[1] |
JAMESON A. Computational aerodynamics for aircraft design[J]. Science, 1989, 245(4916): 361-371. DOI: 10.1126/science.245.4916.361.
|
[2] |
AGARWAL R. Computational fluid dynamics of whole-body aircraft[J]. Annual Review of Fluid Mechanics, 1999, 31(1): 125-169. DOI: 10.1146/annurev.fluid.31.1.125.
|
[3] |
OBERKAMPF W L, SINDIR M N, CONLISK A T. Guide: Guide for the verification and validation of computational fluid dynamics simulations(AIAA G-077-1998(2002))[M]. American Institute of Aeronautics and Astronautics, 1998.
|
[4] |
OBERKAMPF W L, DELAND S M, RUTHERFORD B M, et al. Estimation of total uncertainty in modeling and simulation[R]. Sandia National Laboratories, SAND 2000-0824, 2000.
|
[5] |
SCHWER L E. Guide for verification and validation in computational solid mechanics: an overview of the PTC 60/V&V 10[M]. The American Society of Mechanical Engineers, 2006.https://cstools.asme.org/csconnect/FileUpload.cfm?View=yes&ID=24816
|
[6] |
ASME V&V 20-2009. Standard for verification and validation in computational fluid dynamics and heat transfer[S]. The American Society of Mechanical Engineers, 2009. https://files.asme.org/Catalog/Codes/PrintBook/21356.pdf
|
[7] |
ASME V&V 10.1-2012. An illustration of the concepts of verification and validation in computational solid mechanics[S]. The American Society of Mechanical Engineers, 2012. https://www.asme.org/getmedia/ae188d7f-e6ad-483f-bf6f-194d1049d17a/31917.pdf
|
[8] |
HIRSCH C. NODESIM-CFD: Non-deterministic simulation for CFD based design methodologies[R]. AST5-CT-2006-030959, 2006. https://trimis.ec.europa.eu/sites/default/files/project/documents/20121026_100225_36867_Aerodays-2011.pdf
|
[9] |
SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: a path to revolutionary computational aerosciences[R]. NASA Langley Research Center, Hampton, Virginia, NASA CR-2014-218178. https://core.ac.uk/download/pdf/42732819.pdf
|
[10] |
Airbus Group Innovations. Current engineering practices in UQ&M in aeronautics and associated challenges[Z/OL]. 2016.https://reseau-mexico.fr/sites/mexicoD8/files/Mangeant_2.pdf
|
[11] |
张涵信. 关于CFD计算结果的不确定度问题[J]. 空气动力学学报, 2008, 26(1): 47-49, 90. doi: 10.3969/j.issn.0258-1825.2008.01.009ZHANG H X. On the uncertainty about CFD results[J]. Acta Aerodynamica Sinica, 2008, 26(1): 47-49, 90. (in Chinese) doi: 10.3969/j.issn.0258-1825.2008.01.009
|
[12] |
王瑞利, 江松. 多物理耦合非线性偏微分方程与数值解不确定度量化数学方法[J]. 中国科学: 数学, 2015, 45(6): 723-738. doi: 10.1360/N012014-00115WANG R L, JIANG S. Mathematical methods for uncertainty quantification in nonlinear multi-physics systems and their numerical simulations[J]. SCIENTIA SINICA Mathematica, 2015, 45(6): 723-738. (in Chinese) doi: 10.1360/N012014-00115
|
[13] |
梁霄, 王瑞利. 爆炸波问题中偶然不确定度的量化[J]. 高压物理学报, 2016, 30(6): 531-536.LIANG X, WANG R L. Quantification of aleatory uncertainty in blast wave problem[J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 531-536. (in Chinese)
|
[14] |
梁霄, 王瑞利. 爆炸波中的混合不确定度量化方法[J]. 计算物理, 2017, 34(5): 574-582. doi: 10.3969/j.issn.1001-246X.2017.05.006LIANG X, WANG R L. Mixed uncertainty quantification of blast wave problem[J]. Chinese Journal of Computational Physics, 2017, 34(5): 574-582. (in Chinese) doi: 10.3969/j.issn.1001-246X.2017.05.006
|
[15] |
