Multi-scale analyses of compressible turbulence
-
摘要: 作者的研究团队近几年在可压缩湍流的多尺度性质方面开展了系统的研究工作。通过多过程分解,研究了可压缩湍流中的速度和热力学量的剪切部分、胀压部分、伪声模态、声模态、熵模态的多尺度性质,并总结了各类可压缩条件下的速度和热力学量的谱的标度律。通过滤波方法,研究了动能和热力学量的多尺度传输现象,并重点分析了可压缩性对动能胀压部分的多尺度传输的影响。在可压缩均匀剪切湍流中,可压缩效应更加明显,可压缩湍动能和耗散率等物理量的马赫数标度率与各向同性湍流类似,但胀压分量所占比重更大,并且变形速度张量特征值的概率密度函数和流动拓扑结构的比例分布等统计量随马赫数的变化也更加明显。对于振动非平衡可压缩各向同性湍流,平动-转动内能模式和振动内能模式间的弛豫效应导致密度梯度与振动温度梯度方向的偏离,从而弱化了流场中压缩和膨胀运动对振动弛豫率的影响。化学反应放热会显著增加流场的压缩与膨胀运动,导致速度胀压分量和热力学量的能谱在所有尺度均增大,湍动能和耗散率的标度律表现出马赫数无关性。Abstract: Some recent studies on multi-scale properties of compressible turbulence conducted by the authors' group are reviewed. By multi-process decomposition methods, multi-scale properties of the solenoidal component, the dilatational component, the pseudo-sound mode, the acoustic mode, and the entropy modes of velocity and thermodynamic variables in compressible turbulence are studied. In addition, the scaling behaviors of spectra of velocity and thermodynamic variables in various situations of different compressibility are summarized. Inter-scale transfers of kinetic energy and thermodynamic variables are studied by filtering method, with the emphasis on the effects of compressibility on the inter-scale transfer of the dilatational component of kinetic energy. The compressible effects are stronger in compressible homogeneous shear turbulence. Mach number scaling behaviors of compressible kinetic energy and compressible dissipation rate are similar but have larger magnitudes as compared to those in compressible homogeneous isotropic turbulence. Distributions of eigenvalues of the strain rate tensor and the local flow topologies are more sensitive to the change of turbulent Mach number. For compressible isotropic turbulence in vibrational nonequilibrium, the vibrational relaxation between the translational-rotational and vibrational modes of internal energy results in the deviation between gradients of density and vibrational temperature, which further weakens the effect of compressibility on vibrational rate. Heat release through chemical reactions can greatly enhance compression and expansion motions and result in the increase of spectra of dilatational velocity components and thermodynamic variables at all length scales. The kinetic energy and its dissipation appear to be independent of the turbulent Mach number.
-
图 13 振动能级被激发的双原子分子气体内能模式与热非平衡态概念示意图。振动能级被激发情况下,根据振动弛豫时间与特征流动时间尺度的比值,可划分为振动平衡态和振动非平衡态, 在振动非平衡态下,比热比是温度的函数(≠ 1.4)。
Figure 13. A schematic overview of the internal energy modes for a diatomic molecule with and without vibrational excitation, as well as thermal nonequilibrium. With vibrational excitation, the ratio of specific heat is a function of temperature.
