留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NS-SDBD等离子体流动控制研究现状与展望

孟宣市 宋科 龙玥霄 李华星

孟宣市, 宋科, 龙玥霄, 李华星. NS-SDBD等离子体流动控制研究现状与展望[J]. 空气动力学学报, 2018, 36(6): 901-916. doi: 10.7638/kqdlxxb-2018.0078
引用本文: 孟宣市, 宋科, 龙玥霄, 李华星. NS-SDBD等离子体流动控制研究现状与展望[J]. 空气动力学学报, 2018, 36(6): 901-916. doi: 10.7638/kqdlxxb-2018.0078
MENG Xuanshi, SONG Ke, LONG Yuexiao, LI Huaxing. Airflow control by NS-SDBD plasma actuators[J]. ACTA AERODYNAMICA SINICA, 2018, 36(6): 901-916. doi: 10.7638/kqdlxxb-2018.0078
Citation: MENG Xuanshi, SONG Ke, LONG Yuexiao, LI Huaxing. Airflow control by NS-SDBD plasma actuators[J]. ACTA AERODYNAMICA SINICA, 2018, 36(6): 901-916. doi: 10.7638/kqdlxxb-2018.0078

NS-SDBD等离子体流动控制研究现状与展望

doi: 10.7638/kqdlxxb-2018.0078
基金项目: 

国家自然科学基金 11672245

国家自然科学基金 11772263

国家级重点实验室基金 9140C420301110C42

飞行器复杂流动与控制引智基地项目 B17037

西北工业大学基础研究基金 0100/G9KY1004

详细信息
    作者简介:

    孟宣市(1976-), 男, 陕西兴平人, 博士, 教授, 研究方向:分离涡的稳定性研究, 等离子体流动控制, 结冰及其控制.E-mail:mxsbear@nwpu.edu.cn

  • 中图分类号: V211.7

Airflow control by NS-SDBD plasma actuators

  • 摘要: 纳秒脉冲表面介质阻挡放电等离子体在高速、高雷诺数下的流动控制领域具有非常大的潜力。文章对纳秒脉冲等离子体流动控制发展的起源、现状和趋势进行了综述。分别从实验研究和数值模拟两方面进行,主要以气动激励机理探索、现象研究以及流动控制机理为主线进行相关文献的总结归纳。目前,纳秒脉冲等离子体研究的关键科学问题集中在电场激励-气动诱导过程的机理探索与流动控制应用机理研究两方面,研究的难点在于涉及多时间尺度、多物理场耦合。注重解决多时间尺度、多物理场耦合问题的数值模拟算法、实验技术将成为解决上述科学问题的关键突破点。关键科学问题的解决有利于为激励器及控制系统的设计提供优化准则。
  • 图  1  SDBD等离子体激励器示意图与等离子体辉光[13]

    Figure  1.  Schematic illustration of SDBD plasma actuator and photograph of plasma glow[13]

    图  2  激励器辉光放电图[48]

    Figure  2.  Plasma sheet propagating in inter-electrode gap[48]

    图  3  激励器诱导压力波图[48]

    Figure  3.  Side views of pressure wave[48]

    图  4  单脉冲激励[49]

    Figure  4.  Plasma discharge for one pulse[49]

    图  5  压缩波传播曲线[49]

    Figure  5.  Velocity of induced pressure wave[49]

    图  6  重复脉冲激励下的诱导速度纹影图[49]

    Figure  6.  Schlieren image of quiescent air perturbation caused by repetitive nanosecond pulse for different time delay[49]

    图  7  梳状激励器及其放电[51]

    Figure  7.  Comb-shape DBD actuator layout and plasma formation[51]

    图  8  脉冲激励下诱导速度场随时间的变化特性[53]

    Figure  8.  Induced flow velocity after discharge at different times: PIV results, V=40 kV, F=100 Hz[53]

    图  9  带预扰动的3D模型计算下,放电沿表面的发展[54]

    Figure  9.  Discharge development along the surface for 3D model with initial perturbation[54]

