Hypersnonic boundary layer transition: what we know, where shall we go
-
摘要: 高超声速飞行器边界层容易经历层流/湍流转捩,层流流动和湍流流动在摩擦阻力、热交换、噪声和掺混等方面有巨大差别,转捩问题已成为制约高超声速技术突破的基础科学问题之一,是当前国际学术研究的热点与难点。本文详细分析了国内外高超声速边界层转捩研究现状,并将其归为三类:已知主要原因的现象与规律、已知部分原因的现象与规律、未知或矛盾的现象。其中已知主要原因的现象与规律包括壁温、马赫数和噪声影响;已知部分原因的现象与规律主要有头部钝度、熵层和攻角影响;未知或矛盾的现象主要有单位雷诺数影响、转捩区长度、转捩区摩阻和热流分布等。同时介绍了高超声速边界层转捩影响因素研究、转捩机理研究、转捩预测方法及模型研究、促进/推迟转捩的控制方法研究、以及一些公开的飞行试验等方面的进展。最后指出,在今后的高超声速边界层转捩研究中,建议把单个影响因素独立出来研究,尽量避免多因素相互干扰;高超声速边界层失稳研究需要特别关注横流失稳、熵层和模态相互作用;转捩预测需考虑三维边界层和来流扰动的影响;转捩控制研究应重点关注高效、低阻、低热的控制方法;转捩飞行试验十分重要,飞行试验和静音风洞发挥的作用会越来越明显。过去60多年的研究经验表明在未来的研究中应该注重多种手段相结合。Abstract: Hypersonic vehicles are likely to undergo laminar/turbulent boundary layer transition(BLT). Laminar boundary layers and turbulent boundary layers show essential differences in skin friction, heat transfer, mixing, and noise. Hypersonic BLT is one of basic scientific problems, which restrict the development of advanced hypersonic technology. Nowdays, hypersonic BLT is a hot and difficult topic. Worldwide studies on hypersonic BLT are briefly summarized in this paper. The phenomena and regularities of hypersonic BLT are classified into three categories: what we know the main reasons, what we know parts of the reasons, and what we don't know or are inconsistency. Wall temperature effects, Mach number effects and wind tunnel noise effects are which we know the main reasons. Nose bluntness effects, angle-of-attack effects and entropy layer interference are which we only know parts of the reasons. Unit Reynolds number effects, length of transitional zones, surface friction and heat distributions in transitional zones are which we know little. Factors affecting hypersonic BLT, physical mechanisms of hypersonic BLT, methods and models of predicting hypersonic BLT, and and control methods of delaying/accelerating hypersonic BLT, are reviewed, together with unclassified hypersonic flight tests. In order to avoid interactions of different factors, it is suggested to detach individual factors from composite transition clauses and study these individual factors separately. In future study on hypersonic boundary layer instability, special efforts shall be focused on crossflow instability, entropy layer, and mode interactions. Future prediction methods and models need to account for three-dimensional flows and free-stream disturbances. Future control methods shall be high effective, and low additional drag and surface heating. Flight test is very important for the study of hypersonic BLT. Flight test and quiet wind tunnel are becoming more and more useful and fruitful. The past more than 60 years of studies on hypersonic BLT indicate the importance of the combination of different research methods, such as numerical simulations, wind tunnel experiments, flight tests, and stability analysis.
-
Key words:
- hypersonic /
- boundary layer transition /
- flight tests /
- transition prediction /
- transition control
-
图 1 NHFRP边界层转捩研究[17]
Figure 1. NHFRP boundary layer transition plan
图 21 Görtler失稳产生相对旋转Görtler涡的示意图[88]
Figure 21. Sketch of counter-rotating Görtler vortices induced by Görtler unstable mod
-
[1] 李锋, 解少飞, 毕志献, 等.高超声速飞行器中若干气动难题的实验研究[J].现代防御技术, 2014, 42(5): 1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201405002.htmLi F, Xie S F, Bi Z X, et al. Experimental study of several on aerodynamic problems on hypersonic vehicles[J]. Modern Defence Technology. 2014, 42(5): 1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201405002.htm [2] 沈清, 杨武兵, 庄逢甘.航天飞行器中的湍流问题[J].现代防御技术, 2012, 40(1): 21-25. http://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201201007.htmShen Q, Yang W B, Zhuang F G, Turbulence of aerospacecraft[J]. Modern Defence Technology, 2012, 40(1): 21-25. http://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201201007.htm [3] 高清, 李潜, 陈农, 等.高超声速飞行器非对称转捩对稳定性的影响[J].战术导弹技术, 2012, (6): 12-15. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201206002.htmGao Q, Li Q, Chen N, et al. The influence of asymmetric transition on stability of hypersonic aircrafts[J]. Tactical Missile Technology, 2012, (6): 12-15. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201206002.htm [4] 徐国武, 李锋, 龚安龙, 等.非对称转捩对横向偏离稳定的影响[J].宇航学报, 2015, 36(9): 994-1001. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201509003.htmXu G W, Li F, Gong A L, et al. Effect of asymmetric transition on lateral departure stability[J]. Journal of Astronautics, 2015, 36(9): 994-1001. