留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向精准工程湍流模型的理论研究

佘振苏 唐帆 肖梦娟

佘振苏, 唐帆, 肖梦娟. 面向精准工程湍流模型的理论研究[J]. 空气动力学学报, 2019, 37(1): 1-18. doi: 10.7638/kqdlxxb-2018.0249
引用本文: 佘振苏, 唐帆, 肖梦娟. 面向精准工程湍流模型的理论研究[J]. 空气动力学学报, 2019, 37(1): 1-18. doi: 10.7638/kqdlxxb-2018.0249
SHE Zhensu, TANG Fan, XIAO Mengjuan. Structural ensemble dynamics theory for engineering turbulenc models[J]. ACTA AERODYNAMICA SINICA, 2019, 37(1): 1-18. doi: 10.7638/kqdlxxb-2018.0249
Citation: SHE Zhensu, TANG Fan, XIAO Mengjuan. Structural ensemble dynamics theory for engineering turbulenc models[J]. ACTA AERODYNAMICA SINICA, 2019, 37(1): 1-18. doi: 10.7638/kqdlxxb-2018.0249

面向精准工程湍流模型的理论研究

doi: 10.7638/kqdlxxb-2018.0249
基金项目: 

国家自然科学基金项目 11452002

国家自然科学基金创新研究群体项目 11521091

详细信息
    作者简介:

    佘振苏*(1962-), 讲座教授, 研究方向:湍流, 复杂系统.E-mail:she@pku.edu.cn

  • 中图分类号: V211.3

Structural ensemble dynamics theory for engineering turbulenc models

  • 摘要: 长期以来,工程湍流模型建立在量纲分析和经验修正的基础上,绝对预测能力不足而且模型参数的意义不明确。关于湍流边界层的理论研究一直平行地在两条路线上前行,或是经验性地构造有关平均速度或动能的分布,或是利用数值模拟等技术对于湍流脉动结构进行精细刻画。二者之间的分割导致对湍流边界层物理图像的不完整,从而限制了对一系列相似性关系的揭示。新近发展的结构系综理论,立足于探索由于固壁对于流场的雷诺应力各个分量所表现的拉伸对称性约束,完成了一个对于平均速度和动能剖面的统一描述,从而形成了一个构建工程湍流模型的新思路:一方面,理论指导如何开展湍流DNS(Direct Numerical Simulation)和LES(Large Eddy Simulation)的大数据分析,提炼对定量描述复杂流动有物理意义的多层结构参数;另一方面,指导开发物理图像清晰、定量描述精确的新型湍流(代数)模型。结构系综理论揭示了壁湍流所共有的普适多层结构,完整地刻画了边界层湍流的雷诺数、马赫数相似性,有望推动理论空气动力学研究进入一个定量化、精确化的新阶段。
  • 图  1  SED-k-ω平均速度剖面预测结果与实验数据的比较,红色的点是普林斯顿超级圆管实验数据,黑色的线是模型计算结果[7]

    Figure  1.  Comparison of the mean velocity profiles predicted by SED-k-ω model with experimental measurements. The red open symbols are from Princeton supper pipe experiment. The black lines are from the SED-k-ω model [7]

    图  2  SED-k-ω动能剖面预测结果与实验数据的比较,红色的点是普林斯顿超级圆管实验数据,黑色的线是模型计算结果[27]

    Figure  2.  Comparison of the kinetic energy profiles predicted by SED-k-ω model with experimental measurements. The black open symbols are from Princeton supper pipe experiment. The red lines are from the SED-k-ω model[27]

    图  3  SED-SL模型(红色线)对平板转捩流动摩阻系数的预测与实验(实心符号)和直接计算模拟(空心符号)[34, 41-42]的比较

    Figure  3.  Comparison of the streamwise development of skin friction coefficient for transitional flat plate flows between the SED-SL prediction (red lines) with experimental (filled symbols) and direct numerical simulation (open symbols) data