    图  10  数值模拟中具有代表性的温度剖面数据[55]

    Figure  10.  Representative computational temperature profiles considered in qualitative calibration of actuator model[55]

    图  11  数值模拟密度梯度场与纹影实验结果对比[59]

    Figure  11.  Comparison between numerical simulations of density gradient field and schlieren experiments[59]

    图  12  压缩波的数值模拟与计算结果对比[60]

    Figure  12.  Comparison between experimental and computational researches[60]

    图  13  不同气压下能量转换率随时间的变化曲线[63]

    Figure  13.  Fraction of discharge energy ηR versus time for different gas pressures[63]

    图  14  不同选定时间内的气体特性[69]

    Figure  14.  Profiles of properties of bulk gas for selected times in simulation[69]

    图  15  不同气体加热条件下最高温度随时间变化曲线[73]

    Figure  15.  Maximal gas temperature as a function of time for different gas heating conditions[73]

    图  16  不同脉冲下纹影的能量分布图[80]

    Figure  16.  Schlieren images for three energy cases: 10, 20, and 50 pulsed for frames respectively[80]

    图  17  NS-SDBD等离子体激励器能量预期示意图[82]

    Figure  17.  Sketch of energy budget for a NS-SDBD plasma actuator[82]

    图  18  开启激励器后的旋涡运动结构,U=5 m/s[84]

    Figure  18.  Propagation of vortexes after discharge, U=5 m/s[84]

    图  19  基准翼型与等离子控制翼型时均压力分布与涡量场的比较(Re=0.75×106α=10°)[87]

    Figure  19.  Time-averaged pressure distributions and vorticity contours for baseline and plasma-on airfoils[87]

    图  20  分离位置随减缩频率的变化曲线[88]

    Figure  20.  Position of flow separation versus burst-modulation frequency[88]

    图  21  等离子体激励下升力系数变化[93]

    Figure  21.  Variation of lift coefficient due to plasma actuation[93]

    图  22  不同迎角下激励对升力系数的作用(U=45 m/s,Vp-p=14 kV)[95]

    Figure  22.  Lift coefficient with plasma actuation at different frequencies(U=45 m/s, Vp-p=14 kV)[95]

    图  23  NS-SDBD等离子体激励下压力与当地侧力随占空比变化(α=50°, U= 65 m/s)[98]

    Figure  23.  Ensemble time-averaged Cyd vs. x/L, α=50°, U= 65 m/s[98]

    图  24  NS-SDBD激励下周向压力分布及侧向力沿轴向的变化(α=45°, U= 72 m/s)[99]

    Figure  24.  Local side force vs. x/L for plasma off, port on, and starboard on at α=45° and U=72m/s [99]

    图  25  t=0 μs和t=6 μs下弓形激波纹影图[102]

    Figure  25.  Phase-locked schlieren images at t=0 μs and t=6 μs[102]

    图  26  斜劈上的等离子体激励器设计[103]

    Figure  26.  Schematics of two NS-DBD surface plasma actuator configurations used with a 12° oblique shock generator model[103]

    图  27  两种新电极配置(两种情况下的流动方向都是从左到右的)[104]

    Figure  27.  Two types of new electrode configurations (flow direction is from left to right in both cases)[104]