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201509003.htm [5] Lin T C. The Influence of laminar boundary layer transition on entry vehicle design and its performance[R]. AIAA 2007-309, 2007. [6] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J].力学进展, 2011, 41(5): 562-589. doi: 10.6052/1000-0992-2011-5-lxjzJ2010-082Yuan C, Yu J, Xu J L, et al. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics, 2011, 41(5): 562-589. doi: 10.6052/1000-0992-2011-5-lxjzJ2010-082 [7] Slotnick J, Khodadoust A, Alonso J, et al. CFD vision 2030 study: a path to revolutionary computational aerosciences[R]. NASA CR-2014-218178, 2014. [8] 陈英硕, 叶蕾, 美国建立国家高超声速中心[J].飞航导弹, 2009, (6): 10-11. http://www.cnki.com.cn/Article/CJFDTOTAL-FHDD200906006.htm [9] Bertin J J, Cummings R M. Fifty years of hypersonics: where we've been, where we're going[J]. Progress in Aerospace Sciences, 2003, 39: 511-536. doi: 10.1016/S0376-0421(03)00079-4 [10] Schneider S P. Flight data for boundary-layer transition at hypersonic and supersonic speeds[J]. Journal of Spacecraft Rockets, 1999, 36(1): 8-20. doi: 10.2514/2.3428 [11] Berry S A, Horvath T J, Hollis B R, et al. X-33 hypersonic boundary layer transition[R]. AIAA 99-3560, 1999. [12] 周恒, 苏彩虹, 张永明.超声速/高超声速边界层的转捩机理及预测[M].北京:科学出版社, 2015. [13] 周恒.高超声速边界层转捩和湍流计算问题[J].现代防御技术, 2014, 42(4): 1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201702001.htmZhou H. Transition prediction and turbulence computation of hypersonic boundary layers[J]. Morden Defence Technology, 2014, 42(4): 1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201702001.htm [14] 罗纪生.高超声速边界层的转捩及预测[J].航空学报, 2015, 36(1): 357-372. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501027.htmLuo J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 357-372. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501027.htm [15] 解少飞, 杨武兵, 沈清.高超声速边界层转捩机理及应用的若干进展回顾[J].航空学报, 2015, 36(3): 714-723. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201503002.htmJie S F, Yang W B, Shen Q. Review of progresses in hypersonic boundary layer transition mechanism and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 714-723. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201503002.htm [16] 傅德薰, 马延文, 李新亮, 等.可压缩湍流直接数值模拟[M].北京:科学出版社, 2010. [17] Schmisseur J D. Hypersonics into the 21st century: a perspective on AFOSR-sponsored research in aerothermo-dynamics[J]. Progress in Aerospace Sciences, 2015, 72: 3-16. doi: 10.1016/j.paerosci.2014.09.009 [18] Schneider S P. Developing mechanism-based methods for estimating hypersonic boundary-layer transition in flight: the role of quiet tunnels[J]. Progress in Aerospace Sciences, 2015, 72: 17-29. doi: 10.1016/j.paerosci.2014.09.008 [19] Kirk L C, Lillard R P. Boundary layer transition trip effectiveness on an apollo capsule in JAXA high enthalpy shock tunnel(HIEST) facility[R]. AIAA 2015-0209, 2015. [20] Anderson J D. Hypersonic and high temperature gas dynamics[M]. McGraw-Hill Book Company, 1989. [21] Morkovin M V. Transition in open flow systems-a reassessment[J]. Bulletin of the American Physical Society, 1994, 39(9): 1882. [22] Carig S A, Saric W S. Experimental study of crossflow instability on a Mach 6 yawed cone[R]. AIAA 2015-2774, 2007. [23] Owen F K, Horstman C C, Stainback P C, et al. Comparison of wind tunnel transition and freestream disturbances measurements[J]. AIAA Journal, 1975, 13(3): 266-269. doi: 10.2514/3.49691 [24] Bushnell D M. Hypersonic flight experimentation-status and shortfalls[C]//Symposium on Future Technology in Service to the Alliance. AGARD CP-6000, 1997. [25] Bouslog S A, An M Y, Hartmann L N, et al. Review of boundary layer transition flight data on the space shuttle orbiter[R]. AIAA 91-0741, 1991. [26] Schneider S P. Effects of high-speed tunnel noise on laminar-turbulent transition[J]. Journal of Spacecraft Rockets, 2001, 38: 323-333. doi: 10.2514/2.3705 [27] Zhang C H, Tang Q, Lee C B. Hypersonic boundary-Layer transition on a flared cone[J]. Acta Mechanica Sinica, 2013, 29(1): 48-53. doi: 10.1007/s10409-013-0009-2 [28] Zhu Y, Zhang C, Chen X, et al. Transition in hypersonic boundary layers: role of dilatational waves[J]. AIAA Journal, 2016, 54(10): 3039-3049. doi: 10.2514/1.J054702 [29] Zhang C, Lee C. Rayleigh-scattering visualization of the development of second-mode waves[J]. Journal of Visualization, 2017, 20(1): 7-12. doi: 10.1007/s12650-016-0384-4 [30] 易仕和, 田立丰, 赵玉新.