    图  4  SED-SL模型(红线)对充分发展的湍流边界层平均速度剖面的预测与实验数据(黑色点)的比较。结果显示,模型对实验数据在雷诺数全范围内实现了精确刻画[43]

    Figure  4.  Comparison of the mean velocity profiles for fully developed turbulent boundary layers at available Reynolds number between SED-SL's prediction (red lines) and experimental and numerical measurements (black filled symbols). Highly accurate descriptions cover the entire available range of the Reynolds number[43]

    图  5  SED-SL模型(红线)对Ma=2.25可压缩平板流动的预测与直接数值模拟的比较。(a)流向不同位置处的平均速度剖面;(b)平均温度剖面。黑色点为实验结果,红色线为模型计算结果[29]

    Figure  5.  Comparison of the mean velocity profiles (a) and mean temperature profiles (b) of compressible flat plate flow at Ma=2.25 between SED-SL's prediction (red lines and direct numerical simulation [29] (open symbols)

    图  6  RAE2822翼型不同迎角下的升阻力系数计算结果对比,黑点线是实验数据,红色是SED-SL计算结果,蓝色是SA模型计算结果,绿色是BL模型计算结果

    Figure  6.  Comparison of lift coefficients (CL) and drag coefficients (CD) for RA2822 airfoil flow under different attack angles. Black filled symbols are experimental measurements[44]; red open symbols are from SED-SL model, green from BL model, and blue from SA mode

    图  7  NACA0012翼型不同迎角下的升阻力系数计算结果对比。图例同图 6

    Figure  7.  Comparison of lift coefficients (CL) and drag coefficients (CD) for NACA0012 airfoil flow under different attack angles. Legend is as same as Fig. 6

    图  8  SED-SL模型对NACA4412分离区流动(Ma=0.09, AOA=13.87°)的计算结果与实验和其它模型的比较[46]

    Figure  8.  Comparison of NACA 4412 airfoil trailing edge separation under Ma=0.09, AOA=13.87°[46]

    图  9  SED-SL模型对NACA0012大迎角非定常分离流动d的刻画(Ma=0.3, AOA=15.18°)[47]

    Figure  9.  Comparison of NACA 0012 airfoil separation flow for Ma=0.3, AOA=15.18°[47]

    图  10  (a) M6机翼表面压力系数分布;(b) SED-SL和SA模型计算的M6机翼在展向位置z=0.95的表面压力系数分布与实验[48]的比较

    Figure  10.  (a) Sketch of M6 wing; (b) Comparison of surface pressure coefficient at z=0.95 between experiments[48] and models (including SED-SL model and SA model)

    图  11  SED-SL模型(实线)对冷壁可压缩边界(Ma=4.5, Twall/T_inf=2.5)的预测结果与直接数值模拟结果(点)的比较[29]

    Figure  11.  Comparison between the SED-SL's prediction (red lines), BA model (blue lines) and SA model (brown lines) with direct numerical simulation (symbols) of compressible flat plate flow under cold wall boundary condition[29] (Ma=4.5, Twall/T_inf=2.5)

    图  12  SED-SL模型(实线)对冷壁可压缩边界层不同雷诺数下壁面热流的预测结果符号为实验数据[50]; 红线为SED-SL模型的预测结果

    Figure  12.  Prediction of Stanton number for compressible transitional flat plate flow under cold wall boundary condition The black symbols are experimental measurements[50]; the red lines are from SED-SL model

    图  13  SED-SL模型(实线)对超声速尖锥流动壁面热流的预测结果。符号为实验数据[50]; 红线为SED-SL模型的计算结果

    Figure  13.  Prediction of wall heat flux for transitional supersonic straight cone flow. The black symbols are experimental measurements[50]; the red lines are from SED-SL model

    表  1  超声速平板实验算例的参数设置

    Table  1.   Parameter setting for case of supersonic plate experiment

    Case 1 2 3 4
    Ma 6.3 6.2 6.1 5.5
    Re/m 1.7×106 2.6×106 4.9×106 1.6×106
    T_inf 570 690 800 1560
    下载: 导出CSV

