An analysis of current status and prospects of CFD based simulation of rotorcrafts
-
摘要: 传统直升机气动设计较多依赖升力线理论、涡流理论等工程分析方法,高性能计算使采用CFD方法开展“第一性原理”仿真成为可能。本文从旋翼运动特点出发介绍了直升机区别于固定翼飞机的一些特殊计算方法,指出当前CFD方法在直升机实际应用中存在的不足。在此基础上,探讨了国外先进直升机CFD软件的发展策略与技术途径,从多求解器耦合、网格动态自适应技术、高阶格式与湍流模型的选取、多学科耦合求解等四个方面分析了这些软件的特点与技术优势。最后就如何适应未来发展需要,提出了直升机CFD能力建设方面的几点建议。分析表明,直升机由于旋翼运动具有与操纵输入、结构变形相耦合的特点,分部件及单学科的CFD分析方法与真实飞行状态存在偏差,多学科耦合分析与旋翼尾迹的精细模拟应当是软件未来发展的重点。Abstract: Traditionally, the aerodynamic design of rotorcrafts relies heavily on engineering analysis methods such as lift line or vortex theory. Nowadays, however, high-performance computing makes the high-fidelity first principle simulation possible by computational fluid dynamics (CFD) methods. Based on the characteristics of rotor motions, some particular CFD methods are introduced and compared with those for fixed wings, and the shortcomings of current CFD in engineering applications are pointed out. On this basis, the development strategies and technical routines of foreign advanced helicopter CFD softwares are discussed, whose numerical methods and related technique merits are analyzed from multiple aspects including multi-solver coupling, dynamically adaptive mesh refinement, high-order schemes, turbulence models, and multi-disciplinary coupling analyses. Lastly, some suggestions on rotorcraft simulations are put forward to satisfy future needs. Due to the coupling between rotor motions and control inputs as well as structural deformations, results of CFD simulations in the way of part-by-part analyses or single-disciplinary modeling deviate from actual flight states. Therefore, future softwares of rotorcrafts should focus on multi-disciplinary coupled solutions and high resolution of rotor wakes.
-
Key words:
- rotorcraft /
- multi-disciplinary /
- simulation /
- parallel /
- aeromechanics
-
表 1 国外直升机CFD软件一览表
Table 1. A list of foreign rotorcraft CFD solvers
软件名称 机构 网格类型 尾迹模拟 GT-Hybrid Geogia大学 结构网格 自由尾迹 Overturns Maryland大学 结构网格 涡追踪网格 HMB Glasgow大学 结构网格 直接模拟 U2NCLE Toledo大学 非结构网格 直接模拟 ElsA ONERA 结构/非结构 直接模拟 Overflow-D NASA 结构网格 直接模拟 Helios CREAT AV 混合网格 直接模拟 -
[1] HARRIS F D. Introduction to autogyros, helicopters, and other V/STOL aircraft: NASA/SP-2011-215959[R].California: NASA Ames Research Center, 2011. [2] SEDDON J, NEWMAN S. 直升机空气动力学基础[M]. 王建新等译. 北京: 国防工业出版社, 2014.SEDDON J, NEWMAN S. Basic helicopter aerodynamics[M]. Translated by WANG J X, et al. Beijing: National defense industry press, 2014. [3] LEISHMAN J G. Principles of helicopter aerodynamics[M]. Cambridge university press, 2000. [4] JOHNSON W. Milestones in rotorcraft aeromechanics[R]. NASA/TP-2011-215971, 2011. [5] GORTON S A, LOPEZ I, THEODORE C. NASA Technology for next generation vertical lift vehicles[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Kissimmee, Florida. Reston, Virginia: AIAA, 2015. [6] 王适存. 直升机空气动力学中的几个疑点[J]. 南京航空航天大学学报, 2003, 35(3): 225-230. doi: 10.16356/j.1005-2615.2003.03.001WANG S C. Some doubts in helicopter aerodynamics[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2003, 35(3): 225-230. (in Chinese)DOI: 10.16356/j.1005-2615.2003.03.001. [7] 王适存, 徐国华. 直升机旋翼空气动力学的发展[J]. 