基于NPLS技术的可压缩湍流机理实验研究新进展[J].力学进展, 2011, 41(4): 379-389. doi: 10.6052/1000-0992-2011-4-lxjzJ2010-028Yi S H, Tian L F, Zhao Y X. The new advance of the experimental research on compressible turbulence based on the NPLS technique[J]. Advances in Mechanics, 2011, 41(4): 379-389. doi: 10.6052/1000-0992-2011-4-lxjzJ2010-028 [31] 赵云飞, 刘伟, 冈敦殿.粗糙物面引起的超声速边界层转捩现象研究[J].宇航学报, 2015, 36(6): 739-746. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201506016.htmZhao Y F, Liu W, Gang D D, et al. Study of surface roughness induced supersonic boundary layer transition[J]. Journal of Astronautics, 2015, 36(6): 739-746. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201506016.htm [32] Berry S A, Kimmel R, Reshotko E. Recommendations for hypersonic boundary layer transition flight testing[R]. AIAA 2011-3415, 2011. [33] Schneider S P. Hypersonic laminar-turbulent transition on circular cones and scramjet forebodies[J]. Progress in Aerospace Sciences, 2004, 40, (1-2): 1-50. doi: 10.1016/j.paerosci.2003.11.001 [34] Schneider S P. Laminar-turbulent transition on reentry capsules and planetary probes[J]. Journal of Spacecraft and Rockets, 2006, 44(2): 1153-1173. https://www.researchgate.net/publication/241466137_Laminar-Turbulent_Transition_on_Reentry_Capsules_and_Planetary_Probes [35] Schneider S P. Effects of roughness on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2008, 45(2): 193-209. doi: 10.2514/1.29713 [36] Schneider S P. Summary of hypersonic boundary-layer transition experiments on blunt bodies with roughness[J]. Journal of Spacecraft and Rockets, 2008, 45(6): 1090-1105. doi: 10.2514/1.37431 [37] Mack L M. Boundary layer linear stability theory[R]. AGARD-709, 1984. [38] Stetson K F, Thompson E R, Donaldson J C, et al. Hypersonic layer boundary layer stability experiments on a cone at Mach 8, part 5: tests with a cooled model[R]. AIAA 89-1985, 1985. [39] Softley E J. Boundary layer transition on hypersonic blunt slender cones[R]. AIAA 69-705, 1969. [40] Pate S R. Effects of wind tunnel disturbances on boundary-layer transition with emphasis on radiated noise: a review[R]. AIAA 80-0431, 1980. [41] Dougherty N S, Fisher D F. Boundary-layer transition on a 10 degree cone: wind tunnel/flight data correlation[R]. AIAA 80-0154, 1980. [42] Stetson K F. Hypersonic laminar boundary layer transition, part I: nosetip bluntness effects on cone frustum transition; part Ⅱ: Mach 6 experiments of transition on a cone at angle of attack[R]. AFWAL-TR-86-3089, 1986. [43] Reshotko E. Transition issues at hypersonic speeds[R]. AIAA 2006-707, 2006. [44] Fedorov A, Tumin A. Evolution of disturbances in entropy layer on blunted plate in supersonic flows[J]. AIAA Journal, 2004, 42(1): 89-94. doi: 10.2514/1.9033 [45] Balakumar P, Chou A. Transition prediction in hypersonic boundary layers using receptivity and freestream spectra[R]. AIAA 2016-0847, 2016. [46] Stetson K F. Effect of bluntness and angle of attack on boundary layer transition on cones and biconic configurations[R]. AIAA 79-0269. 1979. [47] Lei J, Zhong X. Linear stability analysis of nose bluntness effects on hypersonic boundary layer transition[J]. Journal of Spacecraft and Rockets, 2012, 49(1): 24-37. doi: 10.2514/1.52616 [48] Fedorov A, Tumin A. Evolution of disturbances in entropy layer on blunted plate in supersonic flow[J]. AIAA Journal, 1971, 42(1): 89-94. https://arizona.pure.elsevier.com/en/publications/evolution-of-disturbances-in-entropy-layer-on-a-blunted-plate-in- [49] Chynoweth B C, Ward C A C, Henderson R O, et al. Transition and instability measurements in a Mach 6 hypersonic quiet wind tunnel[R]. AIAA 2014-0074, 2014. [50] Stetson K F, Thompson E R, Donaldson J C, et al. Hypersonic layer boundary layer stability experiments on a cone at Mach 8, part 2: blunt cone[R]. AIAA 84-0006, 1984. [51] Stetson K F, Thompson E R, Donaldson J C, et al. Hypersonic layer boundary layer stability experiments on a cone at Mach 8, part 3: sharp cone at angle of attack[R]. AIAA 85-0492, 1985. [52] Muir J F, Trujillo R A. Experimental Investigation of the effect of nose bluntness, free-stream unit Reynolds number, angle of attack on cone boundary layer transition at a Mach number of 6[R]. AIAA 72-216, 1972. [53] Horvath T J, Berry S A, Hollis B R, et al. Boundary layer transition on slender cones in conventional and low disturbance Mach 6 wind tunnels[R]. AIAA 2002-2743, 2002. [54] Liu J, Luo J. Effect of disturbances at inlet on hypersonic boundary layer transition on a blunt cone at small angle of attack[J]. Applied Mathematics & Mechanics(English Edition), 2010, 31(5): 535-544. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YYSL201005000.htm [55] Li X, Fu D, Ma Y. Direct Numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack[J]. Physics of Fluids, 2010, 22: 025105. doi: 10.1063/1.3313933 [56] 常雨, 陈苏宇, 张扣立.高超声速边界层转捩特性试验探究[J].宇航学报, 2015, 36(11): 1318-1323. doi: 10.3873/j.issn.1000-1328.2015.11.014Chang Y, Chen S Y, Zhang K L. Experimental investigation of hypersonic boundary layer transition[J]. Journal of Astronautics, 2015, 36(11): 1318-1323. doi: 10.3873/j.issn.1000-1328.2015.11.014 [57] Juliano T J, Borg M P, Schneider S P. Quiet tunnel measurements of HIFiRE-5 boundary-layer transition[J]. AIAA Journal, 2015, 53(4): 832-846. doi: 10.2514/1.J053189 [58] Li F, Choudhari M, Chang C L, et al. Stability analysis for HIFiRE experiments[R]. AIAA 2012-2961, 2012. [59] Kimmel R L. The effect of pressure gradients on transition zone length in hypersonic boundary layers[J]. Journal of Fluids Engineering, 1997, 119: 36-41 doi: 10.1115/1.2819115 [60] Sivasubramanian J, Fasel H F. Direct numerical simulation of laminar-turbulent transition in a flared cone boundary layer at Mach 6[R]. AIAA 2016-0846. [61] Stetson K F, Thompson E R, Donaldson J C, et al. Hypersonic layer boundary layer stability experiments on a cone at Mach 8, part 4: on unit Reynolds number and environmental effects[R]. AIAA 86-1087, 1986. [62] Tu G, Deng X, Mao M. Validation of a RANS transition model using a high-order weighted compact nonlinear scheme[J]. Science ChinaPhysics Mechanics and Astronomy, 2013, 56: 1-7. doi: 10.1007/s11433-012-4972-6 [63] Hollis B R, Hollingsworth K E. Laminar, transitional, and turbulent heating on Mid lift-to-drag ratio entry vehicles[R]. AIAA 2012-3063, 2012. [64] Franko K J, Bhaskaran R, Lele S K. Direct numerical simulation of transition and heat-transfer overshoot in a Mach 6 flat plate boundary layer[R]. AIAA 2011-3874, 2011. [65] Sivasubramanian J, Fasel H F. Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: fundamental breakdown[J]. Journal of Fluid Mechanics, 2015, 768: 175-218. doi: 10.1017/jfm.2014.678 [66] Qin F, Wu X. Response and receptivity of the hypersonic boundary layer past a wedge to free-stream acoustic, vortical and entropy disturbances[J]. Journal of Fluid Mechanics, 2016, 797: 874-915. doi: 10.1017/jfm.2016.287 [67] Tempelmann D, Schrader L U, Hanifi A, et al. Swept wing boundary-layer receptivity to localized suface roughness[J]. Journal of Fluid Mechanics, 2012, 711: 516-544. doi: 10.1017/jfm.2012.405 [68] Herbert T. Studies of boundary-layer receptivity with parabolized stability equations[R]. AIAA 93-0353, 1993. [69] 潘宏禄, 马汉东, 王强.高超声速钝楔边界层转捩大涡模拟[J].航空学报, 2007, 28(2): 269-774.. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200702002.htmPan H L, Ma H D, Wang Q. Large eddy simulation of transition in a hypersonic blunt-wedge boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 269-774. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200702002.htm [70] 赵晓慧, 邓小兵, 毛枚良, 等.高超声速进气道强制转捩流动的大涡模拟[J].航空学报, 2016, 37(8): 2445-2453. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608010.htmZhao X H, Deng X B, Mao M L, et al. Large eddy simulation for forced transition flow at hypersonic inlet[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2445-2453. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608010.htm [71] Theofilis V. Global linear instability[J]. Annual Review of Fluid Mechanics, 2011, 43: 319-352. doi: 10.1146/annurev-fluid-122109-160705 [72] Theofilis V. Advances in global linear instability of nonparallel and three-dimensional flows[J]. Progress in Aerospace Sciences, 2003, 39(4): 249-315. doi: 10.1016/S0376-0421(02)00030-1 [73] Gómez F, Clainche L, Paredes P, et al. Four decades of studying global linear instability: problems and challenges[J]. AIAA Journal, 2012, 50(12): 2371-2383. http://researchbank.rmit.edu.au/view/rmit:43455 [74] Rowley C W, Mezic' I, Bagheri S, et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics, 2009, 641: 115-127. doi: 10.1017/S0022112009992059 [75] Schmid P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656: 5-28. doi: 10.1017/S0022112010001217 [76] Schmid P J, Li L, Juniper M, et al. Applications of the dynamic mode decomposition[J]. Theoretical and Computational Fluid Dynamics, 2011, 25: 249-259. doi: 10.1007/s00162-010-0203-9 [77] Rowley C W, Colonius T, Murray R M. Model reduction for compressible flows using POD and Galerkin projection[J]. Physica D: Nonlinear Phenomena, 2004, 189(1-2): 115-129. doi: 10.1016/j.physd.2003.03.001 [78] Tu G H, Deng X B, Mao M L. Implementing high-order weighted compact nonlinear scheme on patched grids with a nonlinear interpolation[J]. Computers and Fluids, 2013, 77: 181-193. doi: 10.1016/j.compfluid.2013.02.015 [79] 涂国华, 邓小刚, 毛枚良.