    表  2  尖锥流动的参数设置

    Table  2.   Perameter setting for case of flow over straight cone

    Case Re T0/K T/K Twall/K
    A 2.03×107 519.26 63.32 306.36
    B 1.77×107 519.26 63.32 306.36
    C 1.41×107 505.37 61.63 298.16
    D 1.05×107 505.37 61.63 298.16
    E 9.19×106 505.37 61.63 298.16
    F 9.19×106 449.82 54.86 265.39
    G 7.22×106 505.37 61.63 298.16
    H 3.61×106 491.48 59.94 289.97
    下载: 导出CSV
  • [1] 周恒, 张涵信.空气动力学的新问题[J].中国科学:物理学力学天文学, 2015, 45:1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201512002.htm

    ZHOU H, ZHANG H X. New problems of aerodynamics[J]. Sci Sin-Phys Mech Astron, 2015, 45:1-5. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201512002.htm
    [2] 周恒, 张涵信.号称经典物理留下的世纪难题"湍流问题"的实质是什么?[J].中国科学:物理学力学天文学, 2012, 42:1-5. http://www.cnki.com.cn/Article/CJFDTotal-JGXK201201002.htm

    ZHOU H, ZHANG H X. What is the essence of the so-called century lasting difficult problem in classic physics, the "problem of turbulence"?[J]. Sci Sin-Phys Mech Astron, 2012, 42:1-5. (in Chinses http://www.cnki.com.cn/Article/CJFDTotal-JGXK201201002.htm
    [3] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J].力学进展, 2011, 41:562-589. doi: 10.6052/1000-0992-2011-5-lxjzJ2010-082

    YAN C, YU J, XU J L, et al. On the achievements and prospects for the methods of computational fluid dynamics[J]. Adv Mech, 2011, 41:562-589. (in Chinese) doi: 10.6052/1000-0992-2011-5-lxjzJ2010-082
    [4] 王振国, 孙明波.超声速湍流流动、燃烧的建模与大涡模拟[J].北京:科学出版社, 2013:3-4. http://www.bookask.com/book/569902.html

    WANG Z G, SUN M B. Model for combustion and LES in supersonic turbulence flow[M]. Beijing:Science Press, 2013:3-4. (in Chinese) http://www.bookask.com/book/569902.html
    [5] 高正红, 王超.飞行器气动外形设计方法研究与进展[J].空气动力学学报, 2017, 35(4):516-528. doi: 10.7638/kqdlxxb-2017.0058

    GAO Z H, WANG G C. Aerodynamic shape design methods for air craft:status and trends[J]. Acta Aerodynamica Sinica, 2017, 35(4):516-528. doi: 10.7638/kqdlxxb-2017.0058
    [6] WILCOX D C. Turbulence modeling for CFD[M]. DCW Industries, 2006: 124-127.
    [7] 佘振苏, 陈曦, 未波波, 等.应用结构系综理论发展壁湍流工程湍流模型[J].中国科学:物理学力学天文学, 2015, 45:26-34. http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201512004.htm

    SHE Z S, CHEN X, WEI B B, et al. SED-based studies of turbulence models for wall flows[J]. Sci Sin-Phys Mech Astron, 2015, 45:26-34. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201512004.htm
    [8] SPALARTP R, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[J]. La Recherche Aérospatiale, 1992, 439(1):5-21. https://www.researchgate.net/publication/236888804_A_One-Equation_Turbulence_Model_for_Aerodynamic_Flows
    [9] 佘振苏.复杂系统学新框架[M].北京:科学出版社, 2012:97-99.

    SHE Z S. New theory for complex system[M]. Beijing:Science Press, 2012:97-99. (in Chinese)
    [10] 佘振苏.什么是湍流世纪难题?[M].教育部, 科学技术部, 中国科学院, 国家自然科学基金委员会. 10000个科学难题: 物理学卷.北京: 科学出版社, 2009.