    表  1  NS-SDBD气动激励数值模拟研究归纳

    Table  1.   NS-SDBD numerical simulations

    方法 数学方程 研究对象 可模拟的流动时间尺度
    宏观唯象模型 代数模型[54-59]或非耦合的简化电场与电荷方程[60] NS-SDBD瞬时热激励下的全流场气动响应 和主流相当
    多物理场耦合 化学反应流动方程+电场方程[61-71] 带电粒子演化过程,带电粒子与中性气体的能量传递规律,单脉冲激励下的气动现象 小于10-6s
    简化电流体模型 电场方程+简化迁移扩散方程+流体方程[72-76] 带电粒子与中性气体的能量传递规律,单脉冲激励以及全流场的气动响应 大于10-6s
    下载: 导出CSV
  • [1] Corke T C, Cavalieri D A. Controlled experiments on instabilities and transition to turbulence in supersonic boundarylayers[C]//28th Fluid Dynamics Conference, 1997.
    [2] 吴云, 李应红.等离子体流动控制研究进展与展望[J].航空学报, 2015, 36(2):381-405. http://d.old.wanfangdata.com.cn/Periodical/hkxb201502001
    [3] 李应红, 梁华, 吴云, 等.等离子体气动激励建模仿真综述[J].空军工程大学学报:自然科学版, 2008, 9(5):1-5. http://d.old.wanfangdata.com.cn/Periodical/kjgcdxxb200805001
    [4] Wang J J, Kwing-So Choi, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62(4):52-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7fd21cd8e689ac4578e4342c3886e2c4
    [5] Wu Y, Li Y, Liang H, et al. Nanosecond pulsed discharge plasma actuation: characteristics and flow control performance[R]. AIAA 2014-2118, 2014.
    [6] 吴云, 李应红.等离子体流动控制与点火助燃研究进展[J].高电压技术, 2014, 40(7):2024-2038. http://d.old.wanfangdata.com.cn/Periodical/gdyjs201407015
    [7] 罗振兵, 夏智勋, 邓雄, 等.合成双射流及其流动控制技术研究进展[J].空气动力学学报, 2017, 35(2):252-264. doi: 10.7638/kqdlxxb-2017.0053
    [8] 史志伟, 杜海, 李铮等.等离子体流动控制技术原理及典型应用[J].高压电器, 2017, (4):72-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017050900071846
    [9] 聂万胜, 程钰锋, 车学科.介质阻挡放电等离子体流动控制研究进展[J].力学进展, 2012, 42(6):722-734. http://d.old.wanfangdata.com.cn/Periodical/kjdb200804015
    [10] 聂超群, 李钢, 朱俊强, 等.介质阻挡放电等离子体流动控制的研究[J].中国科学:E辑, 2008, 38(11):1827-1835 http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201202001
    [11] 杨欢, 刘汝兵, 王萌萌, 等.等离子体射流及其发生器研究进展[J].机电技术, 2013, 36(90):149-154. http://d.old.wanfangdata.com.cn/Periodical/jdjs201305054
    [12] 杨波, 白敏菂, 薛晓红, 等.等离子体流动控制研究进展[J].科技导报, 2009, 27(0924):81-85. http://d.old.wanfangdata.com.cn/Periodical/hkxb201502001
    [13] Corke T C, Enloe C L, Wilkinson S P. Dielectric barrier discharge plasma actuators for flow control[J]. Annual Review of Fluid Mechanics, 2010, 42(1):505-529. doi: 10.1146/annurev-fluid-121108-145550
    [14] Benard N, Moreau E. Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control[J]. Experiments in Fluids, 2014, 55(11):1846. doi: 10.1007/s00348-014-1846-x
    [15] Moreau E. Airflow control by non-thermal plasma Actuators[J]. Journal of Physics D:Applied Physics, 2007, 40(3):605-636. doi: 10.1088/0022-3727/40/3/S01
    [16] Starikovskiy A, Aleksandrov N. Plasma-assisted ignition and combustion[J]. Progress in Energy and Combustion Science, 2013, 39(1):61-110. doi: 10.1016/j.pecs.2012.05.003
    [17] 赵光银, 梁华, 李应红, 等.表面介质阻挡纳秒脉冲放电及其外流控制研究进展[J].力学研究, 2016, 5(2):75-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HANS201703024993
    [18] Cattafesta III L N, Sheplak M. Actuators for active flow control[J]. Annual Review of Fluid Mechanics, 2011, 43:247-272. doi: 10.1146/annurev-fluid-122109-160634
    [19] 邵涛, 章程, 王瑞雪, 等.大气压脉冲气体放电与等离子体应用[J].高电压技术, 2016, 42(3):685-705. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GDYJ201603002&dbname=CJFD&dbcode=CJFQ