消除粘性项高阶离散数值振荡的半结点-结点交错方法[J].空气动力学学报, 2011, 29(1): 10-15. http://www.kqdlxxb.com/CN/abstract/abstract10468.shtmlTu G H, Deng X B, Mao M L. A staggered non-oscillatory finite difference method for high-order discretization of viscous terms[J]. Acta Aerodynamica Sinica, 2011, 29(1): 10-15. http://www.kqdlxxb.com/CN/abstract/abstract10468.shtml [80] Tu G H, Zhao X, Mao M L, et al. Evaluation of Euler fluxes by a high-order CFD scheme: shock instability[J]. International Journal of Computational Fluid Dynamics, 2014, 28(5): 171-186. doi: 10.1080/10618562.2014.911847 [81] Reed H, Saric W, Arnal D. Linear stability theory applied to boundary layers[J]. Annual Review of Fluid Mechanics, 1996, 28: 389-428. doi: 10.1146/annurev.fl.28.010196.002133 [82] Maslov A. Experimental study of stability and transition of hypersonic boundary layer around blunted cone[R]. Final Project Technical Report of ISTC 1863-2000, 2001. [83] Muller B, Bippes H. Experimental study of instability modes in a three-dimensional boundary layer[C]//Proceedings AGARD Symposium on Fluid Dynamics of 3D-turbulent shear flows and transition. AGARD CP-438. Cesme, Turkey, 1988. [84] 徐国亮, 符松.可压缩横流失稳及其控制[J].力学进展, 2012, 42(3): 1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201203005.htmXu G L, Fu S. The instability and control of compressible cross flows[J]. Advances in Mechanics, 2012, 42(3): 1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201203005.htm [85] Malik M R, Li F, Choudhari M M, et al. Secondary instability of crossflow vortices and swept-wing boundary layer transition[J]. Journal of Fluid Mechanics, 1999, 399: 85-115. doi: 10.1017/S0022112099006291 [86] Borg M P, Kimmel R, Stanfield S. Crossflow instability for HIFiRE-5 in a quiet hypersonc wind tunnel[R]. AIAA 2012-2821, 2012. [87] Borg M P, Kimmel R L. Simultaneous infrared and pressure measurements of crossflow instability modes for HIFiRE-5[R]. AIAA 2016-0356, 2016. [88] Ren J, Fu S. Secondary instabilities of Görtler vortices in high-speed boundary layer flows[J]. Journal of Fluid Mechanics, 2015, 781: 388-421. doi: 10.1017/jfm.2015.490 [89] Hall P, Horseman N J. The linear inviscid secondary instability of longitudinal vortex structures in boundary layers[J]. Journal of Fluid Mechanics, 1991, 232: 357-375. doi: 10.1017/S0022112091003725 [90] Yu X, Liu J T C. The secondary instability in Görtler flow[J]. Phys. Fluids, 1991, A3(8): 1845-1847. [91] Liu W, Domaradzki J A. Direct numerical simulation of transition to turbulence in Görtler flow[J]. Journal of Fluid Mechanics, 1993, 246: 267-299. doi: 10.1017/S0022112093000126 [92] Yu X, Liu J T C. On the mechanism of sinuous and varicose modes in three-dimensional viscous secondary instability of nonlinear Görtler rolls[J]. Phys. Fluids, 1994, 6(2): 736-750. doi: 10.1063/1.868312 [93] Whang C, Zhong X. Secondary Görtler instability in hypersonic boundary layers[C]//39th Aerospace Sciences Meeting & Exhibit. AIAA 2001-0273, 2001. [94] Li F, Choudhari M, Chang C L, et al. Development and breakdown of Görtler vortices in high speed boundary layers[C]//50th Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. AIAA 2010-0705, 2010. [95] Spall R E, Malik M R. Görtler vortices in supersonic and hypersonic boundary-layers[J]. Physics of Fluids A: Fluid Dynamics, 1989, 1(11): 1822-1835. doi: 10.1063/1.857508 [96] Ren J, Fu S. Study of the discrete spectrum in a Mach 4.5 Görtler flow[J]. Flow Turbulence Combust, 2015, 94: 339-357. doi: 10.1007/s10494-014-9575-z [97] Hanifi A, Schmid P J, Henningson D S. Transient growth in compressible boundary layer flow[J]. Physics of Fluids, 1996, 8(3): 826-837. doi: 10.1063/1.868864 [98] Bitter N P, Shepherd J E. Transient growth in hypersonic boundary layers[R]. AIAA 2014-2497. [99] Schmid P J. Nonmodal stability theory[J]. Annual Review of Fluid Mechanics, 2007, 39: 129-162. doi: 10.1146/annurev.fluid.38.050304.092139 [100] Tempelmann D, Hanifi A, Henningson D S. Spatial optimal growth in three-dimensional compressible boundary layers[J]. Journal of Fluid Mechanics, 2012, 704: 251-279. doi: 10.1017/jfm.2012.235 [101] Reshotko E. Transient growth: a factor in bypass transition[J]. Physics of Fluids, 2001, 13(5): 1066-1075. doi: 10.1063/1.1358308 [102] Su C H, Zhou H. Transition prediction of a hypersonic boundary layer over a cone at a small angle of attack-with the improvement of eN method[J]. Science in China(Series G: Physics, Mechanics & Astronomy), 2009, 52(1): 115-123. http://phys.scichina.com:8083/sciGe/EN/abstract/abstract411045.shtml [103] Su C, Zhou H. Transition prediction for supersonic and hypersonic boundary layers on a cone with an angle of attack[J]. Science in China(Series G: Physics, Mechanics & Astronomy), 2009, 352(8): 1223-1232. http://www.cnki.com.cn/Article/CJFDTotal-JGXG200908015.htm [104] Orlik E, Davidenko D. Boundary-layer transition on a hypersonic forebody: experiments and calculations[J]. Journal of Spacecraft and Rockets, 2011, 48(4): 545-555. doi: 10.2514/1.51570 [105] 张雯, 刘沛清, 郭昊, 等.湍流转捩工程预报方法研究进展综述[J].实验流体力学, 2014, 28(6): 1-12, 38 http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201406001.htmZhang W, Liu P Q, Guo H, et al. Review of transition prediction methods[J]. Journal of Experiments in Fluid Mechanics, 2016, 28(6): 1-12, 38. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201406001.htm [106] Menter F R, Langtry R B, Likki S R, et al. A correlation-based transition model using local variables—part I: model formulation[J]. Journal of Turbomachinery, 2006, 128: 413-422. doi: 10.1115/1.2184352 [107] Langtry R B, Menter F R, Volker S. Transition Modeling for general purpose CFD codes[J]. Flow Turbulence Combust, 2006, 77: 277-303. doi: 10.1007/s10494-006-9047-1 [108] Langtry R B, Menter F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamic codes[J]. AIAA Journal, 2009, 47(12): 2894-2906. doi: 10.2514/1.42362 [109] 张玉伦, 王光学, 孟德虹, 等. γ-Reθ转捩模型的标定研究[J].空气动力学学报, 2011, 29(3): 295-301.Zhang Y L, Wang G X, Meng D H, et al. Calibration of γ-Reθ transition model[J]. Acta Aerodynamica Sinica, 2011, 29(3): 295-301. [110] 牟斌, 江雄, 肖中云, 等. γ-Reθ转捩模型的标定与应用[J].空气动力学学报, 2012, 31(1): 103-109. http://www.kqdlxxb.com/CN/abstract/abstract11094.shtmlMou B, Jiang X, Xiao Z Y, et al. Implementation and caliberation of γ-Reθ transition model[J]. Acta Aerodynamica Sinica, 2012, 31(1): 103-109. http://www.kqdlxxb.com/CN/abstract/abstract11094.shtml [111] Medida S, Baeder J D. Application of the correlation-based γ-Reθt transition model to the Spalart-Allmaras turbulence model[R]. AIAA 2011-3979, 2011. [112] Krause M, Behr B, Ballmann J. Modeling of transition effects in hypersonic intake flows using a correlation-based intermittency model[R]. AIAA 2008-2598, 2008. [113] Cheng G, Nichols R, Neroorkar K D, et al. Validation and assessment of turbulence transition models[R]. AIAA 2009-1141, 2009. [114] Bensassi K, Lani A, Rambaud P. Numerical investigations of local correlation-based transition model in hypersonic flows[R]. AIAA 2012-3151, 2012. [115] 张晓东, 高正红.关于补充Langtry的转捩模型经验修正式的数值探讨[J].应用数学和力学, 2010, 31(5): 544-552. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201005006.htmZhang X D, Gao Z H. Numerical discuss to complete empirical correlation in Langtry's transition model[J]. Applied Mathematics and Mechanics, 2010, 31(5): 544-552. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201005006.htm [116] Yan P, Mao R, Qiang X. Application of PSE analysis method with transitional turbulence model on hypersonic flows[R]. AIAA 2011-3981, 2011. [117] 张毅锋, 雷净, 张益荣, 等.高超声速数值模拟平台转捩模型的标定[J].空气动力学学报, 2015, 33(1): 42-47. http://www.kqdlxxb.com/CN/abstract/abstract11621.shtmlZhang Y, Lei J, Zhang Y, et al. Calibration of transition model for hypersonic numerical simulation platform[J]. Acta Aerodynamica Sinica, 2015, 33(1): 42-47. http://www.kqdlxxb.com/CN/abstract/abstract11621.shtml [118] 张毅锋, 何琨, 张益荣, 等. Menter转捩模型在高超声速流动模拟中的改进及验证[J].宇航学报, 2016, 37(4): 397-402. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201604004.htmZhang Y F, He K, Zhang Y R, et al. Improvement and validation of Menter's transition model for hypersonic flow simulation[J]. Journal of Astronautics, 2016, 37(4): 397-402. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201604004.htm [119] 孔维萱, 张辉, 阎超.适用于高超声速边界层的转捩准则预测方法[J].