    SHE Z S. What is the century-old difficult turbulence problem?[M]. Ministry of Education, Ministry of Science and Technology, CSA, National Natural Science Foundation of China. 10000 Problem of Science: Phys. Beijing: Science Press, 2009: 163-174.
    [11] PRANDTL L. Berichtüber die entstehung der turbulenz[J]. Z Angew Math Mech, 1925, 5:136-139.
    [12] MARUSIC I, MCKEON B J, MONKEWITZ P A, et al. Wall-bounded turbulent flows at high Reynolds numbers:Recent advances and key issus[J]. Physics of Fluids, 2010, 22:24-30.
    [13] BODENSCHATZ E Prandtl, GOETTINGEN School. A voyage through turbulence[M]. Cambridge:Cambridge University Press, 2011:40-100.
    [14] von Kármń T H. Mechanische ahnlichkeit und turbulenz[J]. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen Fachgruppe Ⅰ(Mathematik), 1930, 5:58-76. doi: 10.1023/B%3ABOUN.0000007230.96303.0d
    [15] 邓小刚, 刘昕, 毛枚良, 等.高精度加权紧致非线性格式的研究发展[J].力学进展, 2007, 37:417-427. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200703010.htm

    DENG X G, LIU X, MAO M L, et al. Advances in high-order accurate weighted compact nonlinear schemes[J]. Adv Mech, 2007, 37:417-427. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200703010.htm
    [16] 王光学, 邓小刚, 刘化勇, 等.高阶精度格式WCNS在三角翼大迎角模拟中的应用研究[J].空气动力学学报, 2012, 30(1):28-33. doi: 10.3969/j.issn.0258-1825.2012.01.005

    WANG G X, DENG X G, LIU H Y, et al. Study of DSMC of algorithm and model for hypersonic multiphase rarefied flow[J]. Acta Aerodynamica Sinica, 2012, 30(1):28-33. (in Chinese) doi: 10.3969/j.issn.0258-1825.2012.01.005
    [17] SHE Z S, CHEN X, HUSSAIN F. Quantifying wall turbulence via a symmetry approach:A Lie group theory[J]. Journal of Fluid Mechanics, 2017, 827:322-356. doi: 10.1017/jfm.2017.464
    [18] CHEN X, SHE Z S, HUSSAIN F. Quantifying wall turbulence via a symmetry approach:Part Ⅱ. Reynolds stresses[J]. Journal of Fluid Mechanics, accepted.
    [19] SHE Z S, HU N, WU Y. SED based closure model for wall bounded turbulent flow[J]. Acta Mech Sin, 2009, 25:731-736. doi: 10.1007/s10409-009-0282-2
    [20] SHE Z S, CHEN X, WU Y, et al. New perspective in statistical modeling of wall-bounded turbulence[J]. Acta Mech Sin, 2010, 26:847-861. doi: 10.1007/s10409-010-0391-y
    [21] SHE Z S, CHEN X, HUSSAIN F. A Lie-group derivation of a multi-layer mixing length formula for turbulent channel and pipe flow[A]. In "Turbulence colloquium Marseille 2011", p. 436-455, Ed. Farge, Moffatt, Schneider, ISBN 978-2-7598-1145-8.
    [22] 陈曦.壁湍流的结构系综理论[D].北京大学博士学位论文, 2012: 92-99.