    [20] 卢新培, 严萍, 任春生, 等.大气压脉冲放电等离子体的研究现状与展望[J].中国科学:物理学力学天文学, 2011, 41(7):801-815. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201101497982
    [21] 李清泉, 郝玲艳.沿面介质阻挡放电等离子体及其应用[J].高电压技术, 2016, 42(4):1079-1090. http://www.cqvip.com/QK/90990X/201604/668672701.html
    [22] Gad-El-Hak M. Flow Control[M]. Cambridge:Cambridge University Press, 2000.
    [23] Morozov A I. Introduction to plasma dynamics[M]. CRC Press, 2012.
    [24] Liu C, Roth J R. Atmospheric glow discharge plasma for aerodynamic boundary layercontrol[C]//IEEE International Conference on Plasma Science, 1994: 97-98.
    [25] Roth J R, Sherman D M, et al. Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma[R]. AIAA 98-0328.
    [26] Roth J R. Electrohydrodynamically induced airflow in aone atmosphere uniform glow discharge surface plasma[C]//IEEE International on Plasma Science, Anniversary, 1998: 291.
    [27] Huang J, Corke T C, Thomas F O. Plasma actuators for separation control of low pressure turbine blades[R]. AIAA-2003-1072.
    [28] Post M L, Corke T C. Separation control using plasma actuators:dynamic stall vortex control on oscillating airfoil[J]. AIAA Journal, 2006, 44(12):3125-3135. doi: 10.2514/1.22716
    [29] Roth J R, Dai X. Optimization of the aerodynamic plasma actuator as an electrohydrodynamic (EHD) electrical device[R]. AIAA 2006-1203.
    [30] 毛枚良, 邓小刚, 向大平, 等.辉光放电等离子体对边界层流动控制的机理研究[J].空气动力学学报, 2006, 24(3):269-274. doi: 10.3969/j.issn.0258-1825.2006.03.001
    [31] 王江南, 钟诚文, 高超, 等.基于等离子体激励器简化模型的流动分离控制[J].航空计算技术, 2007, 37(2):30-34. doi: 10.3969/j.issn.1671-654X.2007.02.009
    [32] 吴云, 李应红, 朱俊强, 等.等离子体气动激励扩大低速轴流式压气机稳定性的实验[J].航空动力学报, 2007, (12):2025-2030. doi: 10.3969/j.issn.1000-8055.2007.12.009
    [33] Xun Huang, Sammie Chan, Xin Zhang. Atmospheric plasma actuators for aeroacoustic applications[J]. IEEE Transactions on Plasma Science, 2007, 35(3):693-695. doi: 10.1109/TPS.2007.896781
    [34] Liu F, Luo S, Gao C, et al. Flow control over a conical forebody using duty-cycled plasma actuators[J]. AIAA J, 2008, 46(11):2969-2973. doi: 10.2514/1.39435
    [35] 孟宣市, 郭志鑫, 刘锋, 等.细长圆锥前体非对称涡流场的等离子体控制[J].航空学报, 2010, 31(3):500-505. http://d.old.wanfangdata.com.cn/Periodical/hkxb201003010
    [36] Zhang P F, Wang J J, Feng L H, et al. Experimental study of plasma flow control on highly swept delta wing[J]. AIAA J, 2010, 48(1):249-252. doi: 10.2514/1.40274
    [37] 王万波, 章荣平, 黄宗波, 等.等离子体激励用于两段翼型增升的试验研究[J].空气动力学学报, 2013, 31(1):64-68. http://www.kqdlxxb.com/CN/abstract/abstract11087.shtml
    [38] 杜海, 史志伟, 倪芳原, 等.基于等离子体激励的飞翼布局飞行器气动力矩控制[J].航空学报, 2013, (9):2038-2046. http://d.old.wanfangdata.com.cn/Periodical/hkxb201309004
    [39] 冯立好, 王晋军, Choi, 等.等离子体环量控制翼型增升的实验研究[J].力学学报, 2013, 45(6):815-821. http://d.old.wanfangdata.com.cn/Conference/8567295
    [40] 张鑫, 黄勇, 王勋年, 等.超临界机翼介质阻挡放电等离子体流动控制[J].航空学报, 2016, 37(6):1733-1742. http://d.old.wanfangdata.com.cn/Periodical/hkxb201606003
    [41] Cai J S, Tian Y Q, Meng X S, et al. An experimental study of icing control using DBD plasma actuator[J]. Experiments in Fluids, 2017, 58(8):102. doi: 10.1007/s00348-017-2378-y