导弹与航天运载技术, 2013, 328: 54-58. http://www.cnki.com.cn/Article/CJFDTOTAL-DDYH201305016.htmKong W X, Zhang H, Yan C. Transition criterion prediction method for hypersonic boundary layer[J]. Missiles and Space Vehicles, 2013, 328: 54-58. http://www.cnki.com.cn/Article/CJFDTOTAL-DDYH201305016.htm [120] Warren E S, Harris J E, Hassan H A. Transition model for high-speed flow[J]. AIAA Journal, 1995, 33(8): 1391-1397. doi: 10.2514/3.12687 [121] Mayle R E, Schulz A. The path to predicting bypass transition[J]. Journal of Turbomachinery, 1997, 119: 405-411. doi: 10.1115/1.2841138 [122] Walters D K, Cokljat D. A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow[J]. Journal of Fluids Engineering, 2008, 130(12): 121401. doi: 10.1115/1.2979230 [123] Song B, Lee C H. A Favré averaged transition prediction model for hypersonic flows[J]. Science China Technological Sciences, 2010, 53: 2049-2056. doi: 10.1007/s11431-010-3173-7 [124] Fu S, Wang L. RANS modeling of high-speed aerodynamic flow transition with consideration of stability theory[J]. Progress in Aerospace Sciences, 2013, 58(2): 36-59 https://www.researchgate.net/publication/257192180_RANS_modeling_of_high-speed_aerodynamic_flow_transition_with_consideration_of_stability_theory [125] Wang L, Fu S. Modelling flow transition in a hypersonic boundary layer with Reynolds-averaged Navier Stokes approach[J]. Science in China(Series G: Physics, Mechanics & Astronomy), 2009, 52(5): 768-774. http://phys.scichina.com:8083/Jwk_sciG_en/EN/abstract/abstract412690.shtml [126] Wang L, Liu Z, Fu S. Numerical aspects of including crossflow effects in the recently proposed transition models[R]. AIAA 2016-3492, 2014. [127] Wang L, Xiao L, Fu S. A modular RANS approach for modeling hypersonic flow transition on a scramjet-forebody configuration[J]. Aerospace Science and Technology, 2016, 56: 112-124. doi: 10.1016/j.ast.2016.07.004 [128] 史亚云, 白俊强, 华俊, 等.基于放大因子与Spalart-Allmaras湍流模型的转捩预测[J].航空动力学报, 2005, 30(7): 1670-1677. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201507021.htmShi Y Y, Bai J Q, Hua J, et al. Transition prediction based on amplification factor and Spalart-Allmaras turbulence model[J]. Journal of Aerospace Power, 2005, 30(7): 1670-1677. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201507021.htm [129] Langel C M, Chow R, van Dam C P. A comparison of transition prediction methodologies applied to high Reynolds number external flows[R]. AIAA 2016-0551, 2016. [130] Berry S, Daryabeigi K, Wurster K, et al. Boundary-layer transition on X-43A[J]. Journal of Spacecraft and Rockets, 2010, 47(6): 922-934. doi: 10.2514/1.45889 [131] 朱德华, 袁湘江, 沈清, 等.高超声速粗糙元诱导转捩的数值模拟及机理分析[J].力学学报, 2015, 47(3): 381-388. doi: 10.6052/0459-1879-14-217Zhu D H, Yuan X J, Shen Q, et al. Numerical simulation and mechanism analysis of hypersonic roughness induced transiton[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 381-388. doi: 10.6052/0459-1879-14-217 [132] Duan Z, Xiao Z, Fu S. Direct numerical simulation of hypersonic transition induced by isolated cylindrical roughness element[J]. Science China-Physics, Mechanics & Astronomy, 2014, 57(12): 2330-2345. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXG201412019.htm [133] Duan Z, Xiao Z. Direct numerical simulation of geometrical parameter effects on the hypersonic ramp-induced transition[R]. AIAA 2014-2495, 2014. [134] Tu G, Hu Z, Sandham N D. Enhanced instability of supersonic boundary layer using passive acoustic feedback[J]. Physics of Fluids, 2016, 28: 024103. doi: 10.1063/1.4940324 [135] 涂国华, 燕振国, 赵晓慧, 等. SA和SST湍流模型对高超声速边界层强制转捩的适应性[J].航空学报, 2015, 36(5): 1471-1479. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201505010.htmTu G H, Yan Z G, Zhao X H, et al. SA and SST turbulence models for hypersonic forced boundary layer transition[J]. Acta Aerodynautica et Astronautica Sinica, 2015, 36(5): 1471-1479. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201505010.htm [136] 战培国.超燃冲压发动机前体边界层转捩风洞试验方法[J].航空科学技术, 2012, 6: 22-25. doi: 10.3969/j.issn.1007-5453.2012.01.007Zhan P G. Wind tunnel test methods for boundary layer transition on scramjet engine forebody[J]. Aeronautical Science & Technology, 2012, 6: 22-25. doi: 10.3969/j.issn.1007-5453.2012.01.007 [137] 赵慧勇, 易淼荣.高超声速进气道强制转捩装置设计综述[J].