留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可压缩湍流的多尺度分析

陈十一 王建春 郑钦敏 王小宁 滕健 万敏平

陈十一, 王建春, 郑钦敏, 王小宁, 滕健, 万敏平. 可压缩湍流的多尺度分析[J]. 空气动力学学报, 2021, 39(1): 1-17. doi: 10.7638/kqdlxxb-2020.0159
引用本文: 陈十一, 王建春, 郑钦敏, 王小宁, 滕健, 万敏平. 可压缩湍流的多尺度分析[J]. 空气动力学学报, 2021, 39(1): 1-17. doi: 10.7638/kqdlxxb-2020.0159
CHEN Shiyi, WANG Jianchun, ZHENG Qinmin, WANG Xiaoning, TENG Jian, WAN Minping. Multi-scale analyses of compressible turbulence[J]. ACTA AERODYNAMICA SINICA, 2021, 39(1): 1-17. doi: 10.7638/kqdlxxb-2020.0159
Citation: CHEN Shiyi, WANG Jianchun, ZHENG Qinmin, WANG Xiaoning, TENG Jian, WAN Minping. Multi-scale analyses of compressible turbulence[J]. ACTA AERODYNAMICA SINICA, 2021, 39(1): 1-17. doi: 10.7638/kqdlxxb-2020.0159

可压缩湍流的多尺度分析

doi: 10.7638/kqdlxxb-2020.0159
基金项目: 

国家数值风洞工程 NNW2019ZT1-A01

国家数值风洞工程 NNW2019ZT1-A04

国家自然科学基金 11988102

国家自然科学基金 91952104

国家自然科学基金 91752201

国家自然科学基金 11702127

国家自然科学基金 11902139

详细信息
    作者简介:

    陈十一(1956-), 男, 浙江人, 教授, 研究方向: 湍流, 计算流体力学.E-mail: chensy@sustech.edu.cn

  • 中图分类号: V211.3

Multi-scale analyses of compressible turbulence

  • 摘要: 作者的研究团队近几年在可压缩湍流的多尺度性质方面开展了系统的研究工作。通过多过程分解,研究了可压缩湍流中的速度和热力学量的剪切部分、胀压部分、伪声模态、声模态、熵模态的多尺度性质,并总结了各类可压缩条件下的速度和热力学量的谱的标度律。通过滤波方法,研究了动能和热力学量的多尺度传输现象,并重点分析了可压缩性对动能胀压部分的多尺度传输的影响。在可压缩均匀剪切湍流中,可压缩效应更加明显,可压缩湍动能和耗散率等物理量的马赫数标度率与各向同性湍流类似,但胀压分量所占比重更大,并且变形速度张量特征值的概率密度函数和流动拓扑结构的比例分布等统计量随马赫数的变化也更加明显。对于振动非平衡可压缩各向同性湍流,平动-转动内能模式和振动内能模式间的弛豫效应导致密度梯度与振动温度梯度方向的偏离,从而弱化了流场中压缩和膨胀运动对振动弛豫率的影响。化学反应放热会显著增加流场的压缩与膨胀运动,导致速度胀压分量和热力学量的能谱在所有尺度均增大,湍动能和耗散率的标度律表现出马赫数无关性。
  • 图  1  剪切力驱动的弱可压缩湍流中,速度的胀压部分的谱

    Figure  1.  Spectrum of dilatational velocity in weakly compressible turbulence driven by solenoidal force

    图  2  剪切力驱动的强可压缩湍流中,速度的胀压部分的谱

    Figure  2.  Spectrum of dilatational velocity in highly compressible turbulence driven by solenoidal force

    图  3  剪切力和胀压力同时驱动的可压缩湍流中,速度的胀压部分的谱

    Figure  3.  Spectrum of dilatational velocity in compressible turbulence driven by both solenoidal and dilatational forces

    图  4  剪切力驱动、有热源的可压缩湍流中,速度的胀压部分的谱

    Figure  4.  Spectrum of dilatational velocity in compressible turbulence driven by solenoidal force and heat source

    图  5  (a) 动能传输项之和(实线)、亚格子动能流量(虚线)和黏性耗散(点划线);(b)压力做功

    Figure  5.  (a) Sum of kinetic energy transfer terms (solid line), SGS kinetic energy flux (dashed line), and viscous dissipation (dash-dotted line); (b) Pressure work

