留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速边界层转捩研究现状与发展趋势

陈坚强 涂国华 张毅锋 徐国亮 袁先旭 陈诚

陈坚强, 涂国华, 张毅锋, 徐国亮, 袁先旭, 陈诚. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311-337. doi: 10.7638/kqdlxxb-2017.0030
引用本文: 陈坚强, 涂国华, 张毅锋, 徐国亮, 袁先旭, 陈诚. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311-337. doi: 10.7638/kqdlxxb-2017.0030
CHEN Jianqiang, TU Guohua, ZHANG Yifeng, XU Guoliang, YUAN Xianxu, CHEN Cheng. Hypersnonic boundary layer transition: what we know, where shall we go[J]. ACTA AERODYNAMICA SINICA, 2017, 35(3): 311-337. doi: 10.7638/kqdlxxb-2017.0030
Citation: CHEN Jianqiang, TU Guohua, ZHANG Yifeng, XU Guoliang, YUAN Xianxu, CHEN Cheng. Hypersnonic boundary layer transition: what we know, where shall we go[J]. ACTA AERODYNAMICA SINICA, 2017, 35(3): 311-337. doi: 10.7638/kqdlxxb-2017.0030

高超声速边界层转捩研究现状与发展趋势

doi: 10.7638/kqdlxxb-2017.0030
基金项目: 

国家重点研发计划项目 2016YFA0401200

详细信息
    作者简介:

    陈坚强(1966-), 男, 浙江上虞人, 研究员, 研究方向:高超声速复杂流动, 数值模拟.E-mail:jq-chen@263.net

  • 中图分类号: O357.4

Hypersnonic boundary layer transition: what we know, where shall we go

  • 摘要: 高超声速飞行器边界层容易经历层流/湍流转捩,层流流动和湍流流动在摩擦阻力、热交换、噪声和掺混等方面有巨大差别,转捩问题已成为制约高超声速技术突破的基础科学问题之一,是当前国际学术研究的热点与难点。本文详细分析了国内外高超声速边界层转捩研究现状,并将其归为三类:已知主要原因的现象与规律、已知部分原因的现象与规律、未知或矛盾的现象。其中已知主要原因的现象与规律包括壁温、马赫数和噪声影响;已知部分原因的现象与规律主要有头部钝度、熵层和攻角影响;未知或矛盾的现象主要有单位雷诺数影响、转捩区长度、转捩区摩阻和热流分布等。同时介绍了高超声速边界层转捩影响因素研究、转捩机理研究、转捩预测方法及模型研究、促进/推迟转捩的控制方法研究、以及一些公开的飞行试验等方面的进展。最后指出,在今后的高超声速边界层转捩研究中,建议把单个影响因素独立出来研究,尽量避免多因素相互干扰;高超声速边界层失稳研究需要特别关注横流失稳、熵层和模态相互作用;转捩预测需考虑三维边界层和来流扰动的影响;转捩控制研究应重点关注高效、低阻、低热的控制方法;转捩飞行试验十分重要,飞行试验和静音风洞发挥的作用会越来越明显。过去60多年的研究经验表明在未来的研究中应该注重多种手段相结合。
  • 图  1  NHFRP边界层转捩研究[17]

    Figure  1.  NHFRP boundary layer transition plan

    图  2  影响转捩因素示意图

    Figure  2.  Factors affecting laminar-turbulent transition

    图  3  转捩路径[21]

    Figure  3.  Transition paths[21]

    图  4  北京大学马赫6静音风洞[27]

    Figure  4.  The Mach 6 quite wind tunnel of Peking University[27]

    图  5  高超情况绝热壁与冷壁边界层扰动增长率比较[37]

    Figure  5.  Comparison of disturbance growth rate of isolation wall and cooled wall[37]

    图  6  转捩位置与马赫数的关系

    Figure  6.  Transition location vs. boundary edge Mach number

    图  7  转捩位置、熵吞位置与头部钝度[39]

    注:空心符号表示转捩位置,实心符号表示熵吞位置,SB表示尖锥的转捩位置,ST为钝锥转捩位置,SSW为熵吞位置

    Figure  7.  Transition location, entropy layer swallow location, and nose bluntness[39]

    图  8  来流声波在熵层中的诱导扰动[45]

    Figure  8.  Acoustic waves induce disturbances in entropy layer[45]

    图  9  马赫数6的5°半锥角圆锥在不同攻角和头部钝度情况下的转捩位置[53]

    注:α为攻角,θC为半锥角,XTB为0°攻角的转捩位置,XT为有攻角的转捩位置,Rn为头部曲率半径,Rb为底边半径,ReR, n为头部钝度雷诺数

    Figure  9.  Transition location vs. angle of attack of a 5° half-angle cone with different nose bluntness at Mach 6[53]

    图  10  头部钝度较大时攻角对圆锥转捩位置的影响[5]

    注:RN为头部曲率半径,RB为底边半径, XT/(XTs)a=0°为有攻角转捩位置与0°攻角转捩位置的比值

    Figure  10.  Effect of angle of attack on transition location for cones with large nose bluntness[5]

    图  11  HIFiRE-5在0°攻角时表面流线和横截面马赫分布[58]

    Figure  11.  Surface stream lines and cross-section Mach contours for HIFiRE-5 elliptic cone at 0° angle of attack[58]

    图  12  单位雷诺数对转捩雷诺数的影响

    Figure  12.  Unit Reynolds number vs. transition Reynolds number

    图  13  转捩区长度(同时体现转捩位置随单位雷诺数变化)[23]

    注:Onset表示转捩开始,Peak表示热流最大值位置, End表示转捩结束

    Figure  13.  Transition zones (as well as the effect of unit Reynolds number)[23]

    图  14  谐波诱导马赫6平板边界层转捩的表面摩阻[64]

    Figure  14.  Surface friction of a harmonic-wave induced transitional Mach 6 flat plate[64]

    图  15  5°半锥角钝锥热流分布[39]