表 1 速度和热力学量的谱的标度指数
Table 1. Scaling exponents of spectra of velocity and thermodynamic variables
ud p ρ, T (1) -3 -7/3 -7/3 (2) -5/3 -5/3 -5/3 (3) -2 -2 -2 (4) -5/3 -5/3 -5/3 注:(1)剪切力驱动的弱可压缩湍流;(2)剪切力驱动的强可压缩湍流;(3)剪切力和胀压力同时驱动;(4)剪切力驱动,有热源。 -
[1] 傅德薰, 马延文, 李新亮, 等. 可压缩湍流直接数值模拟[M]. 北京: 科学出版社, 2010.FU D X, MA Y W, LI X L, et al. Direct numerical simulation of compressible turbulence[M]. Beijing: Science Press, 2010. (in Chinese) [2] CAO G, PAN L, XU K. Three dimensional high-order gas-kinetic scheme for supersonic isotropic turbulence I: Criterion for direct numerical simulation[J]. Computers & Fluids, 2019, 192: 104273. http://www.sciencedirect.com/science/article/pii/S0045793019302361 [3] DONZIS D A, JOHN J P. Universality and scaling in homogeneous compressible turbulence[J]. Physical Review Fluids, 2020, 5(8), 084609. doi: 10.1103/PhysRevFluids.5.084609 [4] LIANG X, LI X L. DNS of a spatially evolving hypersonic turbulent boundary layer at Mach 8[J]. Science China Physics, Mechanics and Astronomy, 2013, 56, 1408-1418. doi: 10.1007/s11433-013-5102-9 [5] YU M, XU C X, PIROZZOLI S. Genuine compressibility effects in wall-bounded turbulence[J]. Physical Review Fluids, 2019, 4: 123402. doi: 10.1103/PhysRevFluids.4.123402 [6] LIU L Q, WANG J C, SHI Y P, et al. A hybrid numerical simulation of supersonic isotropic turbulence[J]. Communications in Computational Physics, 2019, 25: 189-217. [7] YU J L, LU X Y. Subgrid effects on the filtered velocity gradient dynamics in compressible turbulence[J]. Journal of Fluid Mechanics, 2020, 892, A24. doi: 10.1017/jfm.2020.178 [8] 吕宏强, 张涛, 孙强, 等. 间断伽辽金方法在可压缩流数值模拟中的应用研究综述[J]. 空气动力学学报, 2017, 35(04): 455-471. doi: 10.7638/kqdlxxb-2017.0051LYU H Q, ZHANG T, SUN Q, et al. Applications of discontinuous Galerkin method in numerical simulations of compressible flows: A review[J]. Acta Aerodynamica Sinica, 2017, 35(04): 455-471. (in Chinese) doi: 10.7638/kqdlxxb-2017.0051 [9] 刘宏鹏, 高振勋, 蒋崇文, 等. 可压缩湍流边界层燃烧减阻研究综述[J]. 空气动力学学报, 2020, 38(03): 593-602. doi: 10.7638/kqdlxxb-2019.0147LIU H P, GAO Z X, JIANG C W, et al. Review of researches on compressible turbulent boundary layer combustion for skin friction reduction[J]. Acta Aerodynamica Sinica, 2020, 38(03): 593-602. (in Chinese) doi: 10.7638/kqdlxxb-2019.0147 [10] 刘亮, 邱波, 曾磊, 等. 壁温对压缩拐角流动影响的数值模拟研究[J/OL]. [2020-08-27]. 空气动力学学报, 2020.LIU L, QIU B, ZENG L, et al. Numerical simulation of wall temperature effect on compressive corner flow[J/OL].[2020-08-27]. Acta Aerodynamica Sinica, 2020. (in Chinese) [11] 张兆顺, 崔桂香, 许春晓. 湍流大涡数值模拟的理论和应用[M]. 北京: 清华大学出版社, 2008.ZHANG Z S, CUI G X, XU C X. Theory and application of large eddy simulation of turbulent flows[M]. Beijing: Tsinghua University Press, 2008. (in Chinese) [12] GARNIER E, ADAMS N, SAGAUT P. Large eddy simulation for compressible flows[M]. Springer Verlag, 2009. [13] CHEN S Y, XIA Z H, PEI S Y, et al. Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows[J]. Journal of Fluid Mechanics, 2012, 703: 1-28. doi: 10.1017/jfm.2012.150 [14] 夏振华, 史一蓬. 关于约束大涡模拟方法的一些思考[J]. 空气动力学学报, 2020, 038(002): 217-223. http://journal16.magtechjournal.com/Jweb_aas/CN/abstract/abstract22433.shtmlXIA Z H, SHI Y P. Some thoughts on constrained large-eddy simulation method[J]. Acta Aerodynamica Sinica, 2020, 038(002): 217-223. (in Chinese) http://journal16.magtechjournal.com/Jweb_aas/CN/abstract/abstract22433.shtml [15] 陈建平, 黄伟希, 许春晓. 