留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

先进战斗机过失速机动模型飞行试验技术

何开锋 刘刚 毛仲君 汪清 贾涛 章胜

何开锋, 刘刚, 毛仲君, 汪清, 贾涛, 章胜. 先进战斗机过失速机动模型飞行试验技术[J]. 空气动力学学报, 2020, 38(1): 9-20. doi: 10.7638/kqdlxxb-2019.0088
引用本文: 何开锋, 刘刚, 毛仲君, 汪清, 贾涛, 章胜. 先进战斗机过失速机动模型飞行试验技术[J]. 空气动力学学报, 2020, 38(1): 9-20. doi: 10.7638/kqdlxxb-2019.0088
HE Kaifeng, LIU Gang, MAO Zhongjun, WANG Qing, JIA Tao, ZHANG Sheng. Model flight test technology for post-stall maneuver of advanced fighter[J]. ACTA AERODYNAMICA SINICA, 2020, 38(1): 9-20. doi: 10.7638/kqdlxxb-2019.0088
Citation: HE Kaifeng, LIU Gang, MAO Zhongjun, WANG Qing, JIA Tao, ZHANG Sheng. Model flight test technology for post-stall maneuver of advanced fighter[J]. ACTA AERODYNAMICA SINICA, 2020, 38(1): 9-20. doi: 10.7638/kqdlxxb-2019.0088

先进战斗机过失速机动模型飞行试验技术

doi: 10.7638/kqdlxxb-2019.0088
详细信息
    作者简介:

    何开锋(1963-), 男, 四川成都人, 研究员, 研究方向:飞行力学与模型飞行试验.E-mail:hekf@vip.sina.com

  • 中图分类号: V249

Model flight test technology for post-stall maneuver of advanced fighter

  • 摘要: 具有过失速机动能力的战斗机在近距空战中能够取得快速占位、先敌瞄准、有效规避攻击的战术优势,是先进战斗机的标志性性能要求。模型飞行试验技术作为空气动力学研究三大手段之一,在解决飞行器技术难题、实现技术创新方面发挥了重要作用。本文介绍了中国空气动力研究与发展中心利用带动力自主控制模型飞行试验平台发展的过失速机动模型飞行试验技术,以及开展的先进战斗机构型典型过失速机动模型飞行试验,分述了在大迎角非定常气动建模、宽量程气流系参数测量、大迎角非线性控制、推力矢量控制、大迎角非定常气动参数辨识方面的研究工作与解决这些关键问题的技术途径。通过此项研究,在国内首次实现了先进战斗机构型缩比模型典型过失速机动飞行,相关研究成果可为先进战斗机实现过失速机动飞行能力提供有力的技术支撑。
  • 图  1  “眼镜蛇”机动和“Herbst”机动示意图

    Figure  1.  Illustrations of Cobra maneuver and Herbst maneuver

    图  2  带动力模型飞行试验系统构成

    Figure  2.  Constitution of powered flight test model system

    图  3  “里程碑”机动示意图

    Figure  3.  Illustration of the fundamental post-stall maneuvers

    图  4  眼镜蛇机动俯仰力矩系数建模结果与试验结果对比图

    Figure  4.  The modeling and experiment results of the pitch moment coefficient for the Cobra maneuver

    图  5  带飞试验风标和五孔探针布置图

    Figure  5.  Sketch of the wind vane and five-hole probe for the model flight test

    图  6  大迎角下迎角测量值

    Figure  6.  Measurement of angle of attack (AoA) in high AoA flight

    图  7  眼镜蛇机动仿真迎角结果

    Figure  7.  AoA in Cobra maneuver simulation

    图  8  眼镜蛇机动仿真俯仰角速率结果

    Figure  8.  Pitch rate in Cobra maneuver simulation

    图  9  Herbst机动仿真迎角结果

    Figure  9.  AoA in Herbst maneuver simulation

    图  10  Herbst机动仿真三维航迹结果

    Figure  10.  The three-dimentional trajectories of Herbst maneuver simulation

    图  11  推力矢量装置结构示意图

    Figure  11.  Structural sketch of the thrust vectoring instrument

    图  12  推力矢量力矩测试结果

    Figure  12.  Test results for the thrust vectoring moment

    图  13  大迎角非定常气动力参数辨识流程

    Figure  13.  Diagram of high AoA unsteady aerodynamic parameter identification

    图  14  大迎角非线性非定常气动力参数辨识结果

    Figure  14.  The identified results for the high AoA nonlinear and unsteady aerodynamic parameters