    注:马赫数9.5,单位雷诺数4.6×107,头部钝度雷诺数140

    Figure  15.  Surface heating rate of a 5° half-angle cone[39]

    图  16  锥-裙结构边界层第二模态失稳过程中的“安静”现象[27]

    Figure  16.  Quiet zone in boundary layer of a cone-flare configuration during a second-mode unstable period[27]

    图  17  小攻角尖锥表面热流,采用了粗糙元促进横流失稳[49]

    Figure  17.  Surface heating rate of a sharp cone at small angle of attack, roughness elements are used to trigger cross-flow instability[49]

    图  18  马赫6尖锥转捩DNS结果[65]

    Figure  18.  DNS of boundary layer transition on a sharp cone at Mach 6[65]

    图  19  外形、DMD和POD分析结果

    Figure  19.  Configuration, DMD and POD analysis

    图  20  横流失稳

    Figure  20.  Crossflow unstable

    图  21  Görtler失稳产生相对旋转Görtler涡的示意图[88]

    Figure  21.  Sketch of counter-rotating Görtler vortices induced by Görtler unstable mod

    图  22  γ-Reθ模型的计算结果[118]

    Figure  22.  Some results of γ-Reθ transition model[118]

    图  23  吸气式高超飞行器前体边界层转捩计算结果[127]

    Figure  23.  Numerical results of air-breathing hypersonic aircraft forebody[127]

    图  24  X-33迎风面中心线上粗糙单元高度与转捩位置的关联关系[11]

    Figure  24.  X-33 transition locations of windward symmetry surface vs. roughness heights[11]

    图  25  MF-1飞行试验模型

    Figure  25.  Flight test model of MF-1

    图  26  HIFiRE-1和HIRiRE-5飞行试验模型

    Figure  26.  Flight test model of HIFiRE-1 and HIFiRE-5

    图  27  HYFIRE飞行马赫数和高度[32]

    Figure  27.  Flight Mach number and height of HYFIRE[32]

    图  28  Pegasus发射系统和机翼蒙皮转捩飞行试验[32]

    Figure  28.  Pegasus launch sequence and wing glove transition experiment[32]

    图  29  EXPERT飞行试验模型[156]

    Figure  29.  EXPERR flight test model[156]

    图  30  LEA前体风洞实验模型[160]

    Figure  30.  LES forebody windtunnel test model[160]

    图  31  HyBoLT飞行试验示意图[32]

    Figure  31.  Sketch of HyBoLT flight test[32]

    图  32  HYFLITE飞行试验概念设计[32]

    Figure  32.  Conception design of HYFITE flight test[32]

    图  33  HySTP飞行试验概念设计[32]

    Figure  33.  Conception design of HySTP flight test[32]

    图  34  发现号航天飞机STS-119返回阶段的转捩测量[32]

    Figure  34.  Transition measurement of the Discovery Space Shuttle (STS-119) during the reentry trajectory[32]

  • [1] 李锋, 解少飞, 毕志献, 等.高超声速飞行器中若干气动难题的实验研究[J].现代防御技术, 2014, 42(5): 1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201405002.htm

    Li F, Xie S F, Bi Z X, et al. Experimental study of several on aerodynamic problems on hypersonic vehicles[J]. Modern Defence Technology. 2014, 42(5): 1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201405002.htm
    [2] 沈清, 杨武兵, 庄逢甘.航天飞行器中的湍流问题[J].现代防御技术, 2012, 40(1): 21-25. http://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201201007.htm

    Shen Q, Yang W B, Zhuang F G, Turbulence of aerospacecraft[J]. Modern Defence Technology, 2012, 40(1): 21-25. http://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201201007.htm
    [3] 高清, 李潜, 陈农, 等.高超声速飞行器非对称转捩对稳定性的影响[J].战术导弹技术, 2012, (6): 12-15. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201206002.htm

    Gao Q, Li Q, Chen N, et al. The influence of asymmetric transition on stability of hypersonic aircrafts[J]. Tactical Missile Technology, 2012, (6): 12-15. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201206002.htm
    [4] 徐国武, 李锋, 龚安龙, 等.非对称转捩对横向偏离稳定的影响[J].宇航学报, 2015, 36(9): 994-1001. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201509003.htm

    Xu G W, Li F, Gong A L, et al. Effect of asymmetric transition on lateral departure stability[J]. Journal of Astronautics, 2015, 36(9): 994-1001. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201509003.htm
    [5] Lin T C. The Influence of laminar boundary layer transition on entry vehicle design and its performance[R]. AIAA 2007-309, 2007.
    [6] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J].力学进展, 2011, 41(5): 562-589. doi: 10.6052/1000-0992-2011-5-lxjzJ2010-082

    Yuan C, Yu J, Xu J L, et al. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics, 2011, 41(5): 562-589. doi: 10.6052/1000-0992-2011-5-lxjzJ2010-082
    [7] Slotnick J, Khodadoust A, Alonso J, et al. CFD vision 2030 study: a path to revolutionary computational aerosciences[R]. NASA CR-2014-218178, 2014.
    [8] 陈英硕, 叶蕾, 美国建立国家高超声速中心[J].飞航导弹, 2009, (6): 10-11. http://www.cnki.com.cn/Article/CJFDTOTAL-FHDD200906006.htm
    [9] Bertin J J, Cummings R M. Fifty years of hypersonics: where we've been, where we're going[J]. Progress in Aerospace Sciences, 2003, 39: 511-536. doi: 10.1016/S0376-0421(03)00079-4
    [10] Schneider S P. Flight data for boundary-layer transition at hypersonic and supersonic speeds[J]. Journal of Spacecraft Rockets, 1999, 36(1): 8-20. doi: 10.2514/2.3428
    [11] Berry S A, Horvath T J, Hollis B R, et al. X-33 hypersonic boundary layer transition[R]. AIAA 99-3560, 1999.
    [12] 周恒, 苏彩虹, 张永明.超声速/高超声速边界层的转捩机理及预测[M].北京:科学出版社, 2015.
    [13] 周恒.高超声速边界层转捩和湍流计算问题[J].现代防御技术, 2014, 42(4): 1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201702001.htm

