统进行建模,建立了软管多体系统模型并得到其运动控制方程。计算结果表明,不同的对接速度对锥套的运动有较大的影响,低于3m/s时,锥套向上飘移并且伴有周期性摆动;当以3 m/s速度进行对接时,加油锥套存在向上移动,飘移距离在0.6 m左右,但周期性的振荡表现较小。本文的结果为该类飞机加油的对接速度提供参考。Abstract: The CFD method was applied to solve the refueling docking at different docking velocities. The Osher scheme and S-A turbulence model were used to solve the compressible Navier-Stokes equations, and the Delaunay mapping dynamic grid method was employed the flexible deformation of the hose in the numerical implementation. The hose was discretized into a series of ball hinges linked by massless rigid links which form a multi-body the kinematical and dynamic equations were then derived for the system. All the numerical results show that the refueling docking velocity is very crucial for aerial refueling. When the docking velocity is lower than 3 m/s, the refueling drogue will move upward with obvious cycle staggering, compared with slight cycle staggering at the speed of 3m/s, which makes it much easier to refuel. Results of this study may have certain reference significance for the drogue-probe aerial refueling.
-
Key words:
- aerial refueling /
- numerical simulations /
- refueling drogue /
- dynamic grid /
- refueling docking
-
表 1 软管和锥套的参数及尺寸
Table 1. Parameters and sizes of hose and drogue
物理
参数软管
总长
/m杨氏
模量
/MPa软管线
密度
/(kg·m-1)锥套
质量
/kg稳定伞
阻尼面积
/m224.0 8.0 4.2 30.0 0.204 -
[1] 徐干, 曹近齐.国外空中加油技术的现状及发展[J].航空科学技术, 1995, 1:27-30.Xü G, Cao J Q. The status and development of overseas in-flight refueling technology[J]. Aeronautical Science and Technology, 1995, 1:27-30. (in Chinese) [2] Vassberg J C, Yeh D T, Blair A J, et al. Dynamic characteristics of a KC-10 wing-pod refueling hose by numerical simulation[R]. AIAA 2002-2712. [3] Vassberg J C, Yeh D T, Blair A J, et al. Numerical simulation of KC-10 in-flight refueling hose-drogue dynamics with an approaching F/A-18D receiver aircraft[R]. AIAA 2005-4605. [4] Vassberg J C, Yeh D T, Blair A J, et al. Numerical simulations of KC-10 wing-mount aerial refueling hose-drogue dynamics with a reel take-up system[R]. AIAA 2003-3508. [5] Ribbens W B, Saggio F, Wierenga R, et al. Dynamic modeling of an aerial refueling hose & drogue system[R]. AIAA 2007-3802. [6] Ro K, Kamman J W. Modeling and simulation of hose-paradrogue aerial refueling systems[J]. Journal of Guidance, Control and Dynamics, 2010, 33(1):53-63. doi: 10.2514/1.45482 [7] Venkataramanan S, Dogan A. Dynamic effects of trailing vortex with turbulence & time-varying inertia in aerial refueling[R]. AIAA 2004-4945. [8] Venkataramanan S, Dogan A. Modeling of aerodynamic coupling between aircraft in close proximities[R]. AIAA 2004-5172. [9] Venkataramanan S, Dogan A, Blake W. Vortex effect modeling in aircraft formation flight[R]. AIAA 2003-5385. [10] Eichler J. Dynamic analysis of an in-fIight refueling system[J]. Journal of Aircraft, 1978, 15(5):311-318. doi: 10.2514/3.58361 [11] Hoerner S F. Fluid-dynamic drag[M]. Brick Town:Hoerner, 1965:454-455. [12] 胡孟权, 柳平, 聂鑫, 等.大气紊流对空中加油软管锥套运动的影响[J].飞行力学, 2010, 28(5):20-23. http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201005006.htmHu M Q, Liu P, Nie X, et al. Influence of air turbulence on the movement of hose-drogue[J]. Flight Dynamics, 2010, 28(5):20-23. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201005006.htm [13] 王伟, 刘喜藏, 王鹏.空中加油对接过程软管-锥套动态特性[J].飞行力学, 2013, 31(2):180-183. http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201302021.htmWang W, Liu X C, Wang P. Dynamics of hose-drogue refueling systems during coupling[J]. Flight Dynamics, 2013, 31(2):180-183. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201302021.htm [14] Dogan A, Lewis T A, Blake W. Flight data analysis and simulation of wind effects during aerial refueling[J]. Journal of Aircraft, 2008, 45(6):2036-2048. doi: 10.2514/1.36797 [15] Dogan A, Blake W. Modeling of bow wave effect in aerial refueling[R]. AIAA 2010-7926. [16] Bhandari U, Thomas P R, Bullock S, et al. Bow wave effect in probe and drogue aerial refueling[R]. AIAA 2013-4695. [17] Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamic flows[R]. AIAA-92-0439, 1992. [18] Osher S, Solomon F. Upwind difference schemes for hyperbolic systems of conservation laws[J]. Mathematics of computation, 1982, 38(158):339-374. doi: 10.1090/S0025-5718-1982-0645656-0 [19] Liu X Q, Qin N, Xia H. Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Computational Physics, 2006, 211(2):405-423. doi: 10.1016/j.jcp.2005.05.025 [20] 陈乐乐, 刘学强, 吴成林.稳定伞变阻尼过程动态特性研究[J].南京航空航天大学学报, 2015, 47(4):607-612. http://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201504020.htmChen L L, Liu X Q, Wu C L. Dynamic characteristics research for variable damping paradrogue, Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(4):607-612. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201504020.htm [21] Redeker G. DLR-F4 wing-body configuration, a selection of experimental test cases for the validation of CFD codes[R]. AGARD AR-303, 1994. -