    图  15  眼镜蛇机动模型飞行试验迎角结果

    Figure  15.  AoA in Cobra maneuver modeling flight test

    图  16  眼镜蛇机动模型飞行试验俯仰角速率结果

    Figure  16.  Pitch rate in Cobra maneuver modeling flight test

    图  17  大迎角飞行模型飞行试验迎角结果

    Figure  17.  AoA in high AoA flight maneuver modeling flight test

    图  18  大迎角飞行模型飞行试验俯仰角速率结果

    Figure  18.  Pitch rate in high AoA flight maneuver modeling flight test

    图  19  绕速度矢滚转模型飞行试验迎角结果

    Figure  19.  AoA in post-stall rotation maneuver modeling flight test

    图  20  绕速度矢滚转模型飞行试验滚转角结果

    Figure  20.  Roll angle in post-stall rotation maneuver modeling flight test

    图  21  Herbst机动模型飞行试验迎角结果

    Figure  21.  AoA in Herbst maneuver modeling flight test

    图  22  Herbst机动模型飞行试验三维航迹结果

    Figure  22.  The three-dimensional trajectory in Herbst maneuver modeling flight test

  • [1] HERBST W B. Future fighter technologies[J]. Journal of Aircraft, 1980, 17(8): 561-566. doi: 10.2514/3.44674
    [2] HERBST W B. Dynamics of aircraft combat[J]. Aircraft, 1983, 20(7): 594-598. doi: 10.2514/3.44916
    [3] 郭锁凤, 申功璋, 吴成富, 等.先进飞行控制系统[M].北京:国防工业出版社, 2003: 246-290.

    GUO S F, SHEN G Z, WU C F, et al. Advanced flight control system[M]. Beijing: National Defense Industry Press, 2003: 246-290. (in Chinese)
    [4] 朱纪洪, 张尚敏, 周池军, 等.飞机超机动状态动力学特征及对控制系统的挑战[J].控制理论与应用, 2014, 31(12): 1650-1662. doi: 10.7641/CTA.2014.41168

    ZHU J H, ZHANG S M, ZHOU C J, et al. Dynamic characteristics and challenges for control system of super-maneuverable aircraft[J]. Control Theory & Applications, 2014, 31(12): 1650-1662. (in Chinese) doi: 10.7641/CTA.2014.41168
    [5] 史忠科.高性能飞机发展对控制理论的挑战[J].航空学报, 2015, 36(8): 2717-2734. http://d.old.wanfangdata.com.cn/Periodical/hkxb201508019

    SHI Z K. Challenge of control theory in the presence of high performance aircraft development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2717-2734. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201508019
    [6] 张守言.模型自由飞试验[M].北京:国防工业出版社, 2002.

    ZHANG S Y. Model free flight test[M]. Beijing: National Defense Industry Press, 2002. (in Chinese)
    [7] OWENS D B, BRANDON J M, CROOM M A, et al. Overview of dynamic test techniques for flight dynamics research at NASA LaRC[C]//25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2006.
    [8] DAVID F F. Fifty years of flight research: an annotated bibliography of technical publications of NASA Dryden flight[R]. NASA/TP-1999-206568, California: NASA Dryden Flight Research Center 1946-1996, 1999.
    [9] 何开锋, 刘刚, 张利辉, 等.航空器带动力自主控制模型飞行试验技术研究进展[J].实验流体力学, 2016, 30(2): 1-7. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201602001

    HE K F, LIU G, ZHANG L H, et al. Research progress on model flight test of powered aircraft with autonomous control system[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 1-7. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201602001
    [10] 何开锋, 毛仲君, 汪清, 等.缩比模型演示验证飞行试验及关键技术[J].空气动力学学报, 2017, 35(5): 671-679. doi: 10.7638/kqdlxxb-2017.0089