    [42] Meng X S, Hu H Y, Yan X, et al. Lift improvements using duty-cycled plasma actuation at low Reynolds numbers[J]. Aerospace Science and Technology, 2018, 72:123-133. doi: 10.1016/j.ast.2017.10.038
    [43] Meng X S, Long Y X, Wang J L, et al. Dynamics and control of the vortex flow behind a slender conical forebody by a pair of plasma actuators[J]. Physics of Fluids, 2018, 30(2):024101. doi: 10.1063/1.5005514
    [44] Enloe C L, McLaughlin T E, et al. Mechanisms and responses of a single dielectric barrier plasma actuator:plasma morphology[J]. AIAA Journal, 2004, 42(3):595-604. doi: 10.2514/1.3884
    [45] Forte M, Jolibois J, et al. Optimization of a dielectric barrier discharge actuator by stationary and instationary measurements of the induced flow velocity, application to airflow control[R]. AIAA 2006-2863.
    [46] Christopher L K, Patrick O B, et al. Leading-edge separation control using alternating current and nanosecond pulse plasma actuators[J]. AIAA Journal, 2014, 52(9):1871-1884. doi: 10.2514/1.J052708
    [47] Roupassov D, Nikipelov A, et al. Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge[J]. AIAA Journal, 2009, 47(1):168-185. doi: 10.2514/1.38113
    [48] Bayoda K D, Benard N, et al. Elongating the area of plasma/fluid interaction of surface nanosecond pulsed discharges[J]. Journal of Electrostatics, 2015, 74:79-84. doi: 10.1016/j.elstat.2014.12.004
    [49] Hu H Y, Li H X, et al. Phase-locked schlieren of periodic nanosecond-pulsed DBD actuation in quiescent air[R]. AIAA 2016-1696.
    [50] Hu H Y, Li H X, Meng X S, et al. Starting flow by repetitive nanosecond pulsed DBD actuation at microseconds and milliseconds in quiescent air[R]. AIAA 2015-2956.
    [51] Cui Y D, Zhao Z J, Bouremel Y, et al. Studies on the configurations of nanosecond DBD pulse plasma actuators[J]. Studies, 2014, 8:11. http://discovery.ucl.ac.uk/1527249/
    [52] 李结, 李华星, 王健磊, 等.纳秒脉冲等离子体对静止大气的激励特性[J].西北工业大学学报, 2014, 32(2):176-180. doi: 10.3969/j.issn.1000-2758.2014.02.004
    [53] Zhao Z, Li J M, Zheng J, et al. Study of shock and induced flow dynamics by nanosecond dielectric-barrier-discharge plasma actuators[J]. AIAA Journal, 2014, 53(5):1336-1348. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ca1a5d4afe3e6cb143b6cd4e4624aa2
    [54] Starikovskii A Y, Nikipelov A A, et al. SDBD plasma actuator with nanosecond pulse-periodic discharge[J]. Plasma sources Science and Technology, 2009, 18(3):034015. doi: 10.1088/0963-0252/18/3/034015
    [55] Gaitonde D V, McCrink M H. A semi-empirical model of a nanosecond pulsed plasma actuator for flow control simulations with LES[R]. AIAA 2012-184.
    [56] Chen Z L, Hao L Z, Zhang B Q, et al. An empirical model of nanosecond pulsed SDBD actuators for separation control[R]. AIAA 2013-2743.
    [57] Chen Z L, Hao L Z, Zhang B Q. A model for nanosecond pulsed dielectric barrier discharge (NSDBD) actuator and its investigation on the mechanisms of separation control over an airfoil[J]. Sci. China Tech. Sci., 2013, 56(5):1055-1065. doi: 10.1007/s11431-013-5179-4
    [58] Chen Z, Zhang S, Zhang B, et al. Shock-induced separation control by using nanosecond pulsed SDBD plasma actuators[R]. AIAA 2014-2368.