    图  6  胀压部分动能的传输项

    Figure  6.  Dilatational kinetic energy transfer terms

    图  7  温度脉动的亚格子流量、胀压项、热扩散和黏性耗散项以及各项之和

    Figure  7.  Transfer terms of temperature fluctuations

    图  8  熵的脉动的亚格子流量、胀压项、热扩散和黏性耗散项以及各项之和

    Figure  8.  Transfer terms of entropy fluctuations

    图  9  无量纲的可压缩湍动能Kd/KS和可压缩耗散率εd/εS随湍流马赫数的变化[51]

    Figure  9.  Normalized compressible kinetic energy Kd/KS and compressible dissipation rate εd/εS as a function of Mt[51]

    图  10  无量纲的压力、密度和温度的均方根值随湍流马赫数的变化[51]

    Figure  10.  Normalized r.m.s. values of pressure, density, and temperature at different turbulent Mach numbers and Taylor Reynolds numbers[51]

    图  11  变形速度张量Sij三个特征值βk(k=1, 2, 3) 的概率分布和条件概率密度分布[52]

    Figure  11.  The PDFs and conditional PDFs of βk(k=1, 2, 3) of the strain rate tensor Sij at Mt≈0.6[52]

    图  12  变形速度张量度第二、第三不变量的联合概率密度分布函数对数lgPDF(R*, Q*)的等值线.红线表示各向同性湍流的结果,黑线表示均匀剪切湍流的结果

    Figure  12.  Iso-contours lines of lgPDF(R*, Q*) in strong compression regions. Black and red lines represent for homogeneous shear turbulence and red line for homogeneous isotropic turbulence, respectively

    图  13  振动能级被激发的双原子分子气体内能模式与热非平衡态概念示意图。振动能级被激发情况下,根据振动弛豫时间与特征流动时间尺度的比值,可划分为振动平衡态和振动非平衡态, 在振动非平衡态下,比热比是温度的函数(≠ 1.4)。

    Figure  13.  A schematic overview of the internal energy modes for a diatomic molecule with and without vibrational excitation, as well as thermal nonequilibrium. With vibrational excitation, the ratio of specific heat is a function of temperature.

    图  14  瞬时的等值面图

    Figure  14.  Instantaneous iso-surfaces

    图  15  振动温度和密度梯度间夹角cosine函数值的概率分布函数

    Figure  15.  PDFs of the cosine functions of angle between gradients of the vibrational temperature and density

    图  16  归一化振动弛豫率的条件平均振动弛豫时间的影响、振动特征温度的影响

    Figure  16.  Conditioned average of normalized vibrational rate: Relaxation time effect; Characteristic temperature effect

    图  17  等温反应与放热反应中流场瞬时速度散度云图,Reλ≈160,Mt=0.2

    Figure  17.  Instantaneous contour of velocity divergence for isother-mal and exothermal reactions at Reλ≈160 and Mt=0.2

    图  18  密度归一化能谱在放热反应中(Da=200, Ze=8, Ce=3.168)随无量纲化学反应时间t/τ的变化,Reλ≈100

    Figure  18.  The temporal variation of compensated spectrum of density for exothermal reaction (Da=200, Ze=8, Ce=3.168)at Reλ≈100

    图  19  速度胀压分量归一化能谱在放热反应中(Da=200, Ze=8, Ce=3.168)随无量纲化学反应时间t/τ的变化,Reλ≈100

    Figure  19.  The temporal variation of compensated spectrum of dilatational velocity component for exothermal reaction (Da=200, Ze=8, Ce=3.168) at Reλ≈100

    图  20  等温反应和放热反应中,动能胀压部分与剪切部分比值以及动能耗散胀压部分与剪切部分比值随湍流马赫数的变化

    Figure  20.  The ratio of dilatational to solenoidal kinetic energy and the ratio of dilatational component to solenoidal component of kinetic energy dissipation for isothermal and exothermal reactions

    表  1  速度和热力学量的谱的标度指数

    Table  1.   Scaling exponents of spectra of velocity and thermodynamic variables

    ud p ρ, T
    (1) -3 -7/3 -7/3
    (2) -5/3 -5/3 -5/3
    (3) -2 -2 -2
    (4) -5/3 -5/3 -5/3
    注:(1)剪切力驱动的弱可压缩湍流;(2)剪切力驱动的强可压缩湍流;(3)剪切力和胀压力同时驱动;(4)剪切力驱动,有热源。
    下载: 导出CSV
  • [1] 傅德薰, 马延文, 李新亮, 等. 可压缩湍流直接数值模拟[M]. 北京: 科学出版社, 2010.