    CHEN X. The structural ensemble dynamics theory of wall turbulence[D]. PHD dissertation of Peking university, 2012: 92-99. (in Chinese)
    [23] CHEN X, SHE Z S. Analytic prediction for planar turbulent boundary layers[J]. Science China-Physics Mechanics Astronomy, 2016, 59(11):57-63. http://cn.bing.com/academic/profile?id=9e02c90a3e4bb5575f92caeaba20280e&encoded=0&v=paper_preview&mkt=zh-cn
    [24] WU Y, CHEN X, SHE Z S, et al. On the Karman constant in turbulent channel flow[J]. Physica Scripta T, 2013, 155:014009-1-4. http://cn.bing.com/academic/profile?id=c7963f802d7f0700f0b6a426fabf76b5&encoded=0&v=paper_preview&mkt=zh-cn
    [25] CHEN X, HUSSAIN F, SHE Z S. Bulk flow scaling for turbulent channel and pipe flows[J]. Euro Phys Lett, 2016, 115:34001-1-5. doi: 10.1209/0295-5075/115/34001
    [26] CHEN X, WEI B, HUSSAIN F, et al. Anomalous dissipation and kinetic energy distribution in very high Reynolds number pipes[J]. Phys Rev E, 2016, 93:011102-1-5. doi: 10.1103/PhysRevE.93.011102
    [27] CHEN X, HUSSAIN F, SHE Z S. Predictions of canonical wall bounded turbulent flows via a modified k-ω equation[J]. Journal of Turbulence, 2017, 18(1):1-35. doi: 10.1080/14685248.2016.1243244
    [28] SHE Z S, WU Y, CHEN X, et al. A multi-state description of roughness effects in turbulent pipe flow[J]. New Journal of Physics, 2012, 14:093054-1-16. doi: 10.1088/1367-2630/14/9/093054
    [29] WU B, BI W T, HUSSAIN F, et al. On the invariant mean velocity profile for compressible turbulent boundary layers[J]. Journal of Turbulence, accepted. http://cn.bing.com/academic/profile?id=0d9ba7d9ff24c56a96ee4e7bb1a09959&encoded=0&v=paper_preview&mkt=zh-cn
    [30] SHE Z S, CHEN X, ZOU H Y, et al. Prediction of temperature distribution in turbulent Rayleigh-Benard convection[J]. arXiv:1401. 2138, 2014 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000000956960
    [31] XIAO M J, SHE Z S. A new algebraic transition model based on stress length function[C]//The 69th Annual Meeting of American Physical Society-Division of Fluid Dynamics. H29. 00002. Portland, Oregon, U. S. A. 20-22, Nov. 2016.
    [32] HASSANM Nagib, KAPIL A Chauhan. Variations of von Karman coefficient in canonical flows[J]. Physics of Fluids, 2008, 20:101518. doi: 10.1063/1.3006423
    [33] RUMSEY C L, RIVERS S M, MORRISON J H. Study of CFD variation on transport configurations from the second drag-prediction workshop[R]. AIAA 2004: 0394.
    [34] DURBIN P A. Some recent developments in turbulence closure modeling[J]. Annual Review of Fluid Mechanics, 2018, 50:77-103. doi: 10.1146/annurev-fluid-122316-045020
    [35] EMMONS H W. The laminar-turbulent transition in a boundary layer-Part Ⅰ[J]. Journal of the Aeronautical Sciences, 1951, 18(7):490-498. doi: 10.2514/8.2010
    [36] MENTER F R, LANGTRY R, VÖLKER S. Transition modelling for general purpose CFD codes[J]. Flow, Turbulence and Combustion, 2006, 77(1):277-303. http://cn.bing.com/academic/profile?id=15ad96b947dc0abc942bef7c8a322134&encoded=0&v=paper_preview&mkt=zh-cn
    [37] 符松, 王亮.基于雷诺平均方法的高超声速边界层转捩模拟[J].中国科学:物理学力学天文学, 2009, 39:617-626. http://cdmd.cnki.com.cn/Article/CDMD-10335-1018229119.htm

    FU S, WANG L. Simulation of transition in hypersonics boundary layers based on RANS method[J]. Sci Sin-Phys Mech Astron, 2009, 39:617-626. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10335-1018229119.htm
    [38] ANDERSON J D. Hypersonic and high temperature gas dynamics[M]. McGraw-Hill Book Company, 1989: 219-228.
    [39] 陈坚强, 涂国华, 张毅锋, 等.高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报, 2017, 35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030