    Zhou H. Transition prediction and turbulence computation of hypersonic boundary layers[J]. Morden Defence Technology, 2014, 42(4): 1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201702001.htm
    [14] 罗纪生.高超声速边界层的转捩及预测[J].航空学报, 2015, 36(1): 357-372. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501027.htm

    Luo J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 357-372. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501027.htm
    [15] 解少飞, 杨武兵, 沈清.高超声速边界层转捩机理及应用的若干进展回顾[J].航空学报, 2015, 36(3): 714-723. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201503002.htm

    Jie S F, Yang W B, Shen Q. Review of progresses in hypersonic boundary layer transition mechanism and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 714-723. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201503002.htm
    [16] 傅德薰, 马延文, 李新亮, 等.可压缩湍流直接数值模拟[M].北京:科学出版社, 2010.
    [17] Schmisseur J D. Hypersonics into the 21st century: a perspective on AFOSR-sponsored research in aerothermo-dynamics[J]. Progress in Aerospace Sciences, 2015, 72: 3-16. doi: 10.1016/j.paerosci.2014.09.009
    [18] Schneider S P. Developing mechanism-based methods for estimating hypersonic boundary-layer transition in flight: the role of quiet tunnels[J]. Progress in Aerospace Sciences, 2015, 72: 17-29. doi: 10.1016/j.paerosci.2014.09.008
    [19] Kirk L C, Lillard R P. Boundary layer transition trip effectiveness on an apollo capsule in JAXA high enthalpy shock tunnel(HIEST) facility[R]. AIAA 2015-0209, 2015.
    [20] Anderson J D. Hypersonic and high temperature gas dynamics[M]. McGraw-Hill Book Company, 1989.
    [21] Morkovin M V. Transition in open flow systems-a reassessment[J]. Bulletin of the American Physical Society, 1994, 39(9): 1882.
    [22] Carig S A, Saric W S. Experimental study of crossflow instability on a Mach 6 yawed cone[R]. AIAA 2015-2774, 2007.
    [23] Owen F K, Horstman C C, Stainback P C, et al. Comparison of wind tunnel transition and freestream disturbances measurements[J]. AIAA Journal, 1975, 13(3): 266-269. doi: 10.2514/3.49691
    [24] Bushnell D M. Hypersonic flight experimentation-status and shortfalls[C]//Symposium on Future Technology in Service to the Alliance. AGARD CP-6000, 1997.
    [25] Bouslog S A, An M Y, Hartmann L N, et al. Review of boundary layer transition flight data on the space shuttle orbiter[R]. AIAA 91-0741, 1991.
    [26] Schneider S P. Effects of high-speed tunnel noise on laminar-turbulent transition[J]. Journal of Spacecraft Rockets, 2001, 38: 323-333. doi: 10.2514/2.3705
    [27] Zhang C H, Tang Q, Lee C B. Hypersonic boundary-Layer transition on a flared cone[J]. Acta Mechanica Sinica, 2013, 29(1): 48-53. doi: 10.1007/s10409-013-0009-2
    [28] Zhu Y, Zhang C, Chen X, et al. Transition in hypersonic boundary layers: role of dilatational waves[J]. AIAA Journal, 2016, 54(10): 3039-3049. doi: 10.2514/1.J054702
    [29] Zhang C, Lee C. Rayleigh-scattering visualization of the development of second-mode waves[J]. Journal of Visualization, 2017, 20(1): 7-12. doi: 10.1007/s12650-016-0384-4
    [30] 易仕和, 田立丰, 赵玉新.基于NPLS技术的可压缩湍流机理实验研究新进展[J].力学进展, 2011, 41(4): 379-389. doi: 10.6052/1000-0992-2011-4-lxjzJ2010-028

    Yi S H, Tian L F, Zhao Y X. The new advance of the experimental research on compressible turbulence based on the NPLS technique[J]. Advances in Mechanics, 2011, 41(4): 379-389. doi: 10.6052/1000-0992-2011-4-lxjzJ2010-028
    [31] 赵云飞, 刘伟, 冈敦殿.粗糙物面引起的超声速边界层转捩现象研究[J].宇航学报, 2015, 36(6): 739-746. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201506016.htm