空气动力学学, 2014, 32(5): 623-627. doi: 10.7638/kqdlxxb-2014.0095Zhao H Y, Yi M R. Review of design for forced-transition trip of hypersonic inlet[J]. Acta Aerodynamica Sinica, 2014, 32(5): 623-627. doi: 10.7638/kqdlxxb-2014.0095 [138] Thompson R A, Hamilton H H, Berry S A, et al. Hypersonic boundary layer transition for X-33 phase Ⅱ vehicle[R]. AIAA 98-0867, 1998. [139] Reda D C. Review and synthesis of roughness-dominated transition correlations for reentry applications[J]. Journal of Spacecraft and Rockets, 2002, 39(2): 161-167. doi: 10.2514/2.3803 [140] McGinley C B, Berry S A, Kinder G R, et al. Review of orbiter flight boundary layer transition data[R]. AIAA 2006-2921, 2006. [141] Schneider S P. Hypersonic boundary-layer transition with ablation and blowing[J]. Journal of Spacecraft and Rockets, 2010, 47(2): 225-237. doi: 10.2514/1.43926 [142] Sandham N D, Lüdeke H. Numerical study of Mach 6 boundary-layer stabilization by means of a porous surface[J]. AIAA Journal, 2009, 47(9): 2243-2252. doi: 10.2514/1.43388 [143] Tritarelli R C, Lele S K, Fedorov A. Stabilization of a hypersonic boundary layer using a felt-metal porous coating[J]. Journal of Fluid Mechanics, 2015, 769: 729-739. doi: 10.1017/jfm.2015.156 [144] 朱德华, 刘智勇, 袁湘江.多孔表面推迟高超声速边界层转捩的机理[J].计算物理, 2016, 33(2): 163-169. http://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201602005.htmZhu D H, Liu Z L, Yuan X J. Mechanism of transition delay by porous surface in hypersonic boundary layers[J]. Chinese Journal of Computational Physics, 2016, 33(2): 163-169. http://www.cnki.com.cn/Article/CJFDTOTAL-JSWL201602005.htm [145] Wang X, Zhong X. The stabilization of a hypersonic boundary layer using local sections of porous coating[J]. Physics of Fluids, 2012, 24: 034105. doi: 10.1063/1.3694808 [146] Ren J, Fu S, Hanifi A. Stabilization of the hypersonic boundary layer by finite-amplitude steaks[J]. Physics of Fluids, 2016, 28: 024110 doi: 10.1063/1.4941989 [147] Fong K D, Wang X, Zhong X. Numerical simulations of roughness effect on the stability of a hypersonic boundary layer[J]. Computers & Fluids, 2014, 96: 350-367. https://www.researchgate.net/publication/262191172_Numerical_simulation_of_roughness_effect_on_the_stability_of_a_hypersonic_boundary_layer [148] Fong K D, Zhong X. DNS and PSE study on the stabilization effect of hypersonic boundary layer waves using 2-D surface roughness[R]. AIAA 2016-3347, 2016. [149] Saric W, Reed H, White E. Stability and transition of three-dimensional boundary layers[J]. Annual Review of Fluid Mechanics, 2003, 35: 413-440. doi: 10.1146/annurev.fluid.35.101101.161045 [150] Schuele C Y. Control of stationary cross-flow modes in a Mach 3.5 boundary layer using patterned passive and active roughness[D]. Ph. D. thesis, University of Notre Dame, South Bend, Indiana, 2011. [151] Schuele C Y, Corke T C, Matlis E. Control of stationary cross-flow modes in a Mach 3.5 boundary layer using patterned passive and active roughness[J]. Journal of Fluid Mechanics, 2013, 718: 5-38. doi: 10.1017/jfm.2012.579 [152] Juliano T J, Adamczak D, Kimmel R. HIFiRE-5 flight test results[J]. Journal of Spacecraft and Rockets, 2015, 52(3): 650-663. doi: 10.2514/1.A33142 [153] Kimmel R L, Borg M P, Jewell J S. HIFiRE-5 boundary layer transition and HIFiRE-1 shock boundary layer interaction[R]. AFRL-RQ-WP-TR-2015-0151, 2015. [154] Shirouzu M, Yamamoto M. Overview of the HYFLEX project[R]. AIAA, 96-4524, 1996. [155] Barrio A M, Sudars M, Aulisio R, et al. EXPERT-the ESA experimental re-entry test-bed trajectory and mission design[R]. AIAA 2011-6342, 2011. [156] Clemente M D, Trifoni E, Walpot L, et al. Aerothermal rebuilding of plasma wind tunnel tests on the EXPERT capsule open flap[R]. AIAA 2012-3003, 2012. [157] Brazier J P, Schramm J M, Paris S, et al. An overview of HyFIE technical research project: cross testing in main european hypersonic wind tunnels on EXPERT body[J]. CEAS Space Journal, 2016, 8(3): 167-176. doi: 10.1007/s12567-016-0117-5 [158] Fedioun I, Orlik E. Boundary layer transition on the LEA hypersonic vehicle forebody[R]. AIAA 2012-5864, 2012. [159] Falempin F, Serre L. French flight testing program LEA-status in 2011[R]. AIAA 2011-2200, 2011. [160] Fedioun I, Orlik F. Boundary layer transition on the LEA hypersonic vehicle forebody[R]. AIAA 2012-5864, 2012. [161] Reshotko E. Boundary layer stability and transition[J]. Annual Review of Fluid Mechanics, 1976, 8: 311-349. doi: 10.1146/annurev.fl.08.010176.001523 [162] Reshotko E. Transition research using flight experiments[M]//Hussaini M Y, Voigt R G. Instability and Transition Vol.I. Springer-Verlag, 1990: 88-90. -