低亚声速和跨声速矩形柱绕流的大涡模拟研究[J]. 空气动力学学报, 2014, 32(006): 791-799. http://journal16.magtechjournal.com/Jweb_aas/CN/abstract/abstract11574.shtmlCHEN J P, HUANG W X, XU C X. Large eddy simulation of flow around a rectangular cylinder at low subsonic and transonic speeds[J]. Acta Aerodynamica Sinica, 2014, 32(006): 791-799. (in Chinese) http://journal16.magtechjournal.com/Jweb_aas/CN/abstract/abstract11574.shtml [16] 张来平, 邓小刚, 何磊, 等. E级计算给CFD带来的机遇与挑战[J]. 空气动力学学报, 2016, 34(4): 405-417. doi: 10.7638/kqdlxxb-2014.0118ZHANG L P, DENG X G, HE L, et al. The opportunity and grand challenges in computational fluid dynamics by exascale computing[J]. Acta Aerodynamica Sinica, 2016, 34(4): 405-417. (in Chinese) doi: 10.7638/kqdlxxb-2014.0118 [17] XIE C Y, WANG J C, LI H, et al. A modified optimal LES model for highly compressible isotropic turbulence[J]. Physics of Fluids, 2018, 30: 065108. doi: 10.1063/1.5027754 [18] XIE C Y, WANG J C, LI K, et al. Artificial neural network approach to large-eddy simulation of compressible isotropic turbulence[J]. Physical Review E, 2019, 99: 053113. doi: 10.1103/PhysRevE.99.053113 [19] XIE C Y, WANG J C, LI H, et al. Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence[J]. Physics of Fluids, 2019, 31: 085112. doi: 10.1063/1.5110788 [20] XIE C Y, LI K, MA C, et al. Modeling subgrid-scale force and divergence of heat flux of compressible isotropic turbulence by artificial neural network[J]. Physical Review Fluids, 2019, 4: 104605. doi: 10.1103/PhysRevFluids.4.104605 [21] XIE C Y, WANG J C, LI H, et al. Spatially multi-scale artificial neural network model for large eddy simulation of compressible isotropic turbulence[J]. AIP Advances, 2020, 10: 015044. doi: 10.1063/1.5138681 [22] XIE C Y, WANG J C, LI H, et al. An approximate second-order closure model for large eddy simulation of compressible isotropic turbulence[J]. Communications in Computational Physics, 2020, 27: 775-808. doi: 10.4208/cicp.OA-2018-0306 [23] XIE C Y, WANG J C, LI H, et al. Spatial artificial neural network model for subgrid-scale stress and heat flux of compressible turbulence[J]. Theoretical and Applied Mechanics Letters, 2020, 10: 27-32. doi: 10.1016/j.taml.2020.01.006 [24] MOYAL J E. The spectra of turbulence in a compressible fluid: Eddy turbulence and random noise[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1952, 48: 329-344. doi: 10.1017/S0305004100027675 [25] KOVASZNAY L S G. Turbulence in supersonic flow[J]. Journal of the Aeronautical Sciences, 1953, 20: 657-674. doi: 10.2514/8.2793 [26] SARKAR S, ERLEBACHER G, HUSSAINI M Y, et al. The analysis and modeling of dilatational terms in compressible turbulence[J]. Journal of Fluid Mechanics, 1991, 227: 473-493. doi: 10.1017/S0022112091000204 [27] RISTORCELLI J R. A pseudo-sound constitutive relationship for the dilatational covariances in compressible turbulence[J]. Journal of Fluid Mechanics, 1997, 347: 37-70. doi: 10.1017/S0022112097006083 [28] LEE S, LELE S, MOIN P. Eddy shocklets in decaying compressible turbulence[J]. Physics of Fluids A, 1991, 3: 657-664. doi: 10.1063/1.858071 [29] SAMTANEY R, PULLIN D I, KOSOVIC B. Direct numerical simulation of decaying compressible turbulence and shocklet statistics[J]. Physics of Fluids, 2001, 13: 1415-1430. doi: 10.1063/1.1355682 [30] JAGANNATHAN S, DONZIS D A. Reynolds and Mach number scaling insolenoidally-forced compressible turbulence using high-resolution direct numerical simulations[J]. Journal of Fluid Mechanics, 2016, 789: 669-707. doi: 10.1017/jfm.2015.754 [31] 李新亮, 傅德薰, 马延文, 可压缩均匀各向同性湍流的直接数值模拟[J]. 