[1] |
HERBST W B. Future fighter technologies[J]. Journal of Aircraft, 1980, 17(8): 561-566. doi: 10.2514/3.44674
|
[2] |
HERBST W B. Dynamics of aircraft combat[J]. Aircraft, 1983, 20(7): 594-598. doi: 10.2514/3.44916
|
[3] |
郭锁凤, 申功璋, 吴成富, 等.先进飞行控制系统[M].北京:国防工业出版社, 2003: 246-290.GUO S F, SHEN G Z, WU C F, et al. Advanced flight control system[M]. Beijing: National Defense Industry Press, 2003: 246-290. (in Chinese)
|
[4] |
朱纪洪, 张尚敏, 周池军, 等.飞机超机动状态动力学特征及对控制系统的挑战[J].控制理论与应用, 2014, 31(12): 1650-1662. doi: 10.7641/CTA.2014.41168ZHU J H, ZHANG S M, ZHOU C J, et al. Dynamic characteristics and challenges for control system of super-maneuverable aircraft[J]. Control Theory & Applications, 2014, 31(12): 1650-1662. (in Chinese) doi: 10.7641/CTA.2014.41168
|
[5] |
史忠科.高性能飞机发展对控制理论的挑战[J].航空学报, 2015, 36(8): 2717-2734. http://d.old.wanfangdata.com.cn/Periodical/hkxb201508019SHI Z K. Challenge of control theory in the presence of high performance aircraft development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2717-2734. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201508019
|
[6] |
张守言.模型自由飞试验[M].北京:国防工业出版社, 2002.ZHANG S Y. Model free flight test[M]. Beijing: National Defense Industry Press, 2002. (in Chinese)
|
[7] |
OWENS D B, BRANDON J M, CROOM M A, et al. Overview of dynamic test techniques for flight dynamics research at NASA LaRC[C]//25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2006.
|
[8] |
DAVID F F. Fifty years of flight research: an annotated bibliography of technical publications of NASA Dryden flight[R]. NASA/TP-1999-206568, California: NASA Dryden Flight Research Center 1946-1996, 1999.
|
[9] |
何开锋, 刘刚, 张利辉, 等.航空器带动力自主控制模型飞行试验技术研究进展[J].实验流体力学, 2016, 30(2): 1-7. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201602001HE K F, LIU G, ZHANG L H, et al. Research progress on model flight test of powered aircraft with autonomous control system[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 1-7. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201602001
|
[10] |
何开锋, 毛仲君, 汪清, 等.缩比模型演示验证飞行试验及关键技术[J].空气动力学学报, 2017, 35(5): 671-679. doi: 10.7638/kqdlxxb-2017.0089HE K F, MAO Z J, WANG Q, et al. Demonstration and validation flight test of scaled aircraft model and its key technologies[J]. Acta Aerodynamica Sinica, 2017, 35(5): 671-679. (in Chinese) doi: 10.7638/kqdlxxb-2017.0089
|
[11] |
CHAMBERS R J. Use of dynamically scaled models for studies of high angle-of-attack behavior of airplanes[C]//International Symposium on Scale Modeling, Tokyo, 1988.
|
[12] |
WOLOWICZ C H, BOWMAN J S, GILBERT W P. Similitude requirements and scaling relationships as applied to model testing[R]. NASA TP-1435, 1979.
|
[13] |
CHAMBERS R J. Modeling flight: the role of dynamically scaled free-flight models in support of NASA's aerospace programs[R]. NASA SP 2009-575.
|
[14] |
LAYTON G, ARRISON P. A new experimental flight research technique: the remotely piloted airplane[R]. AGARD-CP-187, 1976.
|
[15] |
LAURENCE A W. Flight testing the X-36 the test pilot's perspective[R]. Missouri: Boeing AS&T Phantom Works St. Louis, 1997.
|
[16] |
CROFT J W. Refuse to crash-NASA tackles loss of control[J]. Aerospace America, 2003, 41(3): 42-45.
|
[17] |
JORDAN T L, LANGFORD W M, BELCASTOR C M, et al. Development of a dynamically scaled generic transport model test-bed for flight research experiment[R]. AUVSI Unmanned Unlimited, Virginia: AUVSI, 2004.
|
[18] |
JORDAN T L, FOSTER J V, BAILEY R M, et al. AirSTAR: a UAV platform for flight dynamics and control system testing[C]//25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2006.
|
[19] |
OWENS D B, DAVID E C, EUGENE A M. Development of a low-cost sub-scale aircraft for flight research[R]. The FASER Project 23681, Virginia: NASA Langley Research Center, 2007.
|
[20] |
BRIAN R T. X-48B preliminary flight test results[R]. NASA technology Report, DFRC-1060, 2009.