    HE K F, MAO Z J, WANG Q, et al. Demonstration and validation flight test of scaled aircraft model and its key technologies[J]. Acta Aerodynamica Sinica, 2017, 35(5): 671-679. (in Chinese) doi: 10.7638/kqdlxxb-2017.0089
    [11] CHAMBERS R J. Use of dynamically scaled models for studies of high angle-of-attack behavior of airplanes[C]//International Symposium on Scale Modeling, Tokyo, 1988.
    [12] WOLOWICZ C H, BOWMAN J S, GILBERT W P. Similitude requirements and scaling relationships as applied to model testing[R]. NASA TP-1435, 1979.
    [13] CHAMBERS R J. Modeling flight: the role of dynamically scaled free-flight models in support of NASA's aerospace programs[R]. NASA SP 2009-575.
    [14] LAYTON G, ARRISON P. A new experimental flight research technique: the remotely piloted airplane[R]. AGARD-CP-187, 1976.
    [15] LAURENCE A W. Flight testing the X-36 the test pilot's perspective[R]. Missouri: Boeing AS&T Phantom Works St. Louis, 1997.
    [16] CROFT J W. Refuse to crash-NASA tackles loss of control[J]. Aerospace America, 2003, 41(3): 42-45.
    [17] JORDAN T L, LANGFORD W M, BELCASTOR C M, et al. Development of a dynamically scaled generic transport model test-bed for flight research experiment[R]. AUVSI Unmanned Unlimited, Virginia: AUVSI, 2004.
    [18] JORDAN T L, FOSTER J V, BAILEY R M, et al. AirSTAR: a UAV platform for flight dynamics and control system testing[C]//25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2006.
    [19] OWENS D B, DAVID E C, EUGENE A M. Development of a low-cost sub-scale aircraft for flight research[R]. The FASER Project 23681, Virginia: NASA Langley Research Center, 2007.
    [20] BRIAN R T. X-48B preliminary flight test results[R]. NASA technology Report, DFRC-1060, 2009.
    [21] 曲东才.现代战机的非常规机动—过失速机动技术分析[J].航空科学技术, 2005, 5: 40-42. http://d.old.wanfangdata.com.cn/Periodical/hkkxjs200505012

    QU D C. Analysis of deep-stall maneuverability technology of the modern battleplane[J]. Aeronautical Science and Technology, 2005, 5: 40-42. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkkxjs200505012
    [22] 张文宇, 童明波.过失速机动的现状和发展趋势[J].航空科学技术, 2006, 5: 18-21. http://d.old.wanfangdata.com.cn/Periodical/hkkxjs200605006

    ZHANG W Y, TONG M B. Status and trends of the post stall maneuvers[J]. Aeronautical Science and Technology, 2006, 5: 18-21. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkkxjs200605006
    [23] WANG Q, QIAN W Q, HE K F. Unsteady aerodynamic modeling at high angles of attack using support vector machines[J]. Chinese Journal of Aeronautics, 2015, 28(3): 659-668. doi: 10.1016/j.cja.2015.03.010
    [24] 汪清, 钱炜祺, 丁娣.飞机大迎角非定常气动力建模研究进展[J].航空学报, 2016, 37(8): 2331-2347. http://d.old.wanfangdata.com.cn/Periodical/hkxb201608002

    WANG Q, QIAN W Q, DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2331-2347. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201608002
    [25] 杨帅, 黄平, 毛仲君, 等.一种基于绝对式角编码器的风标式迎角侧滑角传感器的设计与实现[J].实验流体力学, 2016, 30(1): 97-101. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201601010

    YANG S, HUANG P, MAO Z J, et al. Design and realization of wind vane sensors of attack angle and sideslip angle based on absolute encoders[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1): 97-101. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201601010
    [26] CHEN H, HE K F, QIAN W Q. Attitude control of UAV based on PI dynamic inversion[C]//The 35th Chinese Control Conference, 2016.
    [27] 章胜, 程艳青, 钱炜祺, 等.一种考虑作动器模型的非线性飞行控制律[C]//第七届中国航空学会青年科技论坛, 2016.