    [59] 赵光银, 李应红, 梁华, 等.纳秒脉冲表面介质阻挡等离子体激励唯象学仿真[J].物理学报, 2015, 64(1):174-184. http://d.old.wanfangdata.com.cn/Periodical/wlxb201501022
    [60] 李凡玉, 李军, 吴云, 等.纳秒脉冲等离子体气动激励数值仿真[J].航空动力学报, 2015, 30(3):537-545. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201503003
    [61] Nudnova M, Kindusheva S, Aleksahdrov N, et al. Rate of plasma thermalization of pulsed nanosecond surface dielectric barrier discharge[R]. AIAA 2010-465.
    [62] Flitti A, Pancheshnyi S. Gas heating in fast pulsed discharges in N2-O2 mixtures[J]. The European Physical Journal Applied Physics, 2009, 45:21001. doi: 10.1051/epjap/2009011
    [63] Mintoussov E I, Pendleton S J, et al. Fast gas heating in a nitrogen-oxygen discharge plasma:Ⅱ. Energy exchange in the afterglow of a volume nanosecond discharge at moderate pressures[J]. Journal of Physics D:Applied Physics, 2011, 44(28):285202. doi: 10.1088/0022-3727/44/28/285202
    [64] Popov N A. Fast gas heating in a nitrogen-oxygen discharge plasma:I. Kinetic mechanism[J]. Journal of Physics D:Applied Physics, 2011, 44(28):285201. doi: 10.1088/0022-3727/44/28/285201
    [65] Popov N A. Fast gas heating initiated by pulsed nanosecond discharge in atmospheric pressure air[R]. AIAA 2013-1052.
    [66] 徐双艳, 李江, 蔡晋生, 等.二维对称结构纳秒脉冲介质阻挡放电数值模拟[J].高电压技术, 2015, 41(6):2100-2107. http://d.old.wanfangdata.com.cn/Periodical/gdyjs201506045
    [67] Xu S Y, Cai J S, Li J. Modeling and simulation of plasma gas flow driven by a single nanosecond-pulsed dielectric barrier discharge[J]. Physics of plasma, 2016, 23(10):1-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8867bab25cdaed6158b2b87e7d44b68b
    [68] Xu S Y, Cai J S, et al. Investigation of the electrode surfacegeometry effects driven by nanosecondpulsed surface dielectric barrier discharge[J]. Journal of Physics D:Applied Physics, 2017, 50(8):185201. http://adsabs.harvard.edu/abs/2017JPhD...50r5201X
    [69] Poggie J, Adamovich I, et al. Numerical simulation of nanosecond-pulse electrical discharges[J]. Plasma Sources Science and Technology, 2013, 22(1):015001. doi: 10.2514/6.2012-1025
    [70] Zhu Y F, Wu Y, et al. Modelling of plasma aerodynamic actuation driven by nanosecond SDBD discharge[J]. J. Phys. D:Appl. Phys, 2013, 46:355205. doi: 10.1088/0022-3727/46/35/355205
    [71] Kourtzanidis K, Raja L L. Three-electrode sliding nanosecond dielectric barrier discharge actuator:modeling and physics[J]. AIAA Journal, 2017, 55(4):1393-1404. doi: 10.2514/1.J055473
    [72] Likhanskii A V, Shneider M N, et al. Optimization of dielectric barrier discharge plasma actuators driven by repetitive nanosecond pulses[R]. AIAA 2007-633, 2007.
    [73] Unfer T, Boeuf J P. Modelling of a nanosecond surface discharge actuator[J]. Journal of Physics D:Applied Physics, 2009, 42(42):194017. http://adsabs.harvard.edu/abs/2009JPhD...42s4017U
    [74] Che X K, Shao T, et al. Numerical simulation on a nanosecond-pulse surface dielectric barrier discharge actuator in near space[J]. Journal of Physics D:Applied Physics, 2012, 45(45):145201. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3dc559315b8e5368d97bff79bce3b25d