|
[21] |
曲东才.现代战机的非常规机动—过失速机动技术分析[J].航空科学技术, 2005, 5: 40-42. http://d.old.wanfangdata.com.cn/Periodical/hkkxjs200505012QU D C. Analysis of deep-stall maneuverability technology of the modern battleplane[J]. Aeronautical Science and Technology, 2005, 5: 40-42. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkkxjs200505012
|
[22] |
张文宇, 童明波.过失速机动的现状和发展趋势[J].航空科学技术, 2006, 5: 18-21. http://d.old.wanfangdata.com.cn/Periodical/hkkxjs200605006ZHANG W Y, TONG M B. Status and trends of the post stall maneuvers[J]. Aeronautical Science and Technology, 2006, 5: 18-21. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkkxjs200605006
|
[23] |
WANG Q, QIAN W Q, HE K F. Unsteady aerodynamic modeling at high angles of attack using support vector machines[J]. Chinese Journal of Aeronautics, 2015, 28(3): 659-668. doi: 10.1016/j.cja.2015.03.010
|
[24] |
汪清, 钱炜祺, 丁娣.飞机大迎角非定常气动力建模研究进展[J].航空学报, 2016, 37(8): 2331-2347. http://d.old.wanfangdata.com.cn/Periodical/hkxb201608002WANG Q, QIAN W Q, DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2331-2347. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201608002
|
[25] |
杨帅, 黄平, 毛仲君, 等.一种基于绝对式角编码器的风标式迎角侧滑角传感器的设计与实现[J].实验流体力学, 2016, 30(1): 97-101. http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201601010YANG S, HUANG P, MAO Z J, et al. Design and realization of wind vane sensors of attack angle and sideslip angle based on absolute encoders[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1): 97-101. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ltlxsyycl201601010
|
[26] |
CHEN H, HE K F, QIAN W Q. Attitude control of UAV based on PI dynamic inversion[C]//The 35th Chinese Control Conference, 2016.
|
[27] |
章胜, 程艳青, 钱炜祺, 等.一种考虑作动器模型的非线性飞行控制律[C]//第七届中国航空学会青年科技论坛, 2016.ZHANG S, CHENG Y Q, QIAN W Q, et al. A nonlinear flight control law with actuator model integrated[C]//The 7th Yong Scientists Forum of China Society of Aeronautics and Astronautics, 2016. (in Chinese)
|
[28] |
陈海, 何开锋, 钱炜祺.基于非线性L1自适应动态逆的飞行器姿态角控制[J].控制理论与应用, 2016, 33(8): 1111-1118. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201608017CHEN H, HE K F, QIAN W Q. Attitude control of flight vehicle based on a nonlinear L1 adaptive dynamic inversion approach[J]. Control Theory & Applications, 2016, 33(8): 1111-1118. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201608017
|
[29] |
陈海, 何开锋, 钱炜褀, 等.基于扩展L1自适应的战斗机大迎角非线性控制[J].控制与决策, 2017, 32(8): 1403-1408. http://d.old.wanfangdata.com.cn/Periodical/kzyjc201708007CHEN H, HE K F, QIAN W Q, et al. L1 adaptive augmentation for high angle of attack nonlinear control of fighter[J]. Control and Decision, 2017, 32(8): 1403-1408. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/kzyjc201708007
|
[30] |
章胜, 汪清, 何开锋, 等.改进动态面控制律及其在过失速机动中的应用[J].空气动力学学报, 2017, 35(5): 718-736. doi: 10.7638/kqdlxxb-2017.0092ZHANG S, WANG Q, HE K F, et al. An improved dynamic surface control law and its application in post-stall maneuvers[J]. Acta Aerodynamica Sinica, 2017, 35(5): 718-736. doi: 10.7638/kqdlxxb-2017.0092
|
[31] |
ZHANG S, LIAO F, QIAN W Q, et al. Inversion control of aircraft Herbst maneuver with nonlinear dynamic root-finding[C]//The 30th China Control and Decision Conference, 2018.
|
[32] |
ZHANG S, JI L, QIAN W Q, et al. Aircraft post-stall maneuver control using attitude feedback linearization[C]//The 38th China Control Conference, 2019.