    ZHANG S, CHENG Y Q, QIAN W Q, et al. A nonlinear flight control law with actuator model integrated[C]//The 7th Yong Scientists Forum of China Society of Aeronautics and Astronautics, 2016. (in Chinese)
    [28] 陈海, 何开锋, 钱炜祺.基于非线性L1自适应动态逆的飞行器姿态角控制[J].控制理论与应用, 2016, 33(8): 1111-1118. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201608017

    CHEN H, HE K F, QIAN W Q. Attitude control of flight vehicle based on a nonlinear L1 adaptive dynamic inversion approach[J]. Control Theory & Applications, 2016, 33(8): 1111-1118. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201608017
    [29] 陈海, 何开锋, 钱炜褀, 等.基于扩展L1自适应的战斗机大迎角非线性控制[J].控制与决策, 2017, 32(8): 1403-1408. http://d.old.wanfangdata.com.cn/Periodical/kzyjc201708007

    CHEN H, HE K F, QIAN W Q, et al. L1 adaptive augmentation for high angle of attack nonlinear control of fighter[J]. Control and Decision, 2017, 32(8): 1403-1408. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/kzyjc201708007
    [30] 章胜, 汪清, 何开锋, 等.改进动态面控制律及其在过失速机动中的应用[J].空气动力学学报, 2017, 35(5): 718-736. doi: 10.7638/kqdlxxb-2017.0092

    ZHANG S, WANG Q, HE K F, et al. An improved dynamic surface control law and its application in post-stall maneuvers[J]. Acta Aerodynamica Sinica, 2017, 35(5): 718-736. doi: 10.7638/kqdlxxb-2017.0092
    [31] ZHANG S, LIAO F, QIAN W Q, et al. Inversion control of aircraft Herbst maneuver with nonlinear dynamic root-finding[C]//The 30th China Control and Decision Conference, 2018.
    [32] ZHANG S, JI L, QIAN W Q, et al. Aircraft post-stall maneuver control using attitude feedback linearization[C]//The 38th China Control Conference, 2019.
    [33] 毛仲君, 刘刚, 何开锋, 等.一种小型涡喷发动机矢量喷管测试台[P].实用新型专利,

    ZL201820483183.0. MAO Z J, LIU G, HE K F, et al. A vector nozzle test bed for the small turbojet engine, ZL201820483183.0[P]. Utility Model Patent of China. (in Chinese)
    [34] 孙海生, 岑飞, 聂博文, 等.水平风洞模型自由飞试验技术研究现状及展望[J].实验流体力学, 2011, 25(4): 103-108. doi: 10.3969/j.issn.1672-9897.2011.04.020

    SUN H S, CEN F, NIE B W, et al. Present research status and prospective application of wind-tunnel free-flight test technique[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 103-108. (in Chinese) doi: 10.3969/j.issn.1672-9897.2011.04.020
    [35] 刘志涛, 岑飞, 聂博文, 等.低速风洞模型自由飞试验飞行控制系统相似准则及模拟方法研究[J].空气动力学学报, 2017, 35(5): 693-609. doi: 10.7638/kqdlxxb-2017.0029

    LIU Z T, CEN F, NIE B W, et al. Similarity criteria and simulation method for flight control system of free-flight test in low speed wind tunnel[J]. Acta Aerodynamica Sinica, 2017, 35(5): 693-609. (in Chinese) doi: 10.7638/kqdlxxb-2017.0029
    [36] 岑飞, 聂博文, 刘志涛, 等.低速风洞带动力模型自由飞试验[J].航空学报, 2017, 38(10): 121214. http://d.old.wanfangdata.com.cn/Periodical/hkxb201710006

    CEN F, NIE BW, LIU Z T, et al. Low speed wind tunnel free-flight test of powered sub-scale aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10): 121214. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201710006
    [37] 欧杰, 李岑, 刘超.过失速机动飞行仿真系统建立与研究[J].科技创新导报, 2014, 14: 32-34. http://d.old.wanfangdata.com.cn/Periodical/kjzxdb201414009