中国科学A, 2002, 32: 716-724. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK200208006.htmLI X L, FU D X, MA Y W. Direct numerical simulation of compressible homogeneous isotropic turbulence[J]. China Science A, 2002, 32: 716-724. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK200208006.htm [32] LI X L, FU D X, MA Y W, et al. Direct numerical simulation of compressible turbulent flows[J]. Acta Mechanica Sinica, 2010, 26: 795-806. doi: 10.1007/s10409-010-0394-8 [33] 李虎, 张树海. 可压缩各向同性衰减湍流直接数值模拟研究[J]. 力学学报, 2012, 44: 673-686. doi: 10.6052/0459-1879-11-353LI H, ZHANG S H. Direct numerical simulation study of compressible isotropic decaying turbulence[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44: 673-686. (in Chinese) doi: 10.6052/0459-1879-11-353 [34] LI D, ZHANG X, HE G. Temporal decorrelations in compressible isotropic turbulence[J]. Physical Review E, 2013, 88: 021001. doi: 10.1103/PhysRevE.88.021001 [35] WANG J C, WANG L P, XIAO Z L, et al. A hybrid numerical simulation of isotropic compressible turbulence[J]. Journal of Computational Physics, 2010, 229: 5257-5279. doi: 10.1016/j.jcp.2010.03.042 [36] WANG J C, SHI Y P, WANG L P, et al. Effect of shocklets on the velocity gradients in highly compressible isotropic turbulence[J]. Physics of Fluids, 2011, 23: 125103. doi: 10.1063/1.3664124 [37] WANG J C, SHI Y P, WANG L P, et al. Effect of compressibility on the small scale structures in isotropic turbulence[J]. Journal of Fluid Mechanics, 2012, 713: 588-631. doi: 10.1017/jfm.2012.474 [38] WANG J C, SHI Y P, WANG L P, et al. Scaling and statistics in three-dimensional compressible turbulence[J]. Physical Review Letters, 2012, 108: 214505. doi: 10.1103/PhysRevLett.108.214505 [39] WANG J C, YANG Y T, SHI Y P, et al. Cascade of kinetic energy in three-dimensional compressible turbulence[J]. Physical Review Letters, 2013, 110: 214505. doi: 10.1103/PhysRevLett.110.214505 [40] YANG Y T, WANG J C, SHI Y P, et al. Acceleration of passive tracers in compressible turbulent flow[J]. Physical Review Letters, 2013, 110, 064503. doi: 10.1103/PhysRevLett.110.064503 [41] YANG Y T, WANG J C, SHI Y P, et al. Interactions between inertial particles and shocklets in compressible turbulent flow[J]. Physics of Fluids, 2014, 26: 091702. doi: 10.1063/1.4896267 [42] YANG Y T, WANG J C, SHI Y P, et al. Intermittency caused by compressibility: A Lagrangian study[J]. Journal of Fluid Mechanics, 2016, 786: R6. doi: 10.1017/jfm.2015.681 [43] CHEN S Y, XIA Z H, WANG J C, et al. Recent progress in compressible turbulence[J]. Acta MechanicaSinica, 2015, 31: 275-291. doi: 10.1007/s10409-015-0459-9 [44] WANG J C, GOTOH T, WATANABE T. Spectra and statistics in compressible isotropic turbulence[J]. Physical Review Fluids, 2017, 2: 013403. doi: 10.1103/PhysRevFluids.2.013403 [45] WANG J C, GOTOH T, WATANABE T. Shocklet statistics in compressible isotropic turbulence[J]. Physical Review Fluids, 2017, 2: 023401. doi: 10.1103/PhysRevFluids.2.023401 [46] WANG J C, GOTOH T, WATANABE T. Scaling and intermittency