    [75] Zheng J G, Zhao Z J, et al. Numerical simulation of nanosecond pulsed dielectric barrier discharge actuator in a quiescent flow[J]. Physics of fluids, 2014, 26(3):505-529. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=def8267dd4b665bedfbcf663faf74cc7
    [76] Zheng J G, Li J, et al. Numerical study of nanosecond pulsed plasma actuator in laminar flat plate boundary layer[J]. Communications in Computation Physics, 2016, 20(5):1424-1442. doi: 10.4208/cicp.090615.140316a
    [77] Qian Y H, d'Humières D, Lallemand P. Lattice BGK models for Navier-Stokes equation[J]. EPL (Europhysics Letters), 1992, 17(6):479. doi: 10.1209/0295-5075/17/6/001
    [78] Liu C, Xu K. A unified gas kinetic scheme for continuum and rarefied flows Ⅴ:multiscale and multi-component plasma transport[J]. Communications in Computational Physics, 2017, 22(5):1175-1223. doi: 10.4208/cicp.OA-2017-0102
    [79] Lehmann R, Akins D, et al. Effects of nanosecond pulse driven plasma actuators on turbulent shear layers[J]. AIAA Journal, 2016, 54(2):1-15. doi: 10.2514/1.J054078
    [80] Correale G, Michelis T, et al. Nanosecond-pulsed plasma actuation in quiescent air and laminar boundary layer[J]. Journal of Physics D:Applied Physics, 2014, 47(10):105201. doi: 10.1088/0022-3727/47/10/105201
    [81] Correale G, Winkel R, et al. Induced velocity and density gradients due to nanosecond plasma actuation[J]. AIAA Journal, 2016, 54(12):3895-3901. doi: 10.2514/1.J054834
    [82] Correale G, Avallone F, et al. Experimental method to quantify the efficiency of the frst two operational stages of nanosecond dielectric barrier discharge plasma actuators[J]. Journal of Physics D:Applied Physics, 2016, 49(50):505201. doi: 10.1088/0022-3727/49/50/505201
    [83] Roupassov D V, Nikipelov A A, et al. Flow separation control by plasma actuator with nanosecond pulsed-periodic discharge[J]. AIAA Journal, 2009, 47(1):168-185. doi: 10.2514/1.38113
    [84] 杜海, 史志伟, 程克明, 等.纳秒脉冲等离子体分离流控制频率优化及涡运动过程分析[J].航空学报, 2015, 37(7):2102-2111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201607005
    [85] Kato K, Breitsamter C, et al. Flow separation control over a Gö 387 airfoil by nanosecond pulse-periodic discharge[J]. Experiment in Fluid, 2014, 55(8):1-19. doi: 10.1007/s00348-014-1795-4
    [86] Clifford C, Singhal C, et al. Flow control over an airfoil in fully reversed condition using plasma actuators[J]. AIAA Journal, 2016, 54(1):141-149. doi: 10.2514/1.J054157
    [87] Little J, Takashima K, et al. Separation control with nanosecond-pulse-driven dielectric barrier discharge plasma actuators[J]. AIAA Journal, 2012, 50(2):350-365. doi: 10.2514/1.J051114
    [88] Moreau E, Debien A, et al. Nanosecond-pulsed dielectric barrier discharge plasma actuator for airflow control along an NACA0015 airfoil at high reynolds number[J]. IEEE Transactions on Plasma Science, 2016, 44(11):2803-2811. doi: 10.1109/TPS.2016.2603226
    [89] Zhao Z J, Cui Y D, et al. On the separated flow using nanosecond DBD plasma actuators at low reynolds number[R]. AIAA 2017-0712.