南京航空航天大学学报, 2001, 33(3): 203-211. doi: 10.3969/j.issn.1005-2615.2001.03.001WANG S C, XU G H. Progress of helicopter rotor aerodynamics[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2001, 33(3): 203-211. (in Chinese). doi: 10.3969/j.issn.1005-2615.2001.03.001 [8] JOHNSON W. Technology drivers in the development of CAMRAD Ⅱ [C]//American Helicopter Society Aeromechanics Specialists Conference, San Francisco, 1994. [9] JOHNSON W, DATTA A. Requirements for next generation comprehensive analysis of rotorcraft[C]//AHS Specialist's Conference on Aeromechanics San Francisco, CA, 2008. [10] 徐国华, 招启军. 直升机旋翼计算流体力学的研究进展[J]. 南京航空航天大学学报, 2003, 35(3): 338-344. doi: 10.16356/j.1005-2615.2003.03.023XU G H, ZHAO Q J. Advances in computational fluid dynamics of helicopter rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2003, 35(3): 338-344. (in Chinese)DOI: 10.16356/j.1005-2615.2003.03.023. [11] STRAWN R C, CARADONNA F X, DUQUE E P N. 30 years of rotorcraft computational fluid dynamics research and development[J]. Journal of the American Helicopter Society, 2006, 51(1): 5-21.DOI: 10.4050/1.3092875. [12] STEIJL R, BARAKOS G, BADCOCK K. A framework for CFD analysis of helicopter rotors in hover and forward flight[J]. International Journal for Numerical Methods in Fluids, 2006, 51(8): 819-847.DOI: 10.1002/fld.1086. [13] SHENG C H, WANG J Y, ZHAO Q Y. S-76 rotor hover predictions using advanced turbulence models[C]//53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida, USA. Reston, Virginia: AIAA, 2015. doi: 10.2514/6.2015-1715 [14] ESHCOL R M, ZHOU C, KIM J, et al. A comparative study of two hover prediction methodologies[C]//54th AIAA Aerospace Sciences Meeting, San Diego, California, USA. Reston, Virginia: AIAA, 2016. doi: 10.2514/6.2016-0300 [15] BARAKOS G N, JIMENEZ-GARCIA A. Hover predictions of the S-76 rotor using HMB2 - model to full scale[C]//54th AIAA Aerospace Sciences Meeting, San Diego, California, USA. Reston, Virginia: AIAA, 2016. doi: 10.2514/6.2016-0299 [16] GARDAREIN P, LE PAPE A. Numerical simulation of hovering S-76 helicopter rotor including far-field analysis[C]//54th AIAA Aerospace Sciences Meeting, San Diego, California, USA. Reston, Virginia: AIAA, 2016. doi: 10.2514/6.2016-0034 [17] ZHAO Q J, ZHAO G Q, WANG B, et al. Robust Navier-Stokes method for predicting unsteady flowfield and aerodynamic characteristics of helicopter rotor[J]. Chinese Journal of Aeronautics, 2018, 31(2): 214-224.DOI: 10.1016/j.cja.2017.10.005. [18] 招启军, 徐国华. 基于高阶逆风通量差分裂格式的直升机旋翼前飞流场模拟[J]. 空气动力学学报, 2005, 23(4): 408-413. doi: 10.3969/j.issn.0258-1825.2005.04.003ZHAO Q J, XU G H. Calculations for the flowfield of helicopter rotors in forward flight based on high-order upwind flux-difference splitting scheme[J]. Acta Aerodynamica Sinica, 2005, 23(4): 408-413. (in Chinese). doi: 10.3969/j.issn.0258-1825.2005.04.003 [19] 杨爱明, 乔志德. 基于运动嵌套网格的前飞旋翼绕流N-S方程数值计算[J]. 航空学报, 2001, 22(5): 434-436. doi: 10.3321/j.issn:1000-6893.2001.05.003YANG A M, QIAO Z D. Navier-stokes computation for a helicopter rotor in forward flight based on moving overset grids[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(5): 434-436. (in Chinese). doi: 10.3321/j.issn:1000-6893.2001.05.003 [20] 许和勇, 叶正寅, 王刚, 等. 基于非结构嵌套网格的旋翼前飞流场计算[J]. 西北工业大学学报, 2006, 24(6): 763-767. doi: 10.3969/j.issn.1000-2758.2006.06.020XU H Y, YE Z Y, WANG G, et al. Improving numerical simulation of rotor forward flight flow field with unstructured dynamic overset grids[J]. Journal of Northwestern Polytechnical University, 2006, 24(6): 763-767. (in Chinese). doi: 10.3969/j.issn.1000-2758.2006.06.020 [21] 肖中云, 刘刚, 牟斌, 等. 