|
[33] |
毛仲君, 刘刚, 何开锋, 等.一种小型涡喷发动机矢量喷管测试台[P].实用新型专利,ZL201820483183.0. MAO Z J, LIU G, HE K F, et al. A vector nozzle test bed for the small turbojet engine, ZL201820483183.0[P]. Utility Model Patent of China. (in Chinese)
|
[34] |
孙海生, 岑飞, 聂博文, 等.水平风洞模型自由飞试验技术研究现状及展望[J].实验流体力学, 2011, 25(4): 103-108. doi: 10.3969/j.issn.1672-9897.2011.04.020SUN H S, CEN F, NIE B W, et al. Present research status and prospective application of wind-tunnel free-flight test technique[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 103-108. (in Chinese) doi: 10.3969/j.issn.1672-9897.2011.04.020
|
[35] |
刘志涛, 岑飞, 聂博文, 等.低速风洞模型自由飞试验飞行控制系统相似准则及模拟方法研究[J].空气动力学学报, 2017, 35(5): 693-609. doi: 10.7638/kqdlxxb-2017.0029LIU Z T, CEN F, NIE B W, et al. Similarity criteria and simulation method for flight control system of free-flight test in low speed wind tunnel[J]. Acta Aerodynamica Sinica, 2017, 35(5): 693-609. (in Chinese) doi: 10.7638/kqdlxxb-2017.0029
|
[36] |
岑飞, 聂博文, 刘志涛, 等.低速风洞带动力模型自由飞试验[J].航空学报, 2017, 38(10): 121214. http://d.old.wanfangdata.com.cn/Periodical/hkxb201710006CEN F, NIE BW, LIU Z T, et al. Low speed wind tunnel free-flight test of powered sub-scale aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10): 121214. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201710006
|
[37] |
欧杰, 李岑, 刘超.过失速机动飞行仿真系统建立与研究[J].科技创新导报, 2014, 14: 32-34. http://d.old.wanfangdata.com.cn/Periodical/kjzxdb201414009OU J, LI C, LIU C. Establishment and research of the post-stall maneuver flight simulation system[J]. Science and Technology Innovation Herald, 2014, 14: 32-34. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/kjzxdb201414009
|
[38] |
李艺海, 韩意新, 方自力.基于扩张状态观测器的动态逆过失速机动飞行控制[J].飞行力学, 2017, 35(2): 1-5. http://d.old.wanfangdata.com.cn/Periodical/fxlx201702001LI Y H, HAN Y X, FANG Z L. Post-stall maneuver flight control using extended state observer based dynamic inversion[J]. Flight Dynamics, 2017, 35(2): 1-5. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxlx201702001
|
[39] |
饶秋磊, 韩意新.大迎角气动力建模与失速/尾旋模态仿真[J].应用力学学报, 2018, 35(3): 472-478. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yylxxb201803005RAO Q L, HAN Y X. High angle of attack aerodynamic modeling and simulation and analysis of stall/spin mode[J]. Chinese Journal of Applied Mechanics, 2018, 35(3): 472-478. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yylxxb201803005
|
[40] |
LIU J, SUN H S, HUANG Y, et al. Numerical investigation of an advanced aircraft model during pitching motion at high incidence[J]. Science China Technological Sciences, 2016, 59(2):276-288. doi: 10.1007/s11431-015-5957-2
|
[41] |
高慧琴, 高正红.典型过失速机动运动规律建模研究[J].飞行力学, 2009, 27(4): 9-13. http://d.old.wanfangdata.com.cn/Periodical/fxlx200904003GAO H Q, GAO Z H. Motion modeling of typical post stall maneuvers[J]. Flight Dynamics, 2009, 27(4): 9-13. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxlx200904003
|
[42] |
CHEN Z B, JIANG X, ZHOU Z, et al. Progress in application of CFD techniques[J]. Science in China Series E: Technological Sciences, 2008, 51(7):827-841. doi: 10.1007/s11431-008-0084-y
|
[43] |
李斌, 张子彦.推力矢量控制对飞机操稳特性的影响[J].飞行力学, 1998, 16(2): 36-40.LI B, ZHANG Z Y. The effects of thrust vectoring on aircraft's stability and controllability[J]. Flight Dynamics, 1998, 16(2): 36-40. (in Chinese)
|
[44] |
BUGAJSKI D J, ENNS D F. Nonlinear control law with application to high angle-of-attack flight[J]. Journal of Guidance, Control, and Dynamics. 1992, 15(3): 761-767. doi: 10.2514/3.20902
|
[45] |
SNELL S A, ENNS D F, GARRARD W L. Nonlinear inversion flight control for a supermaneuverable aircraft[J]. Journal of Guidance, Control, and Dynamics. 1992, 15(4): 976-984. doi: 10.2514/3.20932
|
[46] |
FARRELL J, SHARMA M, POLYCARPOU M. Backstepping based flight control with adaptive function approximation[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(6): 1089-1102. doi: 10.2514/1.13030
|
[47] |
刘树光, 孙秀霞, 董文瀚.动态面过失速机动飞行控制律的设计[J].系统工程与电子技术, 2010, 32(10): 2210-2213. doi: 10.3969/j.issn.1001-506X.2010.10.40LIU S G, SUN X X, DONG W H. Design of post-stall maneuvering flight control law based on dynamic surface control[J]. Systems Engineering and Electronics, 2010, 32(10): 2210-2213. (in Chinese) doi: 10.3969/j.issn.1001-506X.2010.10.40
|
[48] |
ZHANG J M, LI Q, CHENG N, et al. Adaptive dynamic surface control for unmanned aerial vehicles based on attractive manifolds[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(6): 1776-1782. doi: 10.2514/1.58686
|
[49] |
韩京清.自抗扰控制技术[J].前沿科学, 2007, 1: 24-31. doi: 10.3969/j.issn.1673-8128.2007.01.004HAN J Q. Auto disturbances rejection control technique[J]. Frontier Science, 2007, 1: 24-31. (in Chinese) doi: 10.3969/j.issn.1673-8128.2007.01.004
|
[50] |
MORELLI E A. Estimating noise characteristics from flight test data using optimal Fourier smoothing[J]. Journal of Aircraft, 1995, 32(4): 689-695. doi: 10.2514/3.46778
|