    Zhao Y F, Liu W, Gang D D, et al. Study of surface roughness induced supersonic boundary layer transition[J]. Journal of Astronautics, 2015, 36(6): 739-746. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201506016.htm
    [32] Berry S A, Kimmel R, Reshotko E. Recommendations for hypersonic boundary layer transition flight testing[R]. AIAA 2011-3415, 2011.
    [33] Schneider S P. Hypersonic laminar-turbulent transition on circular cones and scramjet forebodies[J]. Progress in Aerospace Sciences, 2004, 40, (1-2): 1-50. doi: 10.1016/j.paerosci.2003.11.001
    [34] Schneider S P. Laminar-turbulent transition on reentry capsules and planetary probes[J]. Journal of Spacecraft and Rockets, 2006, 44(2): 1153-1173. https://www.researchgate.net/publication/241466137_Laminar-Turbulent_Transition_on_Reentry_Capsules_and_Planetary_Probes
    [35] Schneider S P. Effects of roughness on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2008, 45(2): 193-209. doi: 10.2514/1.29713
    [36] Schneider S P. Summary of hypersonic boundary-layer transition experiments on blunt bodies with roughness[J]. Journal of Spacecraft and Rockets, 2008, 45(6): 1090-1105. doi: 10.2514/1.37431
    [37] Mack L M. Boundary layer linear stability theory[R]. AGARD-709, 1984.
    [38] Stetson K F, Thompson E R, Donaldson J C, et al. Hypersonic layer boundary layer stability experiments on a cone at Mach 8, part 5: tests with a cooled model[R]. AIAA 89-1985, 1985.
    [39] Softley E J. Boundary layer transition on hypersonic blunt slender cones[R]. AIAA 69-705, 1969.
    [40] Pate S R. Effects of wind tunnel disturbances on boundary-layer transition with emphasis on radiated noise: a review[R]. AIAA 80-0431, 1980.
    [41] Dougherty N S, Fisher D F. Boundary-layer transition on a 10 degree cone: wind tunnel/flight data correlation[R]. AIAA 80-0154, 1980.
    [42] Stetson K F. Hypersonic laminar boundary layer transition, part I: nosetip bluntness effects on cone frustum transition; part Ⅱ: Mach 6 experiments of transition on a cone at angle of attack[R]. AFWAL-TR-86-3089, 1986.
    [43] Reshotko E. Transition issues at hypersonic speeds[R]. AIAA 2006-707, 2006.
    [44] Fedorov A, Tumin A. Evolution of disturbances in entropy layer on blunted plate in supersonic flows[J]. AIAA Journal, 2004, 42(1): 89-94. doi: 10.2514/1.9033
    [45] Balakumar P, Chou A. Transition prediction in hypersonic boundary layers using receptivity and freestream spectra[R]. AIAA 2016-0847, 2016.
    [46] Stetson K F. Effect of bluntness and angle of attack on boundary layer transition on cones and biconic configurations[R]. AIAA 79-0269. 1979.
    [47] Lei J, Zhong X. Linear stability analysis of nose bluntness effects on hypersonic boundary layer transition[J]. Journal of Spacecraft and Rockets, 2012, 49(1): 24-37. doi: 10.2514/1.52616
    [48] Fedorov A, Tumin A. Evolution of disturbances in entropy layer on blunted plate in supersonic flow[J]. AIAA Journal, 1971, 42(1): 89-94. https://arizona.pure.elsevier.com/en/publications/evolution-of-disturbances-in-entropy-layer-on-a-blunted-plate-in-
    [49] Chynoweth B C, Ward C A C, Henderson R O, et al. Transition and instability measurements in a Mach 6 hypersonic quiet wind tunnel[R]. AIAA 2014-0074, 2014.
    [50] Stetson K F, Thompson E R, Donaldson J C, et al. Hypersonic layer boundary layer stability experiments on a cone at Mach 8, part 2: blunt cone[R]. AIAA 84-0006, 1984.
    [51] Stetson K F, Thompson E R, Donaldson J C, et al. Hypersonic layer boundary layer stability experiments on a cone at Mach 8, part 3: sharp cone at angle of attack[R]. AIAA 85-0492, 1985.
    [52] Muir J F, Trujillo R A. Experimental Investigation of the effect of nose bluntness, free-stream unit Reynolds number, angle of attack on cone boundary layer transition at a Mach number of 6[R]. AIAA 72-216, 1972.
    [53] Horvath T J, Berry S A, Hollis B R, et al. Boundary layer transition on slender cones in conventional and low disturbance Mach 6 wind tunnels[R]. AIAA 2002-2743, 2002.
    [54] Liu J, Luo J. Effect of disturbances at inlet on hypersonic boundary layer transition on a blunt cone at small angle of attack[J]. Applied Mathematics & Mechanics(English Edition), 2010, 31(5): 535-544. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YYSL201005000.htm
    [55] Li X, Fu D, Ma Y. Direct Numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack[J]. Physics of Fluids, 2010, 22: 025105. doi: 10.1063/1.3313933
    [56] 常雨, 陈苏宇, 张扣立.高超声速边界层转捩特性试验探究[J].宇航学报, 2015, 36(11): 1318-1323. doi: 10.3873/j.issn.1000-1328.2015.11.014

    Chang Y, Chen S Y, Zhang K L. Experimental investigation of hypersonic boundary layer transition[J]. Journal of Astronautics, 2015, 36(11): 1318-1323. doi: 10.3873/j.issn.1000-1328.2015.11.014
    [57] Juliano T J, Borg M P, Schneider S P. Quiet tunnel measurements of HIFiRE-5 boundary-layer transition[J]. AIAA Journal, 2015, 53(4): 832-846. doi: 10.2514/1.J053189
    [58] Li F, Choudhari M, Chang C L, et al. Stability analysis for HIFiRE experiments[R]. AIAA 2012-2961, 2012.
    [59] Kimmel R L. The effect of pressure gradients on transition zone length in hypersonic boundary layers[J]. Journal of Fluids Engineering, 1997, 119: 36-41 doi: 10.1115/1.2819115
    [60] Sivasubramanian J, Fasel H F. Direct numerical simulation of laminar-turbulent transition in a flared cone boundary layer at Mach 6[R]. AIAA 2016-0846.
    [61] Stetson K F, Thompson E R, Donaldson J C, et al. Hypersonic layer boundary layer stability experiments on a cone at Mach 8, part 4: on unit Reynolds number and environmental effects[R]. AIAA 86-1087, 1986.
    [62] Tu G, Deng X, Mao M. Validation of a RANS transition model using a high-order weighted compact nonlinear scheme[J]. Science ChinaPhysics Mechanics and Astronomy, 2013, 56: 1-7. doi: 10.1007/s11433-012-4972-6
    [63] Hollis B R, Hollingsworth K E. Laminar, transitional, and turbulent heating on Mid lift-to-drag ratio entry vehicles[R]. AIAA 2012-3063, 2012.
    [64] Franko K J, Bhaskaran R, Lele S K. Direct numerical simulation of transition and heat-transfer overshoot in a Mach 6 flat plate boundary layer[R]. AIAA 2011-3874, 2011.
    [65] Sivasubramanian J, Fasel H F. Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: fundamental breakdown[J]. Journal of Fluid Mechanics, 2015, 768: 175-218. doi: 10.1017/jfm.2014.678
    [66] Qin F, Wu X. Response and receptivity of the hypersonic boundary layer past a wedge to free-stream acoustic, vortical and entropy disturbances[J]. Journal of Fluid Mechanics, 2016, 797: 874-915. doi: 10.1017/jfm.2016.287
    [67] Tempelmann D, Schrader L U, Hanifi A, et al. Swept wing boundary-layer receptivity to localized suface roughness[J]. Journal of Fluid Mechanics, 2012, 711: 516-544. doi: 10.1017/jfm.2012.405
    [68] Herbert T. Studies of boundary-layer receptivity with parabolized stability equations[R]. AIAA 93-0353, 1993.
    [69] 潘宏禄, 马汉东, 王强.高超声速钝楔边界层转捩大涡模拟[J].航空学报, 2007, 28(2): 269-774.. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200702002.htm