    FU D X, MA Y W, LI X L, et al. Direct numerical simulation of compressible turbulence[M]. Beijing: Science Press, 2010. (in Chinese)
    [2] CAO G, PAN L, XU K. Three dimensional high-order gas-kinetic scheme for supersonic isotropic turbulence I: Criterion for direct numerical simulation[J]. Computers & Fluids, 2019, 192: 104273. http://www.sciencedirect.com/science/article/pii/S0045793019302361
    [3] DONZIS D A, JOHN J P. Universality and scaling in homogeneous compressible turbulence[J]. Physical Review Fluids, 2020, 5(8), 084609. doi: 10.1103/PhysRevFluids.5.084609
    [4] LIANG X, LI X L. DNS of a spatially evolving hypersonic turbulent boundary layer at Mach 8[J]. Science China Physics, Mechanics and Astronomy, 2013, 56, 1408-1418. doi: 10.1007/s11433-013-5102-9
    [5] YU M, XU C X, PIROZZOLI S. Genuine compressibility effects in wall-bounded turbulence[J]. Physical Review Fluids, 2019, 4: 123402. doi: 10.1103/PhysRevFluids.4.123402
    [6] LIU L Q, WANG J C, SHI Y P, et al. A hybrid numerical simulation of supersonic isotropic turbulence[J]. Communications in Computational Physics, 2019, 25: 189-217.
    [7] YU J L, LU X Y. Subgrid effects on the filtered velocity gradient dynamics in compressible turbulence[J]. Journal of Fluid Mechanics, 2020, 892, A24. doi: 10.1017/jfm.2020.178
    [8] 吕宏强, 张涛, 孙强, 等. 间断伽辽金方法在可压缩流数值模拟中的应用研究综述[J]. 空气动力学学报, 2017, 35(04): 455-471. doi: 10.7638/kqdlxxb-2017.0051

    LYU H Q, ZHANG T, SUN Q, et al. Applications of discontinuous Galerkin method in numerical simulations of compressible flows: A review[J]. Acta Aerodynamica Sinica, 2017, 35(04): 455-471. (in Chinese) doi: 10.7638/kqdlxxb-2017.0051
    [9] 刘宏鹏, 高振勋, 蒋崇文, 等. 可压缩湍流边界层燃烧减阻研究综述[J]. 空气动力学学报, 2020, 38(03): 593-602. doi: 10.7638/kqdlxxb-2019.0147

    LIU H P, GAO Z X, JIANG C W, et al. Review of researches on compressible turbulent boundary layer combustion for skin friction reduction[J]. Acta Aerodynamica Sinica, 2020, 38(03): 593-602. (in Chinese) doi: 10.7638/kqdlxxb-2019.0147
    [10] 刘亮, 邱波, 曾磊, 等. 壁温对压缩拐角流动影响的数值模拟研究[J/OL]. [2020-08-27]. 空气动力学学报, 2020.

    LIU L, QIU B, ZENG L, et al. Numerical simulation of wall temperature effect on compressive corner flow[J/OL].[2020-08-27]. Acta Aerodynamica Sinica, 2020. (in Chinese)
    [11] 张兆顺, 崔桂香, 许春晓. 湍流大涡数值模拟的理论和应用[M]. 北京: 清华大学出版社, 2008.

    ZHANG Z S, CUI G X, XU C X. Theory and application of large eddy simulation of turbulent flows[M]. Beijing: Tsinghua University Press, 2008. (in Chinese)
    [12] GARNIER E, ADAMS N, SAGAUT P. Large eddy simulation for compressible flows[M]. Springer Verlag, 2009.
    [13] CHEN S Y, XIA Z H, PEI S Y, et al. Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows[J]. Journal of Fluid Mechanics, 2012, 703: 1-28. doi: 10.1017/jfm.2012.150
    [14] 夏振华, 史一蓬. 关于约束大涡模拟方法的一些思考[J]. 空气动力学学报, 2020, 038(002): 217-223. http://journal16.magtechjournal.com/Jweb_aas/CN/abstract/abstract22433.shtml