    [90] Cui Y D, Zhao Z J, et al. Flow separation control over an NACA0015 airfoil using nanosecond pulsed plasma actuator[R]. AIAA 2017-0715.
    [91] Zheng J G, Cui Y D, et at. Investigation of airfoil leading edge separation control with nanosecond plasma actuator[J]. Physical Review Fluids, 2016, 1:073501. doi: 10.1103/PhysRevFluids.1.073501
    [92] Roupassov D V, Zavyalov I N, et al. Boundary layer separation control by nanosecond plasma actuators[R]. AIAA 2008-5067.
    [93] Kato K, Breitsamter C, Obi S. Flow control over swept wings using nanosecond-pulse plasma actuator[J]. International Journal of Heat & Fluid Flow, 2016, 61:58-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ac2501139d7b5b1e70be43f0a85aba0e
    [94] 化为卓, 李应红, 牛中国, 等.低速三角翼纳秒脉冲等离子体激励实验[J].航空动力学报, 2014, 29(10):2331-2339. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201410008
    [95] 赵光银, 梁华, 李应红, 等.纳秒脉冲等离子体激励控制小后掠三角翼[J].航空学报, 2015, 36(7):2125-2132. http://d.old.wanfangdata.com.cn/Periodical/hkxb201507004
    [96] Du H, Shi Z W, et al. Topological structures of vortex flow on a flying wing aircraft, controlled by a nanosecond pulse discharge plasma actuator[J]. Applied Physics Letters, 2016, 108(24):246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0a470457e3af4f1f38446555a580ce6b
    [97] Yao J K, Zhou D J, et al. Experimental investigation of lift enhancement for flying wing aircraft using nanosecond DBD plasma actuators[J]. Plasma Science and Technology, 2017, 19(4):7-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9331523
    [98] Zhang D, Meng X S, Wang J L, et al. Pressures over a conical forebody under repetitive nanosecond pulse SDBD actuations[R]. AIAA 2015-2955. https://www.researchgate.net/publication/299645286_Pressures_over_a_Conical_Forebody_under_Repetitive_Nanosecond_Pulse_SDBD_Actuations
    [99] Wang J L, Li H X, Meng X S, et al. Nanosecond-SDBD actuation over a conical forebody at wind speed 72 m/s and angle of attack 45 degree[R]. AIAA 2015-3310. https://www.researchgate.net/publication/299644448_Nanosecond-SDBD_Actuation_over_a_Conical_Forebody_at_Wind_Speed_72_ms_and_Angle_of_Attack_45_degree
    [100] 倪芳原, 史志伟, 杜海.纳秒脉冲等离子体激励器用于圆柱高速流动控制的数值模拟[J].航空学报, 2014, 35(3):657-665. http://d.old.wanfangdata.com.cn/Periodical/hkxb201403006
    [101] 王宇天, 张百灵, 李益文, 等.等离子体激励控制激波与边界层干扰流动分离数值研究[J].航空动力学报, 2018, 33(2):364-371. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201802014
    [102] Nishihara M, Takashima K, et al. Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge[J]. Physics of Fluid, 2011, 23(6):605-622. doi: 10.1063/1.3599697
    [103] Munetake Nishihara, Datta Gaitonde, Igor V Adamovich. Effect of nanosecond pulse discharges on oblique shock and shock wave-boundary layer interaction[R]. AIAA 2013-0461.
    [104] Kinefuchi K, Starikovskiy A Y, Miles R B. Control of shock-wave/boundary-layer interaction using nanosecond-pulsed plasma actuators[J]. Journal of Propulsion and Power, 2018, 34(4):909-919. doi: 10.2514/1.B36530
  • 加载中
图(27) / 表(1)
计量
  • 文章访问数:  648
  • HTML全文浏览量:  171
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-08
  • 修回日期:  2018-04-21
  • 刊出日期:  2018-12-25

目录

    /

    返回文章
    返回