    Pan H L, Ma H D, Wang Q. Large eddy simulation of transition in a hypersonic blunt-wedge boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 269-774. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200702002.htm
    [70] 赵晓慧, 邓小兵, 毛枚良, 等.高超声速进气道强制转捩流动的大涡模拟[J].航空学报, 2016, 37(8): 2445-2453. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608010.htm

    Zhao X H, Deng X B, Mao M L, et al. Large eddy simulation for forced transition flow at hypersonic inlet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2445-2453. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608010.htm
    [71] Theofilis V. Global linear instability[J]. Annual Review of Fluid Mechanics, 2011, 43: 319-352. doi: 10.1146/annurev-fluid-122109-160705
    [72] Theofilis V. Advances in global linear instability of nonparallel and three-dimensional flows[J]. Progress in Aerospace Sciences, 2003, 39(4): 249-315. doi: 10.1016/S0376-0421(02)00030-1
    [73] Gómez F, Clainche L, Paredes P, et al. Four decades of studying global linear instability: problems and challenges[J]. AIAA Journal, 2012, 50(12): 2371-2383. http://researchbank.rmit.edu.au/view/rmit:43455
    [74] Rowley C W, Mezic' I, Bagheri S, et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics, 2009, 641: 115-127. doi: 10.1017/S0022112009992059
    [75] Schmid P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656: 5-28. doi: 10.1017/S0022112010001217
    [76] Schmid P J, Li L, Juniper M, et al. Applications of the dynamic mode decomposition[J]. Theoretical and Computational Fluid Dynamics, 2011, 25: 249-259. doi: 10.1007/s00162-010-0203-9
    [77] Rowley C W, Colonius T, Murray R M. Model reduction for compressible flows using POD and Galerkin projection[J]. Physica D: Nonlinear Phenomena, 2004, 189(1-2): 115-129. doi: 10.1016/j.physd.2003.03.001
    [78] Tu G H, Deng X B, Mao M L. Implementing high-order weighted compact nonlinear scheme on patched grids with a nonlinear interpolation[J]. Computers and Fluids, 2013, 77: 181-193. doi: 10.1016/j.compfluid.2013.02.015
    [79] 涂国华, 邓小刚, 毛枚良.消除粘性项高阶离散数值振荡的半结点-结点交错方法[J].空气动力学学报, 2011, 29(1): 10-15. http://www.kqdlxxb.com/CN/abstract/abstract10468.shtml

    Tu G H, Deng X B, Mao M L. A staggered non-oscillatory finite difference method for high-order discretization of viscous terms[J]. Acta Aerodynamica Sinica, 2011, 29(1): 10-15. http://www.kqdlxxb.com/CN/abstract/abstract10468.shtml
    [80] Tu G H, Zhao X, Mao M L, et al. Evaluation of Euler fluxes by a high-order CFD scheme: shock instability[J]. International Journal of Computational Fluid Dynamics, 2014, 28(5): 171-186. doi: 10.1080/10618562.2014.911847
    [81] Reed H, Saric W, Arnal D. Linear stability theory applied to boundary layers[J]. Annual Review of Fluid Mechanics, 1996, 28: 389-428. doi: 10.1146/annurev.fl.28.010196.002133
    [82] Maslov A. Experimental study of stability and transition of hypersonic boundary layer around blunted cone[R]. Final Project Technical Report of ISTC 1863-2000, 2001.
    [83] Muller B, Bippes H. Experimental study of instability modes in a three-dimensional boundary layer[C]//Proceedings AGARD Symposium on Fluid Dynamics of 3D-turbulent shear flows and transition. AGARD CP-438. Cesme, Turkey, 1988.
    [84] 徐国亮, 符松.可压缩横流失稳及其控制[J].力学进展, 2012, 42(3): 1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201203005.htm