旋转坐标系下分区计算的LU隐式方法[J]. 航空学报, 2018, 39(10): 77-88.XIAO Z Y, LIU G, MOU B, et al. LU implicit methods for partitioned computation in rotating coordinate system[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 77-88. (in Chinese). [22] 肖中云, 江雄, 陈作斌, 等. 低速预处理方法在悬停旋翼模拟中的应用[J]. 航空学报, 2008, 29(2): 321-326. doi: 10.3321/j.issn:1000-6893.2008.02.011XIAO Z Y, JIANG X, CHEN Z B, et al. Application of low speed preconditioning to hovering rotor simulation[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2): 321-326. (in Chinese). doi: 10.3321/j.issn:1000-6893.2008.02.011 [23] 陈义良, 朱旻明. 物理流体力学[M]. 合肥: 中国科学技术大学出版社, 2008.CHEN Y L, ZHU M M. Physical fluid dynamics[M]. Hefei: University of science and technology of China press, 2008 (in Chinese). [24] 许建华, 宋文萍, 王龙. 谐波平衡法在旋翼前飞绕流数值模拟中的应用研究[J]. 空气动力学学报, 2013, 31(5): 546-553. doi: 10.7638/kqdlxxb-2011.0121XU J H, SONG W P, WANG L. Application of harmonic balance method in forward flight simulation for helicopter rotors[J]. Acta Aerodynamica Sinica, 2013, 31(5): 546-553. (in Chinese). doi: 10.7638/kqdlxxb-2011.0121 [25] SOUSA C S, PARRACHO F J, BROWN R E. Modeling of aerodynamic interactions in compound helicopters[D]. Technical university of Lisbon, 2010. [26] 赵寅宇. 基于CFD/黏性涡粒子混合方法的旋翼桨—涡干扰噪声研究[D]. 南京: 南京航空航天大学, 2018.ZHAO Y Y. Research on helicopter rotor blade-vortex interaction noise based on coupling CFD/viscous vortex particle method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). [27] WANG L Q, XU G H, SHI Y J. High-resolution simulation for rotorcraft aerodynamics in hovering and vertical descending flight using a hybrid method[J]. Chinese Journal of Aeronautics, 2018, 31(5): 1053-1065. doi: 10.1016/j.cja.2018.03.001. [28] Slotnik J, Khodadoust A, Alonso J, 等. CFD vision 2030 study: a path to revolutionary computational aeroscience[R]. NASA/CR-2014-218178, 2014. [29] 叶舟, 史勇杰, 徐国华. 耦合高效配平策略的旋翼气动特性分析方法[J]. 航空动力学报, 2017, 32(4): 882-889. doi: 10.13224/j.cnki.jasp.2017.04.013YE Z, SHI Y J, XU G H. Analytical method of rotor aerodynamic characteristics by coupling a high-efficiency trim strategy[J]. Journal of Aerospace Power, 2017, 32(4): 882-889. (in Chinese)DOI: 10.13224/j.cnki.jasp.2017.04.013. [30] 李春华, 徐国华. 悬停和前飞状态下旋翼在导弹发射线上的诱导影响计算[J]. 空气动力学学报, 2005, 23(4): 449-454. doi: 10.3969/j.issn.0258-1825.2005.04.010LI C H, XU G H. Calculations of the induced effect of helicopter rotors on missile trajectory in hover and forward flight[J]. Acta Aerodynamica Sinica, 2005, 23(4): 449-454. (in Chinese). doi: 10.3969/j.issn.0258-1825.2005.04.010 [31] KOMERATH N, MATOS C, REDDY U. Flowfield issues related to tiltrotors [C]//Tiltrotor/runway independent aircraft technology and applications specialists' meeting of the american helicopter society, 2001. [32] PULLIAM T H, JESPESEN D C. Large scale aerodynamic calculation on Pleiades[R]. NAS technical report, NAS-09-004, 2009. [33] WAGNER R C. Procedural guide for modeling and analyzing the flight dynamics of the SH-60B helicopter using FlightLab[D]. Naval Postgraduate School, 1995. [34] KRAFT E M. HPCMP CREATE-AV and the air forcce digital thread[C]//AIAA SciTech Forum Kissimmee, Florida, 2015. [35] MCCANDLESS W B, HAMM C, FOSTER J. Verification, validation and accreditation processes for rotorcraft acquisition[C]//AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-1261 [36] ROTH G, MORTON S, BROOKS G. Integrating CREATE-AV products DaVinci