    XIA Z H, SHI Y P. Some thoughts on constrained large-eddy simulation method[J]. Acta Aerodynamica Sinica, 2020, 038(002): 217-223. (in Chinese) http://journal16.magtechjournal.com/Jweb_aas/CN/abstract/abstract22433.shtml
    [15] 陈建平, 黄伟希, 许春晓. 低亚声速和跨声速矩形柱绕流的大涡模拟研究[J]. 空气动力学学报, 2014, 32(006): 791-799. http://journal16.magtechjournal.com/Jweb_aas/CN/abstract/abstract11574.shtml

    CHEN J P, HUANG W X, XU C X. Large eddy simulation of flow around a rectangular cylinder at low subsonic and transonic speeds[J]. Acta Aerodynamica Sinica, 2014, 32(006): 791-799. (in Chinese) http://journal16.magtechjournal.com/Jweb_aas/CN/abstract/abstract11574.shtml
    [16] 张来平, 邓小刚, 何磊, 等. E级计算给CFD带来的机遇与挑战[J]. 空气动力学学报, 2016, 34(4): 405-417. doi: 10.7638/kqdlxxb-2014.0118

    ZHANG L P, DENG X G, HE L, et al. The opportunity and grand challenges in computational fluid dynamics by exascale computing[J]. Acta Aerodynamica Sinica, 2016, 34(4): 405-417. (in Chinese) doi: 10.7638/kqdlxxb-2014.0118
    [17] XIE C Y, WANG J C, LI H, et al. A modified optimal LES model for highly compressible isotropic turbulence[J]. Physics of Fluids, 2018, 30: 065108. doi: 10.1063/1.5027754
    [18] XIE C Y, WANG J C, LI K, et al. Artificial neural network approach to large-eddy simulation of compressible isotropic turbulence[J]. Physical Review E, 2019, 99: 053113. doi: 10.1103/PhysRevE.99.053113
    [19] XIE C Y, WANG J C, LI H, et al. Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence[J]. Physics of Fluids, 2019, 31: 085112. doi: 10.1063/1.5110788
    [20] XIE C Y, LI K, MA C, et al. Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network[J]. Physical Review Fluids, 2019, 4: 104605. doi: 10.1103/PhysRevFluids.4.104605
    [21] XIE C Y, WANG J C, LI H, et al. Spatially multi-scale artificial neural network model for large eddy simulation of compressible isotropic turbulence[J]. AIP Advances, 2020, 10: 015044. doi: 10.1063/1.5138681
    [22] XIE C Y, WANG J C, LI H, et al. An approximate second-order closure model for large eddy simulation of compressible isotropic turbulence[J]. Communications in Computational Physics, 2020, 27: 775-808. doi: 10.4208/cicp.OA-2018-0306
    [23] XIE C Y, WANG J C, LI H, et al. Spatial artificial neural network model for subgrid-scale stress and heat flux of compressible turbulence[J]. Theoretical and Applied Mechanics Letters, 2020, 10: 27-32. doi: 10.1016/j.taml.2020.01.006
    [24] MOYAL J E. The spectra of turbulence in a compressible fluid: Eddy turbulence and random noise[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1952, 48: 329-344. doi: 10.1017/S0305004100027675
    [25] KOVASZNAY L S G. Turbulence in supersonic flow[J]. Journal of the Aeronautical Sciences, 1953, 20: 657-674. doi: 10.2514/8.2793
    [26] SARKAR S, ERLEBACHER G, HUSSAINI M Y, et al. The analysis and modeling of dilatational terms in compressible turbulence[J]. Journal of Fluid Mechanics, 1991, 227: 473-493. doi: 10.1017/S0022112091000204
    [27] RISTORCELLI J R. A pseudo-sound constitutive relationship for the dilatational covariances in compressible turbulence[J]. Journal of Fluid Mechanics, 1997, 347: 37-70. doi: 10.1017/S0022112097006083
    [28] LEE S, LELE S, MOIN P. Eddy shocklets in decaying compressible turbulence[J]. Physics of Fluids A, 1991, 3: 657-664. doi: 10.1063/1.858071
    [29] SAMTANEY R, PULLIN D I, KOSOVIC B. Direct numerical simulation of decaying compressible turbulence and shocklet statistics[J]. Physics of Fluids, 2001, 13: 1415-1430. doi: 10.1063/1.1355682
    [30] JAGANNATHAN S, DONZIS D A. Reynolds and Mach number scaling insolenoidally-forced compressible turbulence using high-resolution direct numerical simulations[J]. Journal of Fluid Mechanics, 2016, 789: 669-707. doi: 10.1017/jfm.2015.754
    [31] 李新亮, 傅德薰, 马延文, 可压缩均匀各向同性湍流的直接数值模拟[J]. 中国科学A, 2002, 32: 716-724. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK200208006.htm