王运涛, 刘刚, 陈作斌. 第一届航空CFD可信度研讨会总结[J]. 空气动力学学报, 2019, 37(2): 247-261, 246. doi: 10.7638/kqdlxxb-2018.0219WANG Y T, LIU G, CHEN Z B. Summary of the first aeronautical computational fluid dynamics credibility workshop[J]. Acta Aerodynamica Sinica, 2019, 37(2): 247-261, 246. (in Chinese) doi: 10.7638/kqdlxxb-2018.0219
|
[16] |
陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J]. 中国科学: 技术科学, 2020(在线发表).CHEN J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J]. SCIENTIA SINICA Technologica, 2020(online). (in Chinese) doi: 10.1360/SST-2020-0334
|
[17] |
LEE H B, GHIA U, BAYYUK S, et al. Development and use of engineering standards for computational fluid dynamics for complex aerospace systems[C]//46th AIAA Fluid Dynamics Conference, Washington D C, Reston, Virginia: AIAA, 2016. doi: 10.2514/6.2016-3811
|
[18] |
NASA-STD-7009. Standard for Models and Simulations[S]. National Aeronautics and Space Administration, 2008. https://standards.nasa.gov/sites/default/files/nasa-std-7009.pdf
|
[19] |
SCHAEFER J A, ROMERO V J, SCHAFER S R, et al. Approaches for quantifying uncertainties in computational modeling for aerospace applications[C]//AIAA Scitech 2020 Forum, Orlando, FL. Reston, Virginia: AIAA, 2020. doi: 10.2514/6.2020-1520
|
[20] |
CULLEN A, FREY H C. Probabilistic techniques in exposure assessment: A handbook for dealing with variability and uncertainty in models and inputs[M]. Plenum Press, New York, 1999.
|
[21] |
SÁNDOR Z, ANDRÁS P. Alternative sampling methods for estimating multivariate normal probabilities[J]. Journal of Econometrics, 2004, 120(2): 207-234. DOI: 10.1016/S0304-4076(03)00212-4.
|
[22] |
LE MAÎTRE O P, KNIO O M. Spectral methods for uncertainty quantification: with applications to computational fluid dynamics[M]. Springer, 2010. doi: 10.1007/978-90-481-3520-2
|
[23] |
MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21(2): 239. DOI: 10.2307/1268522.
|
[24] |
SANTNER T J, WILLIAMS B J, NOTZ W I. The design and analysis of computer experiments[M]. New York, NY: Springer New York, 2003. doi: 10.1007/978-1-4757-3799-8
|
[25] |
HELTON J C, DAVIS F J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[J]. Reliability Engineering & System Safety, 2003, 81(1): 23-69. DOI: 10.1016/S0951-8320(03)00058-9.
|
[26] |
HELTON J C, JOHNSON J D, SALLABERRY C J P, et al. Survey of sampling-based methods for uncertainty and sensitivity analysis.[R]. Sandia National Laboratories, SAND 2006-2901, 2006. https://digital.library.unt.edu/ark:/67531/metadc891681/m2/1/high_res_d/886897.pdf
|
[27] |
GHANEM R G, SPANOS P D. Stochastic finite elements: A spectral approach[M]. New York, NY: Springer New York, 1991. doi: 10.1007/978-1-4612-3094-6
|
[28] |
DINESCU C, SMIRNOV S, HIRSCH C, et al. Assessment of intrusive and non-intrusive non-deterministic CFD methodologies based on polynomial chaos expansions[J]. International Journal of Engineering Systems Modelling and Simulation, 2010, 2(1/2): 87-98.. DOI: 10.1504/ijesms.2010.031874.
|
[29] |
MYERS R H, MONTGOMERY D C. Response surface methodology[J]. IIE Transactions, 1996, 28(12): 1031-1032. DOI: 10.1080/15458830.1996.11770760.
|
[30] |
HOSDER S, WALTERS R W, BALCH M. Point-collocation nonintrusive polynomial chaos method for stochastic computational fluid dynamics[J]. AIAA Journal, 2010, 48(12): 2721-2730. DOI: 10.2514/1.39389.