and kestrel: experiences and lessons learned[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee. Reston, Virginia: AIAA, 2012. doi: 10.2514/6.2012-1063 [37] HALLISSY B P, HINE D, LAIOSA J P, et al. CREATE-AV quality assurance: best practices for validating and supporting computation-based engineering software[C]//52nd Aerospace Sciences Meeting, National Harbor, Maryland. Reston, Virginia: AIAA, 2014. doi: 10.2514/6.2014-0918 [38] POST D E, ATWOOD C E, NEWMEYER K E, et al. The CREATE program: design and analysis tools for DoD weapon systems[C]//54th AIAA Aerospace Sciences Meeting, San Diego, California, USA. Reston, Virginia: AIAA, 2016 doi: 10.2514/6.2016-0562 [39] MORTON S A, MEAKIN R E. HPCMP CREATETM-AV kestrel architecture, capabilities, and long term plan for fixed-wing aircraft simulations[C]//54th AIAA Aerospace Sciences Meeting, San Diego, California, USA. Reston, Virginia: AIAA, 2016. doi: 10.2514/6.2016-0565 [40] STRAWN R C. Software design strategies for multidisciplinary computational fluid dynamics[C]//7th International Conference on Computational Fluid Dynamics Big Island, Hawaii, 2012. [41] WISSINK A M, STARUK W J, TRAN S A, et al. Overview of new capabilities in helios version 9.0[C]//Proc of the AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-0839 [42] SITARAMAN J, WISSINK A, SANKARAN V, et al. Application of the helios computational platform to rotorcraft flowfields[C]//Proc of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida. Reston, Virginia: AIAA, 2010. doi: 10.2514/6.2010-1230 [43] NARDUCCI R. An industry assessment of HPCMP CREATE-AV helios[C]//53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida. Reston, Virginia: AIAA, 2015. doi: 10.2514/6.2015-0553 [44] NARDUCCI R, TADGHIGHI H. An assessment of CREATE-AV Helios for apache hover and forward flight simulations[C]//AIAA SciTech 2016, 2016. [45] WONG T. Application of CREATE-AV Helios in an engineering environment: hover prediction assessment[R]. AIAA 2017-1667, 2017. [46] GRIFFIN M D, et al. Digital engineering strategy[M]. Department of Defense, 2018. [47] SITARAMAN J, KATZ A, JAYARAMAN B, et al. Evaluation of a multi-solver paradigm for CFD using unstructured and structured adaptive Cartesian grids[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virginia: AIAA, 2008. doi: 10.2514/6.2008-660 [48] JAIN R, BIEDRON R T, JONES W, et al. Modularization and validation of NASA FUN3D as a HPCMP CREATE-AV helios near-body solver[C]//54th AIAA Aerospace Sciences Meeting, San Diego, California, USA. Reston, Virginia: AIAA, 2016. doi: 10.2514/6.2016-1298 [49] SITARAMAN J, POTSDAM M A, ROGET B. Advances in domain connectivity for high-order methods and overlapping surface dual mesh/solver computations[C]//AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-0841 [50] 张来平, 赫新, 常兴华, 等. 复杂外形静动态混合网格生成技术研究新进展[J]. 气体物理, 2016, 1(1): 42-61. doi: 10.19527/j.cnki.2096-1642.2016.01.008ZHANG L P, HE X, CHANG X H, et al. Recent progress of static and dynamic hybrid grid generation techniques over complex geometries[J]. Physics of Gases, 2016, 1(1): 42-61. (in Chinese)DOI: 10.19527/j.cnki.2096-1642.2016.01.008. [51] 肖涵山, 刘刚, 陈作斌, 等. 基于STL文件的笛卡尔网格生成方法研究[J]. 