    LI X L, FU D X, MA Y W. Direct numerical simulation of compressible homogeneous isotropic turbulence[J]. China Science A, 2002, 32: 716-724. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK200208006.htm
    [32] LI X L, FU D X, MA Y W, et al. Direct numerical simulation of compressible turbulent flows[J]. Acta Mechanica Sinica, 2010, 26: 795-806. doi: 10.1007/s10409-010-0394-8
    [33] 李虎, 张树海. 可压缩各向同性衰减湍流直接数值模拟研究[J]. 力学学报, 2012, 44: 673-686. doi: 10.6052/0459-1879-11-353

    LI H, ZHANG S H. Direct numerical simulation study of compressible isotropic decaying turbulence[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44: 673-686. (in Chinese) doi: 10.6052/0459-1879-11-353
    [34] LI D, ZHANG X, HE G. Temporal decorrelations in compressible isotropic turbulence[J]. Physical Review E, 2013, 88: 021001. doi: 10.1103/PhysRevE.88.021001
    [35] WANG J C, WANG L P, XIAO Z L, et al. A hybrid numerical simulation of isotropic compressible turbulence[J]. Journal of Computational Physics, 2010, 229: 5257-5279. doi: 10.1016/j.jcp.2010.03.042
    [36] WANG J C, SHI Y P, WANG L P, et al. Effect of shocklets on the velocity gradients in highly compressible isotropic turbulence[J]. Physics of Fluids, 2011, 23: 125103. doi: 10.1063/1.3664124
    [37] WANG J C, SHI Y P, WANG L P, et al. Effect of compressibility on the small scale structures in isotropic turbulence[J]. Journal of Fluid Mechanics, 2012, 713: 588-631. doi: 10.1017/jfm.2012.474
    [38] WANG J C, SHI Y P, WANG L P, et al. Scaling and statistics in three-dimensional compressible turbulence[J]. Physical Review Letters, 2012, 108: 214505. doi: 10.1103/PhysRevLett.108.214505
    [39] WANG J C, YANG Y T, SHI Y P, et al. Cascade of kinetic energy in three-dimensional compressible turbulence[J]. Physical Review Letters, 2013, 110: 214505. doi: 10.1103/PhysRevLett.110.214505
    [40] YANG Y T, WANG J C, SHI Y P, et al. Acceleration of passive tracers in compressible turbulent flow[J]. Physical Review Letters, 2013, 110, 064503. doi: 10.1103/PhysRevLett.110.064503
    [41] YANG Y T, WANG J C, SHI Y P, et al. Interactions between inertial particles and shocklets in compressible turbulent flow[J]. Physics of Fluids, 2014, 26: 091702. doi: 10.1063/1.4896267
    [42] YANG Y T, WANG J C, SHI Y P, et al. Intermittency caused by compressibility: A Lagrangian study[J]. Journal of Fluid Mechanics, 2016, 786: R6. doi: 10.1017/jfm.2015.681
    [43] CHEN S Y, XIA Z H, WANG J C, et al. Recent progress in compressible turbulence[J]. Acta MechanicaSinica, 2015, 31: 275-291. doi: 10.1007/s10409-015-0459-9
    [44] WANG J C, GOTOH T, WATANABE T. Spectra and statistics in compressible isotropic turbulence[J]. Physical Review Fluids, 2017, 2: 013403. doi: 10.1103/PhysRevFluids.2.013403
    [45] WANG J C, GOTOH T, WATANABE T. Shocklet statistics in compressible isotropic turbulence[J]. Physical Review Fluids, 2017, 2: 023401. doi: 10.1103/PhysRevFluids.2.023401
    [46] WANG J C, GOTOH T, WATANABE T. Scaling and intermittency in compressible isotropic turbulence[J]. Physical Review Fluids, 2017, 2: 053401. doi: 10.1103/PhysRevFluids.2.053401