    Xu G L, Fu S. The instability and control of compressible cross flows[J]. Advances in Mechanics, 2012, 42(3): 1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201203005.htm
    [85] Malik M R, Li F, Choudhari M M, et al. Secondary instability of crossflow vortices and swept-wing boundary layer transition[J]. Journal of Fluid Mechanics, 1999, 399: 85-115. doi: 10.1017/S0022112099006291
    [86] Borg M P, Kimmel R, Stanfield S. Crossflow instability for HIFiRE-5 in a quiet hypersonc wind tunnel[R]. AIAA 2012-2821, 2012.
    [87] Borg M P, Kimmel R L. Simultaneous infrared and pressure measurements of crossflow instability modes for HIFiRE-5[R]. AIAA 2016-0356, 2016.
    [88] Ren J, Fu S. Secondary instabilities of Görtler vortices in high-speed boundary layer flows[J]. Journal of Fluid Mechanics, 2015, 781: 388-421. doi: 10.1017/jfm.2015.490
    [89] Hall P, Horseman N J. The linear inviscid secondary instability of longitudinal vortex structures in boundary layers[J]. Journal of Fluid Mechanics, 1991, 232: 357-375. doi: 10.1017/S0022112091003725
    [90] Yu X, Liu J T C. The secondary instability in Görtler flow[J]. Phys. Fluids, 1991, A3(8): 1845-1847.
    [91] Liu W, Domaradzki J A. Direct numerical simulation of transition to turbulence in Görtler flow[J]. Journal of Fluid Mechanics, 1993, 246: 267-299. doi: 10.1017/S0022112093000126
    [92] Yu X, Liu J T C. On the mechanism of sinuous and varicose modes in three-dimensional viscous secondary instability of nonlinear Görtler rolls[J]. Phys. Fluids, 1994, 6(2): 736-750. doi: 10.1063/1.868312
    [93] Whang C, Zhong X. Secondary Görtler instability in hypersonic boundary layers[C]//39th Aerospace Sciences Meeting & Exhibit. AIAA 2001-0273, 2001.
    [94] Li F, Choudhari M, Chang C L, et al. Development and breakdown of Görtler vortices in high speed boundary layers[C]//50th Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. AIAA 2010-0705, 2010.
    [95] Spall R E, Malik M R. Görtler vortices in supersonic and hypersonic boundary-layers[J]. Physics of Fluids A: Fluid Dynamics, 1989, 1(11): 1822-1835. doi: 10.1063/1.857508
    [96] Ren J, Fu S. Study of the discrete spectrum in a Mach 4.5 Görtler flow[J]. Flow Turbulence Combust, 2015, 94: 339-357. doi: 10.1007/s10494-014-9575-z
    [97] Hanifi A, Schmid P J, Henningson D S. Transient growth in compressible boundary layer flow[J]. Physics of Fluids, 1996, 8(3): 826-837. doi: 10.1063/1.868864
    [98] Bitter N P, Shepherd J E. Transient growth in hypersonic boundary layers[R]. AIAA 2014-2497.
    [99] Schmid P J. Nonmodal stability theory[J]. Annual Review of Fluid Mechanics, 2007, 39: 129-162. doi: 10.1146/annurev.fluid.38.050304.092139
    [100] Tempelmann D, Hanifi A, Henningson D S. Spatial optimal growth in three-dimensional compressible boundary layers[J]. Journal of Fluid Mechanics, 2012, 704: 251-279. doi: 10.1017/jfm.2012.235
    [101] Reshotko E. Transient growth: a factor in bypass transition[J]. Physics of Fluids, 2001, 13(5): 1066-1075. doi: 10.1063/1.1358308
    [102] Su C H, Zhou H. Transition prediction of a hypersonic boundary layer over a cone at a small angle of attack-with the improvement of eN method[J]. Science in China(Series G: Physics, Mechanics & Astronomy), 2009, 52(1): 115-123. http://phys.scichina.com:8083/sciGe/EN/abstract/abstract411045.shtml
    [103] Su C, Zhou H. Transition prediction for supersonic and hypersonic boundary layers on a cone with an angle of attack[J]. Science in China(Series G: Physics, Mechanics & Astronomy), 2009, 352(8): 1223-1232. http://www.cnki.com.cn/Article/CJFDTotal-JGXG200908015.htm
    [104] Orlik E, Davidenko D. Boundary-layer transition on a hypersonic forebody: experiments and calculations[J]. Journal of Spacecraft and Rockets, 2011, 48(4): 545-555. doi: 10.2514/1.51570
    [105] 张雯, 刘沛清, 郭昊, 等.湍流转捩工程预报方法研究进展综述[J].实验流体力学, 2014, 28(6): 1-12, 38 http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201406001.htm

    Zhang W, Liu P Q, Guo H, et al. Review of transition prediction methods[J]. Journal of Experiments in Fluid Mechanics, 2016, 28(6): 1-12, 38. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201406001.htm
    [106] Menter F R, Langtry R B, Likki S R, et al. A correlation-based transition model using local variables—part I: model formulation[J]. Journal of Turbomachinery, 2006, 128: 413-422. doi: 10.1115/1.2184352
    [107] Langtry R B, Menter F R, Volker S. Transition Modeling for general purpose CFD codes[J]. Flow Turbulence Combust, 2006, 77: 277-303. doi: 10.1007/s10494-006-9047-1
    [108] Langtry R B, Menter F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamic codes[J]. AIAA Journal, 2009, 47(12): 2894-2906. doi: 10.2514/1.42362
    [109] 张玉伦, 王光学, 孟德虹, 等. γ-Reθ转捩模型的标定研究[J].空气动力学学报, 2011, 29(3): 295-301.

    Zhang Y L, Wang G X, Meng D H, et al. Calibration of γ-Reθ transition model[J]. Acta Aerodynamica Sinica, 2011, 29(3): 295-301.
    [110] 牟斌, 江雄, 肖中云, 等. γ-Reθ转捩模型的标定与应用[J].空气动力学学报, 2012, 31(1): 103-109. http://www.kqdlxxb.com/CN/abstract/abstract11094.shtml

    Mou B, Jiang X, Xiao Z Y, et al. Implementation and caliberation of γ-Reθ transition model[J]. Acta Aerodynamica Sinica, 2012, 31(1): 103-109. http://www.kqdlxxb.com/CN/abstract/abstract11094.shtml
    [111] Medida S, Baeder J D. Application of the correlation-based γ-Reθt transition model to the Spalart-Allmaras turbulence model[R]. AIAA 2011-3979, 2011.
    [112] Krause M, Behr B, Ballmann J. Modeling of transition effects in hypersonic intake flows using a correlation-based intermittency model[R]. AIAA 2008-2598, 2008.
    [113] Cheng G, Nichols R, Neroorkar K D, et al. Validation and assessment of turbulence transition models[R]. AIAA 2009-1141, 2009.
    [114] Bensassi K, Lani A, Rambaud P. Numerical investigations of local correlation-based transition model in hypersonic flows[R]. AIAA 2012-3151, 2012.
    [115] 张晓东, 高正红.关于补充Langtry的转捩模型经验修正式的数值探讨[J].应用数学和力学, 2010, 31(5): 544-552. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201005006.htm

    Zhang X D, Gao Z H. Numerical discuss to complete empirical correlation in Langtry's transition model[J]. Applied Mathematics and Mechanics, 2010, 31(5): 544-552. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201005006.htm
    [116] Yan P, Mao R, Qiang X. Application of PSE analysis method with transitional turbulence model on hypersonic flows[R]. AIAA 2011-3981, 2011.
    [117] 张毅锋, 雷净, 张益荣, 等.高超声速数值模拟平台转捩模型的标定[J].空气动力学学报, 2015, 33(1): 42-47. http://www.kqdlxxb.com/CN/abstract/abstract11621.shtml