空气动力学学报, 2006, 24(1): 120-124, 136. doi: 10.3969/j.issn.0258-1825.2006.01.022XIAO H S, LIU G, CHEN Z B, et al. The adaptive Cartesian grid generation method based on STL file[J]. Acta Aerodynamica Sinica, 2006, 24(1): 120-124, 136. (in Chinese). doi: 10.3969/j.issn.0258-1825.2006.01.022 [52] STRAWN R C, DJOMEHRI M J. Computational modeling of hovering rotor and wake aerodynamics[J]. Journal of Aircraft, 2002, 39(5): 786-793.DOI: 10.2514/2.3024. [53] SHAFER T C, FORSYTHE J R, HALLISSY B P, et al. Applications of HPCMP CREATE-AV kestrel v5 with cartesian adaptive mesh refinement[R]. AIAA 2015-1040, 2015. [54] EYMANN T A, NICHOLS R H, TUCKEY T, et al. Cartesian adaptive mesh refinement with the HPCMP CREATE™-AV kestrel solver[C]// 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida. Reston, Virginia: AIAA, 2015. doi: 10.2514/6.2015-0040 [55] WISSINK A, KATZ A, CHAN W, et al. Validation of the strand grid approach[C]//19th AIAA Computational Fluid Dynamics, San Antonio, Texas. Reston, Virginia: AIAA, 2009. doi: 10.2514/6.2009-3792 [56] WISSINK A M, KATZ A J, SITARAMAN J. Validation of 3D RANS-SA calculations on strand/Cartesian meshes[C]//52nd Aerospace Sciences Meeting, National Harbor, Maryland. Reston, Virginia: AIAA, 2014. doi: 10.2514/6.2014-0416 [57] STARUK W J, JAYARAMAN B, SITARAMAN J, et al. Integrated 3-D structural dynamics using the helios v9 rotorcraft analysis framework[C]//AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-0842. [58] JUDE D, SITARAMAN J, LAKSHMINARAYAN V K, et al. an overset generalized minimal residual method for CFD on heterogeneous compute architectures[C]//AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-0099 [59] ORR S A, NARDUCCI R P. Framework for multidisciplinary analysis, design, and optimization with high-fidelity analysis tools[R]. NASA/CR-2009-215563, 2009. [60] WISSINK A, SITARAMAN J, SANKARAN V, et al. A multi-code python-based infrastructure for overset CFD with adaptive Cartesian grids[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virginia: AIAA, 2008. doi: 10.2514/6.2008-927 [61] WISSINK A M, HORNUNG R D, KOHN S R, et al. Large scale parallel structured AMR calculations using the SAMRAI framework[C]//Proceedings of the 2001 ACM/IEEE Conference on Supercomputing (CDROM) - Supercomputing '01, Denver, Colorado. New York: ACM Press, 2001. doi: 10.1145/582034.582040 [62] ALONSO J, HAHN S, HAM F, et al. CHIMPS: a high-performance scalable module for multi-physics simulations[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Sacramento, California. Reston, Virginia: AIAA, 2006. doi: 10.2514/6.2006-5274 [63] DUBEY A, ALMGREN A, BELL J, et al. A survey of high level frameworks in block-structured adaptive mesh refinement packages[J]. Journal of Parallel and Distributed Computing, 2014, 74(12): 3217-3227. doi: 10.1016/j.jpdc.2014.07.001. [64] WISSINK A, KAMKAR S, PULLIAM T, et al. Cartesian adaptive mesh refinement for rotorcraft wake resolution[C]//Proc of the 28th AIAA Applied Aerodynamics Conference, Chicago, Illinois. Reston, Virginia: AIAA, 2010. doi: 10.2514/6.2010-4554 [65] KIRK B S, PETERSON J W, STOGNER R H, et al. libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations[J]. Engineering With Computers, 2006, 22(3-4): 237-254.DOI: 10.1007/s00366-006-0049-3. [66] BURSTEDDE C, WILCOX L C, GHATTAS O. p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees[J]. SIAM Journal on Scientific Computing, 2011, 33(3): 1103-1133.DOI: 10.1137/100791634. [67] COLELLA P, GRAVES D T. CHOMBO software package for AMR applications design document[D]. Lawrence