    [47] WANG J C, WAN M P, CHEN S, et al. Kinetic energy transfer incompressible isotropic turbulence[J]. Journal of Fluid Mechanics, 2018, 841: 581-613. doi: 10.1017/jfm.2018.23
    [48] WANG J C, WAN M P, CHEN S, et al. Effect of shock waves on the statistics and scaling in compressible isotropic turbulence[J]. Physical Review E, 2018, 97: 043108. doi: 10.1103/PhysRevE.97.043108
    [49] WANG J C, WAN M P, CHEN S, et al. Cascades of temperature and entropy fluctuations in compressible turbulence[J]. Journal of Fluid Mechanics, 2019, 867: 195-215. doi: 10.1017/jfm.2019.116
    [50] WANG J C, WANM P, CHEN S, et al. Effect of flow topology on the kinetic energy flux in compressible isotropic turbulence[J]. Journal of Fluid Mechanics, 2020, 883: A11. doi: 10.1017/jfm.2019.867
    [51] CHEN S, WANG J C, LI H, et al. Spectra and Mach number scaling in compressible homogeneous shear turbulence[J]. Physics of Fluids, 2018, 30(6): 065109. doi: 10.1063/1.5028294
    [52] CHEN S, WANG J C, LI H, et al. Effect of compressibility on small scale statistics in homogeneous shear turbulence[J]. Physics of Fluids, 2019, 31(2): 025107. doi: 10.1063/1.5077081
    [53] WANGX N, CHEN S, WANG J C, et al. Effect of compressibility on the local flow topology in homogeneous shear turbulence[J]. Physics of Fluids, 2020, 32(1): 015118. doi: 10.1063/1.5127911
    [54] CHEN S, WANGX N, WANG J C, et al. Effects of bulk viscosity on compressible homogeneous turbulence[J]. Physics of Fluids, 2019, 31(8): 085115. doi: 10.1063/1.5111062
    [55] TENG J, WANG J C, LI H, et al, Spectra and scaling in chemically reacting compressible isotropic turbulence[J]. Physical Review Fluids, 2020, 5(8): 084601. doi: 10.1103/PhysRevFluids.5.084601
    [56] ZHENG Q M, WANG J C, NOACK B R, et al. Vibrational relaxation in compressible isotropic turbulence with thermal nonequilibrium[J]. Physical Review Fluids, 2020, 5(4): 044602. doi: 10.1103/PhysRevFluids.5.044602
    [57] ROGALLO R S. Numerical experiments in homogeneous turbulence: NASA-TM-81315[R]. NASA Ames Research Center, Moffett Field, CA, USA, 1981.
    [58] PUMIR A. Turbulence in homogeneous shear flows[J]. Physics of Fluids, 1996, 8(11): 3112-3127. doi: 10.1063/1.869100
    [59] GUALTIERI P, CASCIOLA C M, BENZI R, et al. Scaling laws and intermittency in homogenous shear flow[J]. Physics of Fluids, 2002, 14(2): 583-596. doi: 10.1063/1.1427919
    [60] SEKIMOTO A, DONG S, JIMENEZ J. Direct numerical simulation of statistically stationary and homogeneous shear turbulence and its relation to other shear flows[J]. Physics of Fluids, 2016, 28(3): 035101. doi: 10.1063/1.4942496
    [61] CHONG M S, PERRY A E, CANTWELL B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids A, 1990, 2(5): 765-777. doi: 10.1063/1.857730
    [62] PIROZZOLI S, GRASSO F. Direct numerical simulations of isotropic compressible turbulence: Influence of compressibility on dynamics and structures[J]. Physics of Fluids, 2004, 16(12): 4386-4407. doi: 10.1063/1.1804553
    [63] 欧阳水吾, 谢中强. 高温非平衡空气绕流[M]. 北京: 国防工业出版社, 2001.