    CEN J Q, TU G H, ZHANG Y F, et al. Hypersonic boundary layer transition:what we know, where shall we go[J]. Acta Aerodynamics Sinica, 2017, 35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030
    [40] SCHNEIDER S P. Flight data for boundary layer transition at hypersonic and supersonic speeds[J]. Journal of Spacecraft Rockets, 1999, 36(1):8-20. doi: 10.2514/2.3428
    [41] SCHUBAUER G B, KLEBANOFF P S. Contributions on the mechanics of boundarylayer transition[J]. Technical Report Archive and Image Library, 1955, 39:411-415.
    [42] SAVILL A M. Further progress in the turbulence modelling of by-pass transition[C]//Engineering Turbulence Modelling & Experiments, 1993: 583-592
    [43] BRANDT L, SCHLATTER P, HENNINGSON D S. Transition in boundary layers subject to free-stream turbulence[J]. Journal of Fluid Mechanics, 2004, 517:167-198. doi: 10.1017/S0022112004000941
    [44] VALLIKIVI M, HULTMARK M, SMITS A J. Turbulent boundary layer statistics at very high Reynolds number[J]. Journal of Fluid Mechanics, 2015, 779:371-389. doi: 10.1017/jfm.2015.273
    [45] SHE Z S, ZOU H Y, XIAO M J, et al. Fazle Hussain, Prediction of compressible turbulent boundary layer via a symmetry-based length model[J]. Journal of Fluid Mechanics, accepted. http://cn.bing.com/academic/profile?id=4068c3f30bec9e1f75fc0ad88a0067d9&encoded=0&v=paper_preview&mkt=zh-cn
    [46] COOK P H, MCDONALD M A, FIRMIN M C P. Aerofoil RAE 2822-pressure distributions, and boundary layer and wake measurements[R]. Experimental Data Base for Computer Program Assessment, AGARD Report AR 138, 1979: A6-1-77.
    [47] THIBERT J J, GRANDJACQUES M. NACA 0012 AIRFOIL-ONERA[R]. Experimental Data Base for Computer Program Assessment, AGARD Report AR 138, 1979: A6-1-36.
    [48] https://turbmodels.larc.nasa.gov/naca4412sep_val.html
    [49] ZHANG Y S, BI W T, HUSSAIN F, et al. A generalized Reynolds analogy for compressible wall-bounded turbulentflows[J]. Journal of Fluid Mechanics, 2014, 739:392-420. doi: 10.1017/jfm.2013.620
    [50] MEE D J. Boundary-layer transition measurements in hypervelocity flows in a shock tunnel[J]. AIAA Journal, 2002, 40(8):1542-1548. doi: 10.2514/2.1851
    [51] 许春晓.壁湍流相干结构和减阻控制机理[J].力学进展, 2015, 45:111-140. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HYC201605130000011371

    XU C X. Coherent structures and drag-reduction mechanism in wall turbulence[J]. Adv Mech, 2015, 45:111-140. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HYC201605130000011371
    [52] CHOI H, MOIN P, KIM J. Direct numerical simulation of turbulent flow over riblets[J]. Journal of Fluid Mechanics, 1993, 255:503-539. doi: 10.1017/S0022112093002575
    [53] EL-SAMNI O A, CHUN H H, YOON H S. Drag reduction of turbulent flow over thin rectangular riblets[J]. International Journal of Engineering Science, 2007, 45(2-8):436-454. doi: 10.1016/j.ijengsci.2007.03.002
    [54] 叶友达.高空高速飞行器气动特性研究[J].力学进展, 2009, 39:387-397. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000429968

    YE Y D. Studies onaerodynamic characteristics of high velocity vehicle flying at high altitude[J]. Adv. Mech., 2009, 39:387-397. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000429968
    [55] 张涵信.关于CFD高精度保真的数值模拟研究[J].空气动力学学报, 2016, 34(1):1-4. http://www.kqdlxxb.com/CN/abstract/abstract11764.shtml

    ZHANG H X. Investigations on fidelity of high order accurate numerical simulation for computational fluid dynamics[J]. Acta Aerodynamica Sinica, 2016, 34(1):1-4. (in Chinese) http://www.kqdlxxb.com/CN/abstract/abstract11764.shtml
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  37
  • PDF下载量:  370
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-17
  • 修回日期:  2018-11-05
  • 刊出日期:  2019-02-25

目录

    /

    返回文章
    返回