    Zhang Y, Lei J, Zhang Y, et al. Calibration of transition model for hypersonic numerical simulation platform[J]. Acta Aerodynamica Sinica, 2015, 33(1): 42-47. http://www.kqdlxxb.com/CN/abstract/abstract11621.shtml
    [118] 张毅锋, 何琨, 张益荣, 等. Menter转捩模型在高超声速流动模拟中的改进及验证[J].宇航学报, 2016, 37(4): 397-402. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201604004.htm

    Zhang Y F, He K, Zhang Y R, et al. Improvement and validation of Menter's transition model for hypersonic flow simulation[J]. Journal of Astronautics, 2016, 37(4): 397-402. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201604004.htm
    [119] 孔维萱, 张辉, 阎超.适用于高超声速边界层的转捩准则预测方法[J].导弹与航天运载技术, 2013, 328: 54-58. http://www.cnki.com.cn/Article/CJFDTOTAL-DDYH201305016.htm

    Kong W X, Zhang H, Yan C. Transition criterion prediction method for hypersonic boundary layer[J]. Missiles and Space Vehicles, 2013, 328: 54-58. http://www.cnki.com.cn/Article/CJFDTOTAL-DDYH201305016.htm
    [120] Warren E S, Harris J E, Hassan H A. Transition model for high-speed flow[J]. AIAA Journal, 1995, 33(8): 1391-1397. doi: 10.2514/3.12687
    [121] Mayle R E, Schulz A. The path to predicting bypass transition[J]. Journal of Turbomachinery, 1997, 119: 405-411. doi: 10.1115/1.2841138
    [122] Walters D K, Cokljat D. A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow[J]. Journal of Fluids Engineering, 2008, 130(12): 121401. doi: 10.1115/1.2979230
    [123] Song B, Lee C H. A Favré averaged transition prediction model for hypersonic flows[J]. Science China Technological Sciences, 2010, 53: 2049-2056. doi: 10.1007/s11431-010-3173-7
    [124] Fu S, Wang L. RANS modeling of high-speed aerodynamic flow transition with consideration of stability theory[J]. Progress in Aerospace Sciences, 2013, 58(2): 36-59 https://www.researchgate.net/publication/257192180_RANS_modeling_of_high-speed_aerodynamic_flow_transition_with_consideration_of_stability_theory
    [125] Wang L, Fu S. Modelling flow transition in a hypersonic boundary layer with Reynolds-averaged Navier Stokes approach[J]. Science in China(Series G: Physics, Mechanics & Astronomy), 2009, 52(5): 768-774. http://phys.scichina.com:8083/Jwk_sciG_en/EN/abstract/abstract412690.shtml
    [126] Wang L, Liu Z, Fu S. Numerical aspects of including crossflow effects in the recently proposed transition models[R]. AIAA 2016-3492, 2014.
    [127] Wang L, Xiao L, Fu S. A modular RANS approach for modeling hypersonic flow transition on a scramjet-forebody configuration[J]. Aerospace Science and Technology, 2016, 56: 112-124. doi: 10.1016/j.ast.2016.07.004
    [128] 史亚云, 白俊强, 华俊, 等.基于放大因子与Spalart-Allmaras湍流模型的转捩预测[J].航空动力学报, 2005, 30(7): 1670-1677. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201507021.htm

    Shi Y Y, Bai J Q, Hua J, et al. Transition prediction based on amplification factor and Spalart-Allmaras turbulence model[J]. Journal of Aerospace Power, 2005, 30(7): 1670-1677. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201507021.htm
    [129] Langel C M, Chow R, van Dam C P. A comparison of transition prediction methodologies applied to high Reynolds number external flows[R]. AIAA 2016-0551, 2016.
    [130] Berry S, Daryabeigi K, Wurster K, et al. Boundary-layer transition on X-43A[J]. Journal of Spacecraft and Rockets, 2010, 47(6): 922-934. doi: 10.2514/1.45889
    [131] 朱德华, 袁湘江, 沈清, 等.高超声速粗糙元诱导转捩的数值模拟及机理分析[J].力学学报, 2015, 47(3): 381-388. doi: 10.6052/0459-1879-14-217

    Zhu D H, Yuan X J, Shen Q, et al. Numerical simulation and mechanism analysis of hypersonic roughness induced transiton[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 381-388. doi: 10.6052/0459-1879-14-217
    [132] Duan Z, Xiao Z, Fu S. Direct numerical simulation of hypersonic transition induced by isolated cylindrical roughness element[J]. Science China-Physics, Mechanics & Astronomy, 2014, 57(12): 2330-2345. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXG201412019.htm
    [133] Duan Z, Xiao Z. Direct numerical simulation of geometrical parameter effects on the hypersonic ramp-induced transition[R]. AIAA 2014-2495, 2014.
    [134] Tu G, Hu Z, Sandham N D. Enhanced instability of supersonic boundary layer using passive acoustic feedback[J]. Physics of Fluids, 2016, 28: 024103. doi: 10.1063/1.4940324
    [135] 涂国华, 燕振国, 赵晓慧, 等. SA和SST湍流模型对高超声速边界层强制转捩的适应性[J].航空学报, 2015, 36(5): 1471-1479. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201505010.htm

    Tu G H, Yan Z G, Zhao X H, et al. SA and SST turbulence models for hypersonic forced boundary layer transition[J]. Acta Aerodynautica et Astronautica Sinica, 2015, 36(5): 1471-1479. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201505010.htm
    [136] 战培国.超燃冲压发动机前体边界层转捩风洞试验方法[J].航空科学技术, 2012, 6: 22-25. doi: 10.3969/j.issn.1007-5453.2012.01.007

    Zhan P G. Wind tunnel test methods for boundary layer transition on scramjet engine forebody[J]. Aeronautical Science & Technology, 2012, 6: 22-25. doi: 10.3969/j.issn.1007-5453.2012.01.007
    [137] 赵慧勇, 易淼荣.高超声速进气道强制转捩装置设计综述[J].空气动力学学, 2014, 32(5): 623-627. doi: 10.7638/kqdlxxb-2014.0095