Berkeley National Laboratory, Berkeley, CA, 2013. [68] MACNEICE P, OLSON K M, MOBARRY C, et al. PARAMESH: a parallel adaptive mesh refinement community toolkit[J]. Computer Physics Communications, 2000, 126(3): 330-354.DOI: 10.1016/S0010-4655(99)00501-9. [69] GUARRASI M. An introduction to adaptive mesh refinement(AMR): numerical methods and tools[C]. HPC Numerical Libraries CINECA, 2015. [70] MAVRIPLIS D J. Progress in CFD discretizations, algorithms and solvers for aerodynamic flows[C]//AIAA Aviation 2019 Forum, Dallas, Texas. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-2944 [71] HARIHARAN N, SANKAR L. Application of ENO schemes to rotary wing problems[C]//Proc of the 13rd Applied Aerodynamics Conference, San Diego, CA, USA. Reston, Virginia: AIAA, 1995. doi: 10.2514/6.1995-1892 [72] PULLIAM T. High order accurate finite-difference methods: as seen in OVERFLOW[C]//20th AIAA Computational Fluid Dynamics Conference, Honolulu, Hawaii. Reston, Virginia: AIAA, 2011. doi: 10.2514/6.2011-3851 [73] VEN H, BOELENS O J. High-order simulation of a rotor in forward flight using a four-dimensional adaptive flow solver: NLR-TP-2008-696[R]. National Aerospace Laboratory NLR, 2008. [74] ABRAS J, HARIHARAN N S, NARDUCCI R P. Wake breakdown of high-fidelity simulations of a rotor in hover[C]//AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-0593 [75] BURGESS N, WISSINK A M. Effects of turbulence modeling for a dual mesh CFD solver[C]//21st AIAA Computational Fluid Dynamics Conference, San Diego, CA. Reston, Virginia: AIAA, 2013. doi: 10.2514/6.2013-2438 [76] CHADERJIAN N M, AHMAD J U. Detached eddy simulation of the UH-60 rotor wake using adaptive mesh refinement[C]. American Helicopter Society 68th Annual Forum Fort Worth, TX, 2012. [77] YAMAUCHI G K, YOUNG L A. A status of NASA rotorcraft research[R]. NASA/TP-2009-215369, 2009. [78] JOHNSON W. Rotorcraft aeromechanics[M]. Cambridge: Cambridge University Press, 2009. doi: 10.1017/cbo9781139235655 [79] BIEDRON R, LEE-RAUSCH E M. An examination of unsteady airloads on a UH-60A rotor: computation versus measurement[C]//American Helicopter Society 68th Annual Forum Fort Worth, TX, 2012. [80] YEO H, ROMANDER E A. Loads correlation of a full-scale UH-60A airloads rotor in a wind tunnel[R]. Defense Technical Information Center, 2012. doi: 10.21236/ada566027 [81] BOUSMAN W G. Rotorcraft airloads measurements-extraordinary costs, extraordinary benefits[R]. NASA/TP-2014-218374, 2014. [82] MCHUGH F J, CLARK R, SOLOMON M. Wind tunnel investigation of rotor lift and propulsive force at high speed-data analysis[R]. NASA CR 145217-1, 1977. [83] POTSDAM M, YEO H, JOHNSON W. Rotor airloads prediction using loose aerodynamic/structural coupling[J]. Journal of Aircraft, 2006, 43(3): 732-742.DOI: 10.2514/1.14006. [84] BIEDRON R T, LEE-RAUSCH E M. Computation of UH-60A airloads using CFD/CSD coupling on unstructured meshes [C]//American Helicopter Society 67th Annual Forum, 2011. [85] YEO H, JOHNSON W. Assessment of comprehensive analysis calculation of airloads on helicopter rotors[J]. Journal of Aircraft, 2005, 42(5): 1218-1228.DOI: 10.2514/1.11595. [86] BIEDRON R, LEE-RAUSCH E. Rotor airloads prediction using unstructured meshes and loose CFD/CSD coupling[C]//26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii. Reston, Virginia: AIAA, 2008. doi: 10.2514/6.2008-7341 [87] SMITH M J, LIM