in compressible isotropic turbulence[J]. Physical Review Fluids, 2017, 2: 053401. doi: 10.1103/PhysRevFluids.2.053401 [47] WANG J C, WAN M P, CHEN S, et al. Kinetic energy transfer incompressible isotropic turbulence[J]. Journal of Fluid Mechanics, 2018, 841: 581-613. doi: 10.1017/jfm.2018.23 [48] WANG J C, WAN M P, CHEN S, et al. Effect of shock waves on the statistics and scaling in compressible isotropic turbulence[J]. Physical Review E, 2018, 97: 043108. doi: 10.1103/PhysRevE.97.043108 [49] WANG J C, WAN M P, CHEN S, et al. Cascades of temperature and entropy fluctuations in compressible turbulence[J]. Journal of Fluid Mechanics, 2019, 867: 195-215. doi: 10.1017/jfm.2019.116 [50] WANG J C, WANM P, CHEN S, et al. Effect of flow topology on the kinetic energy flux in compressible isotropic turbulence[J]. Journal of Fluid Mechanics, 2020, 883: A11. doi: 10.1017/jfm.2019.867 [51] CHEN S, WANG J C, LI H, et al. Spectra and Mach number scaling in compressible homogeneous shear turbulence[J]. Physics of Fluids, 2018, 30(6): 065109. doi: 10.1063/1.5028294 [52] CHEN S, WANG J C, LI H, et al. Effect of compressibility on small scale statistics in homogeneous shear turbulence[J]. Physics of Fluids, 2019, 31(2): 025107. doi: 10.1063/1.5077081 [53] WANGX N, CHEN S, WANG J C, et al. Effect of compressibility on the local flow topology in homogeneous shear turbulence[J]. Physics of Fluids, 2020, 32(1): 015118. doi: 10.1063/1.5127911 [54] CHEN S, WANGX N, WANG J C, et al. Effects of bulk viscosity on compressible homogeneous turbulence[J]. Physics of Fluids, 2019, 31(8): 085115. doi: 10.1063/1.5111062 [55] TENG J, WANG J C, LI H, et al, Spectra and scaling in chemically reacting compressible isotropic turbulence[J]. Physical Review Fluids, 2020, 5(8): 084601. doi: 10.1103/PhysRevFluids.5.084601 [56] ZHENG Q M, WANG J C, NOACK B R, et al. Vibrational relaxation in compressible isotropic turbulence with thermal nonequilibrium[J]. Physical Review Fluids, 2020, 5(4): 044602. doi: 10.1103/PhysRevFluids.5.044602 [57] ROGALLO R S. Numerical experiments in homogeneous turbulence: NASA-TM-81315[R]. NASA Ames Research Center, Moffett Field, CA, USA, 1981. [58] PUMIR A. Turbulence in homogeneous shear flows[J]. Physics of Fluids, 1996, 8(11): 3112-3127. doi: 10.1063/1.869100 [59] GUALTIERI P, CASCIOLA C M, BENZI R, et al. Scaling laws and intermittency in homogenous shear flow[J]. Physics of Fluids, 2002, 14(2): 583-596. doi: 10.1063/1.1427919 [60] SEKIMOTO A, DONG S, JIMENEZ J. Direct numerical simulation of statistically stationary and homogeneous shear turbulence and its relation to other shear flows[J]. Physics of Fluids, 2016, 28(3): 035101. doi: 10.1063/1.4942496 [61] CHONG M S, PERRY A E, CANTWELL B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids A, 1990, 2(5): 765-777. doi: 10.1063/1.857730 [62] PIROZZOLI S, GRASSO F. Direct numerical simulations of isotropic compressible turbulence: Influence of compressibility on dynamics and structures[J]. Physics of Fluids, 2004, 16(12): 4386-4407. doi: 10.1063/1.1804553 [63] 欧阳水吾, 谢中强. 高温非平衡空气绕流[M]. 