    Zhao H Y, Yi M R. Review of design for forced-transition trip of hypersonic inlet[J]. Acta Aerodynamica Sinica, 2014, 32(5): 623-627. doi: 10.7638/kqdlxxb-2014.0095
    [138] Thompson R A, Hamilton H H, Berry S A, et al. Hypersonic boundary layer transition for X-33 phase Ⅱ vehicle[R]. AIAA 98-0867, 1998.
    [139] Reda D C. Review and synthesis of roughness-dominated transition correlations for reentry applications[J]. Journal of Spacecraft and Rockets, 2002, 39(2): 161-167. doi: 10.2514/2.3803
    [140] McGinley C B, Berry S A, Kinder G R, et al. Review of orbiter flight boundary layer transition data[R]. AIAA 2006-2921, 2006.
    [141] Schneider S P. Hypersonic boundary-layer transition with ablation and blowing[J]. Journal of Spacecraft and Rockets, 2010, 47(2): 225-237. doi: 10.2514/1.43926
    [142] Sandham N D, Lüdeke H. Numerical study of Mach 6 boundary-layer stabilization by means of a porous surface[J]. AIAA Journal, 2009, 47(9): 2243-2252. doi: 10.2514/1.43388
    [143] Tritarelli R C, Lele S K, Fedorov A. Stabilization of a hypersonic boundary layer using a felt-metal porous coating[J]. Journal of Fluid Mechanics, 2015, 769: 729-739. doi: 10.1017/jfm.2015.156
    [144] 朱德华, 刘智勇, 袁湘江.多孔表面推迟高超声速边界层转捩的机理[J].计算物理, 2016, 33(2): 163-169. http://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201602005.htm

    Zhu D H, Liu Z L, Yuan X J. Mechanism of transition delay by porous surface in hypersonic boundary layers[J]. Chinese Journal of Computational Physics, 2016, 33(2): 163-169. http://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201602005.htm
    [145] Wang X, Zhong X. The stabilization of a hypersonic boundary layer using local sections of porous coating[J]. Physics of Fluids, 2012, 24: 034105. doi: 10.1063/1.3694808
    [146] Ren J, Fu S, Hanifi A. Stabilization of the hypersonic boundary layer by finite-amplitude steaks[J]. Physics of Fluids, 2016, 28: 024110 doi: 10.1063/1.4941989
    [147] Fong K D, Wang X, Zhong X. Numerical simulations of roughness effect on the stability of a hypersonic boundary layer[J]. Computers & Fluids, 2014, 96: 350-367. https://www.researchgate.net/publication/262191172_Numerical_simulation_of_roughness_effect_on_the_stability_of_a_hypersonic_boundary_layer
    [148] Fong K D, Zhong X. DNS and PSE study on the stabilization effect of hypersonic boundary layer waves using 2-D surface roughness[R]. AIAA 2016-3347, 2016.
    [149] Saric W, Reed H, White E. Stability and transition of three-dimensional boundary layers[J]. Annual Review of Fluid Mechanics, 2003, 35: 413-440. doi: 10.1146/annurev.fluid.35.101101.161045
    [150] Schuele C Y. Control of stationary cross-flow modes in a Mach 3.5 boundary layer using patterned passive and active roughness[D]. Ph. D. thesis, University of Notre Dame, South Bend, Indiana, 2011.
    [151] Schuele C Y, Corke T C, Matlis E. Control of stationary cross-flow modes in a Mach 3.5 boundary layer using patterned passive and active roughness[J]. Journal of Fluid Mechanics, 2013, 718: 5-38. doi: 10.1017/jfm.2012.579
    [152] Juliano T J, Adamczak D, Kimmel R. HIFiRE-5 flight test results[J]. Journal of Spacecraft and Rockets, 2015, 52(3): 650-663. doi: 10.2514/1.A33142
    [153] Kimmel R L, Borg M P, Jewell J S. HIFiRE-5 boundary layer transition and HIFiRE-1 shock boundary layer interaction[R]. AFRL-RQ-WP-TR-2015-0151, 2015.
    [154] Shirouzu M, Yamamoto M. Overview of the HYFLEX project[R]. AIAA, 96-4524, 1996.
    [155] Barrio A M, Sudars M, Aulisio R, et al. EXPERT-the ESA experimental re-entry test-bed trajectory and mission design[R]. AIAA 2011-6342, 2011.
    [156] Clemente M D, Trifoni E, Walpot L, et al. Aerothermal rebuilding of plasma wind tunnel tests on the EXPERT capsule open flap[R]. AIAA 2012-3003, 2012.
    [157] Brazier J P, Schramm J M, Paris S, et al. An overview of HyFIE technical research project: cross testing in main european hypersonic wind tunnels on EXPERT body[J]. CEAS Space Journal, 2016, 8(3): 167-176. doi: 10.1007/s12567-016-0117-5
    [158] Fedioun I, Orlik E. Boundary layer transition on the LEA hypersonic vehicle forebody[R]. AIAA 2012-5864, 2012.
    [159] Falempin F, Serre L. French flight testing program LEA-status in 2011[R]. AIAA 2011-2200, 2011.
    [160] Fedioun I, Orlik F. Boundary layer transition on the LEA hypersonic vehicle forebody[R]. AIAA 2012-5864, 2012.
    [161] Reshotko E. Boundary layer stability and transition[J]. Annual Review of Fluid Mechanics, 1976, 8: 311-349. doi: 10.1146/annurev.fl.08.010176.001523
    [162] Reshotko E. Transition research using flight experiments[M]//Hussaini M Y, Voigt R G. Instability and Transition Vol.I. Springer-Verlag, 1990: 88-90.
  • 加载中
图(34)
计量
  • 文章访问数:  754
  • HTML全文浏览量:  301
  • PDF下载量:  873
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-07
  • 修回日期:  2017-03-28
  • 刊出日期:  2017-06-01

目录

    /

    返回文章
    返回