J W, WALL B, et al. An assessment of CFD/CSD prediction state-of-the-art using the HART II international workshop data[C]//AHS International 68th Annual Forum & Technology Display, 2012. [88] BOYD D. HART-II acoustic predictions using a coupled CFD/CSD method[C]//American Helicopter Society 65th Annual Forum Grapevine, Texas, 2009. [89] DATTA A, JOHNSON W. An assessment of the state-of-the-art in multidisciplinary aeromechanical analyses[C]//AHS Specialist's Conference on Aeromechanics San Francisco, CA, 2008. [90] SHENG C H, ICKES J, WANG J Y, et al. CFD/CSD coupled simulations for helicopter rotors in forward and maneuver flights[C]//31st AIAA Applied Aerodynamics Conference, San Diego, CA. Reston, Virginia: AIAA, 2013. doi: 10.2514/6.2013-2792 [91] 陈龙. 基于CFD/CSD耦合的旋翼气动弹性数值模拟[D]. 南京: 南京航空航天大学, 2011.CHEN L. Numerical simulation of rotor aeroelastic using CFD/CSD coupling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese). [92] 王俊毅, 招启军, 肖宇. 基于CFD/CSD耦合方法的新型桨尖旋翼气动弹性载荷计算[J]. 航空学报, 2014, 35(9): 2426-2437.WANG J Y, ZHAO Q J, XIAO Y. Calculations on aeroelastic loads of rotor with advanced blade-tip based on CFD/CSD coupling method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2426-2437. (in Chinese). [93] 马砾, 招启军, 王清, 等. 基于弹簧系统网格变形方法的旋翼气弹耦合分析[J]. 南京航空航天大学学报, 2016, 48(3): 410-417. doi: 10.16356/j.1005-2615.2016.03.017MA L, ZHAO Q J, WANG Q, et al. Aeroelasticity coupling analyses of rotor based on spring system grid deforming method[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(3): 410-417. (in Chinese)DOI: 10.16356/j.1005-2615.2016.03.017. [94] 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报, 2014, 35(2): 303-319.ZHANG W W, GAO C Q, YE Z Y. Research progress on mesh deformation method in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 303-319. (in Chinese). [95] 韩景龙, 陈全龙, 员海玮. 直升机的气动弹性问题[J]. 航空学报, 2015, 36(4): 1034-1055.HAN J L, CHEN Q L, YUN H W. Aeroelasticity of helicopters[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1034-1055. (in Chinese). [96] CORLE E, FLOROS M, SCHMITZ S. Transient CFD/CSD tiltrotor stability analysis[C]//Proc of the AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-2132 [97] LETZGUS J, KEßLER M, KRÄMER E. Simulation of dynamic stall on an elastic rotor in high-speed turn flight[J]. Journal of the American Helicopter Society, 2020, 65(2): 1-12.DOI: 10.4050/jahs.65.022002. [98] ROGET B, SITARAMAN J, WISSINK A, et al. Maneuvering rotorcraft simulations using HPCMP CREATE-AV Helios[R]. AIAA 2016-1057, 2016. [99] HARIHARAN N, EGOLF A, SANKAR L. Simulation of rotor in hover: current state and challenges[R]. AIAA 2014-0041, 2014. [100] KOWARSCH U, ÖHRLE C, KEßLER M, et al. Aeroacoustic simulation of a complete H145 helicopter in descent flight[J]. Journal of the American Helicopter Society, 2016, 61(4): 1-13.DOI: 10.4050/jahs.61.042001. [101] KUNZ D. Comprehensive rotorcraft analysis: past, present, and future[C]//Proc of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Austin, Texas. Reston, Virigina: AIAA, 2005. doi: 10.2514/6.2005-2244 [102] 张来平, 邓小刚, 何磊, 等. E级计算给CFD带来的机遇与挑战[J]. 空气动力学学报, 2016, 34(4): 405-417. doi: 10.7638/kqdlxxb-2014.0118ZHANG L P, DENG X G, HE L, et al. The opportunity and grand challenges in computational fluid dynamics by exascale computing[J]. Acta Aerodynamica Sinica, 2016, 34(4): 405-417. (in Chinese). doi: 10.7638/kqdlxxb-2014.0118 -