北京: 国防工业出版社, 2001.OUYANG S W, XIE Z Q. High temperature nonequilibrium air flow[M]. Beijing: National Defense Industry Press, 2001. (in Chinese) [64] ANDERSON J D. Hypersonic and high temperature gas dynamics[M]. American Institute of Aeronautics and Astronautics, 2006. [65] JOSYULA E. Hypersonic nonequilibrium flows: Fundamentals and recent advances[M]. American Institute of Aeronautics and Astronautics, 2015. [66] CANDLER G V. Rate effects in hypersonic flows[J]. Annual Review of Fluid Mechanics, 2019, 51: 379-402. doi: 10.1146/annurev-fluid-010518-040258 [67] DONZIS D A, MAQUI A F. Statistically steady states of forced isotropic turbulence inthermal equilibrium and non-equilibrium[J]. Journal of Fluid Mechanics, 2016, 797: 181-200. doi: 10.1017/jfm.2016.288 [68] KHURSHID S, DONZIS D A. Decaying compressible turbulence with thermalnon-equilibrium[J]. Physics of Fluids, 2019, 31: 015103. doi: 10.1063/1.5080369 [69] VINCENTI W G, KRUGER C H. Introduction to physical gas dynamics[M]. New York, US: Wiley, 1965. [70] LIBBY P A, WILLIAMS F A. Turbulent reacting flows[M]. Berlin: Springer-Verlag, 1980. [71] KUOK K, ACHARYA R. Applications of turbulent and multiphase combustion[M]. New Jersey: John Wiley & Sons, Ltd, 2012. [72] NORBERT P. Turbulent combustion[M]. Cambridge: Cambridge University Press, 2000. [73] JABERI F A, MADNIA C K. Effects of heat of reaction on homogeneous compressible turbulence[J]. Journal of Sentific Computing, 1998, 13(2): 201-228. doi: 10.1023/A:1023226211892 [74] LIVESCU D, JABERI F A, MADNIA C K. The effects of heat release on the energy exchange in reacting turbulent shear flow[J]. Journal of Fluid Mechanics, 2002, 450: 35-66. doi: 10.1017/S0022112001006164 [75] PAES P, XUAN Y. Numerical investigation of turbulent kinetic energy dynamics in chemically-reacting homogeneous turbulence[J]. Flow Turbulence and Combustion, 2018, 101: 775-794. doi: 10.1007/s10494-018-9937-z [76] JABERI F A, JAMES S. Effects of chemical reaction on two-dimensional turbulence[J]. Journal of sentific Computing, 1999, 14(1): 31-72. doi: 10.1023/A:1025672705324 [77] JABERI F A, LIVESCU D, MADNIA C K. Characteristics of chemically reacting compressible homogeneous turbulence[J]. Physics of Fluids, 2000, 12(5): 1189-1209. doi: 10.1063/1.870370 [78] ESCHENROEDER A Q. Intensification of turbulence by chemical heat release[J]. Physics of Fluids, 1964, 7(11): 1735-1743. doi: 10.1063/1.2746770 [79] POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000. [80] RICHARDSON L F, LYNCH P. Weather prediction by numerical process[M]. Cambridge: Cambridge University Press, 2007. [81] LESLIE D C, QUARINI G L. The application of turbulence theory to the for mulation of subgrid modelling procedures[J]. Journal of Fluid Mechanics, 1979, 91(01): 65-91. doi: 10.1017/S0022112079000045 [82] PIOMELLI U, CABOT W H, MOIN P, et al. Subgrid-scale backscatter in turbulent and transitional flows[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(7): 1766-1771. doi: 10.1063/1.857956 [83] DOMARADZKI J A, SAIKI E M. Backscatter models for large-eddy simulations[J]. Theoretical & Computational Fluid Dynamics, 1997, 9(2): 75-83. [84] ISHIHARA T, GOTOH T, KANEDA Y. Study of high-Reynolds number isotropic turbulence by direct numerical simulation[J]. Annual Review of Fluid Mechanics, 2008, 41(1): 165-180. doi: 10.1146/annurev.fluid.010908.165203 [85] CARDESA J I, VELA-MARTÍN A, DONG S, et al. The temporal evolution of the energy flux across scales in homogeneous turbulence[J]. Physics of Fluids, 2015, 27(11): 111702. doi: 10.1063/1.4935812 -