    OUYANG S W, XIE Z Q. High temperature nonequilibrium air flow[M]. Beijing: National Defense Industry Press, 2001. (in Chinese)
    [64] ANDERSON J D. Hypersonic and high temperature gas dynamics[M]. American Institute of Aeronautics and Astronautics, 2006.
    [65] JOSYULA E. Hypersonic nonequilibrium flows: Fundamentals and recent advances[M]. American Institute of Aeronautics and Astronautics, 2015.
    [66] CANDLER G V. Rate effects in hypersonic flows[J]. Annual Review of Fluid Mechanics, 2019, 51: 379-402. doi: 10.1146/annurev-fluid-010518-040258
    [67] DONZIS D A, MAQUI A F. Statistically steady states of forced isotropic turbulence inthermal equilibrium and non-equilibrium[J]. Journal of Fluid Mechanics, 2016, 797: 181-200. doi: 10.1017/jfm.2016.288
    [68] KHURSHID S, DONZIS D A. Decaying compressible turbulence with thermalnon-equilibrium[J]. Physics of Fluids, 2019, 31: 015103. doi: 10.1063/1.5080369
    [69] VINCENTI W G, KRUGER C H. Introduction to physical gas dynamics[M]. New York, US: Wiley, 1965.
    [70] LIBBY P A, WILLIAMS F A. Turbulent reacting flows[M]. Berlin: Springer-Verlag, 1980.
    [71] KUOK K, ACHARYA R. Applications of turbulent and multiphase combustion[M]. New Jersey: John Wiley & Sons, Ltd, 2012.
    [72] NORBERT P. Turbulent combustion[M]. Cambridge: Cambridge University Press, 2000.
    [73] JABERI F A, MADNIA C K. Effects of heat of reaction on homogeneous compressible turbulence[J]. Journal of Sentific Computing, 1998, 13(2): 201-228. doi: 10.1023/A:1023226211892
    [74] LIVESCU D, JABERI F A, MADNIA C K. The effects of heat release on the energy exchange in reacting turbulent shear flow[J]. Journal of Fluid Mechanics, 2002, 450: 35-66. doi: 10.1017/S0022112001006164
    [75] PAES P, XUAN Y. Numerical investigation of turbulent kinetic energy dynamics in chemically-reacting homogeneous turbulence[J]. Flow Turbulence and Combustion, 2018, 101: 775-794. doi: 10.1007/s10494-018-9937-z
    [76] JABERI F A, JAMES S. Effects of chemical reaction on two-dimensional turbulence[J]. Journal of sentific Computing, 1999, 14(1): 31-72. doi: 10.1023/A:1025672705324
    [77] JABERI F A, LIVESCU D, MADNIA C K. Characteristics of chemically reacting compressible homogeneous turbulence[J]. Physics of Fluids, 2000, 12(5): 1189-1209. doi: 10.1063/1.870370
    [78] ESCHENROEDER A Q. Intensification of turbulence by chemical heat release[J]. Physics of Fluids, 1964, 7(11): 1735-1743. doi: 10.1063/1.2746770
    [79] POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000.
    [80] RICHARDSON L F, LYNCH P. Weather prediction by numerical process[M]. Cambridge: Cambridge University Press, 2007.
    [81] LESLIE D C, QUARINI G L. The application of turbulence theory to the for mulation of subgrid modelling procedures[J]. Journal of Fluid Mechanics, 1979, 91(01): 65-91. doi: 10.1017/S0022112079000045
    [82] PIOMELLI U, CABOT W H, MOIN P, et al. Subgrid-scale backscatter in turbulent and transitional flows[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(7): 1766-1771. doi: 10.1063/1.857956
    [83] DOMARADZKI J A, SAIKI E M. Backscatter models for large-eddy simulations[J]. Theoretical & Computational Fluid Dynamics, 1997, 9(2): 75-83.
    [84] ISHIHARA T, GOTOH T, KANEDA Y. Study of high-Reynolds number isotropic turbulence by direct numerical simulation[J]. Annual Review of Fluid Mechanics, 2008, 41(1): 165-180. doi: 10.1146/annurev.fluid.010908.165203
    [85] CARDESA J I, VELA-MARTÍN A, DONG S, et al. The temporal evolution of the energy flux across scales in homogeneous turbulence[J]. Physics of Fluids, 2015, 27(11): 111702. doi: 10.1063/1.4935812
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  620
  • HTML全文浏览量:  119
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-01
  • 修回日期:  2020-11-09
  • 刊出日期:  2021-02-25

目录

    /

    返回文章
    返回