    OU J, LI C, LIU C. Establishment and research of the post-stall maneuver flight simulation system[J]. Science and Technology Innovation Herald, 2014, 14: 32-34. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/kjzxdb201414009
    [38] 李艺海, 韩意新, 方自力.基于扩张状态观测器的动态逆过失速机动飞行控制[J].飞行力学, 2017, 35(2): 1-5. http://d.old.wanfangdata.com.cn/Periodical/fxlx201702001

    LI Y H, HAN Y X, FANG Z L. Post-stall maneuver flight control using extended state observer based dynamic inversion[J]. Flight Dynamics, 2017, 35(2): 1-5. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxlx201702001
    [39] 饶秋磊, 韩意新.大迎角气动力建模与失速/尾旋模态仿真[J].应用力学学报, 2018, 35(3): 472-478. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yylxxb201803005

    RAO Q L, HAN Y X. High angle of attack aerodynamic modeling and simulation and analysis of stall/spin mode[J]. Chinese Journal of Applied Mechanics, 2018, 35(3): 472-478. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yylxxb201803005
    [40] LIU J, SUN H S, HUANG Y, et al. Numerical investigation of an advanced aircraft model during pitching motion at high incidence[J]. Science China Technological Sciences, 2016, 59(2):276-288. doi: 10.1007/s11431-015-5957-2
    [41] 高慧琴, 高正红.典型过失速机动运动规律建模研究[J].飞行力学, 2009, 27(4): 9-13. http://d.old.wanfangdata.com.cn/Periodical/fxlx200904003

    GAO H Q, GAO Z H. Motion modeling of typical post stall maneuvers[J]. Flight Dynamics, 2009, 27(4): 9-13. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxlx200904003
    [42] CHEN Z B, JIANG X, ZHOU Z, et al. Progress in application of CFD techniques[J]. Science in China Series E: Technological Sciences, 2008, 51(7):827-841. doi: 10.1007/s11431-008-0084-y
    [43] 李斌, 张子彦.推力矢量控制对飞机操稳特性的影响[J].飞行力学, 1998, 16(2): 36-40.

    LI B, ZHANG Z Y. The effects of thrust vectoring on aircraft's stability and controllability[J]. Flight Dynamics, 1998, 16(2): 36-40. (in Chinese)
    [44] BUGAJSKI D J, ENNS D F. Nonlinear control law with application to high angle-of-attack flight[J]. Journal of Guidance, Control, and Dynamics. 1992, 15(3): 761-767. doi: 10.2514/3.20902
    [45] SNELL S A, ENNS D F, GARRARD W L. Nonlinear inversion flight control for a supermaneuverable aircraft[J]. Journal of Guidance, Control, and Dynamics. 1992, 15(4): 976-984. doi: 10.2514/3.20932
    [46] FARRELL J, SHARMA M, POLYCARPOU M. Backstepping based flight control with adaptive function approximation[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(6): 1089-1102. doi: 10.2514/1.13030
    [47] 刘树光, 孙秀霞, 董文瀚.动态面过失速机动飞行控制律的设计[J].系统工程与电子技术, 2010, 32(10): 2210-2213. doi: 10.3969/j.issn.1001-506X.2010.10.40

    LIU S G, SUN X X, DONG W H. Design of post-stall maneuvering flight control law based on dynamic surface control[J]. Systems Engineering and Electronics, 2010, 32(10): 2210-2213. (in Chinese) doi: 10.3969/j.issn.1001-506X.2010.10.40
    [48] ZHANG J M, LI Q, CHENG N, et al. Adaptive dynamic surface control for unmanned aerial vehicles based on attractive manifolds[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(6): 1776-1782. doi: 10.2514/1.58686
    [49] 韩京清.自抗扰控制技术[J].前沿科学, 2007, 1: 24-31. doi: 10.3969/j.issn.1673-8128.2007.01.004

    HAN J Q. Auto disturbances rejection control technique[J]. Frontier Science, 2007, 1: 24-31. (in Chinese) doi: 10.3969/j.issn.1673-8128.2007.01.004
    [50] MORELLI E A. Estimating noise characteristics from flight test data using optimal Fourier smoothing[J]. Journal of Aircraft, 1995, 32(4): 689-695. doi: 10.2514/3.46778
  • 加载中
图(22)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  211
  • PDF下载量:  1405
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-27
  • 修回日期:  2019-09-29
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回