|
[31] |
ELDRED M. Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, California. Reston, Virginia: AIAA, 2009. doi: 10.2514/6.2009-2274
|
[32] |
XIU D B, LUCOR D, SU C H, et al. Stochastic modeling of flow-structure interactions using generalized polynomial chaos[J]. Journal of Fluids Engineering, 2002, 124(1): 51-59. DOI: 10.1115/1.1436089.
|
[33] |
WITTEVEEN J A S, BIJL H. Modeling arbitrary uncertainties using gram-Schmidt polynomial chaos[C]//44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virginia: AIAA, 2006. doi: 10.2514/6.2006-896
|
[34] |
RESMINI A, PETER J, LUCOR D. Sparse grids-based stochastic approximations with applications to aerodynamics sensitivity analysis[J]. International Journal for Numerical Methods in Engineering, 2016, 106(1): 32-57. DOI: 10.1002/nme.5005.
|
[35] |
BOMPARD M, PETER J, DÉSIDÉRI J S. Surrogate models based on function and derivative values for aerodynamic global optimization[C]//V European Conference on Computational, 2010, Lisbonne, Portugal. INRIA-00537120. https://hal.inria.fr/inria-00537120/document
|
[36] |
HANSEN E, WALSTER G W. Global optimization using interval analysis[M]. New York: Marcel Dekker, 1992.
|
[37] |
TABER R. The fuzzy systems handbook: a practitioner's guide to building, using, and maintaining fuzzy systems (earl cox)[J]. SIAM Review, 1995, 37(2): 281-282. DOI: 10.1137/1037078.
|
[38] |
TUCKER W T, FERSON S. Sensitivity in risk analyses with uncertain numbers[R]. Sandia Report, SAND 2006-2801, 2006. https://digital.library.unt.edu/ark:/67531/metadc874250/m2/1/high_res_d/886899.pdfdoi: 10.2172/886899
|
[39] |
FERSON S, TUCKER W T. Sensitivity analysis using probability bounding[J]. Reliability Engineering & System Safety, 2006, 91(10-11): 1435-1442. DOI: 10.1016/j.ress.2005.11.052.
|
[40] |
GOODMAN I R, NGUYEN H T. Probability updating using second order probabilities and conditional event algebra[J]. Information Sciences, 1999, 121(3-4): 295-347. DOI: 10.1016/S0020-0255(99)00089-4.
|
[41] |
SWILER L P, PAEZ T L, MAYES R L. Epistemic uncertainty quantification tutorial[C]//IMAC XXVII conference and exposition on structural dynamics, Orlando, FL, 2009. https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/294_swi.pdf
|
[42] |
ELDRED M S, SWILER L P, TANG G. Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation[J]. Reliability Engineering & System Safety, 2011, 96(9): 1092-1113. DOI: 10.1016/j.ress.2010.11.010.
|
[43] |
WILLIAMSON R C, DOWNS T. Probabilistic arithmetic. I. Numerical methods for calculating convolutions and dependency bounds[J]. International Journal of Approximate Reasoning, 1990, 4(2): 89-158. DOI: 10.1016/0888-613X(90)90022-T.
|
[44] |
FERSON S, KREINOVICK V, GINZBURG L, et al. Constructing probability boxes and dempster-shafer structures[R]. Sandia Report, SAND 2002-4015, 2003. https://www.researchgate.net/publication/2898381_Constructing_Probability_Boxes_and_Dempster-Shafer_Structures doi: 10.2172/809606
|
[45] |
ROMERO V. Approximate probability boxes and other shortcuts in a broad-before-deep approach to balanced UQ[C]//ASME 2015 V&V Symposium, Las Vegas, NV. SAND 2015-3605C. https://www.osti.gov/servlets/purl/1252925
|
[46] |
RICHARDSON L F. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam[J]. Philosophical Transactions of the Royal Society A, 1911, 210(1): 459-470. DOI: 10.1098/rsta.1911.0009 https://royalsocietypublishing.org/doi/pdf/ 10.1098/rsta.1911.0009.
|
[47] |
CELIK I, KARATEKIN O. Numerical experiments on application of Richardson extrapolation with nonuniform grids[J]. Journal of Fluids Engineering, 1997, 119(3): 584-590. DOI: 10.1115/1.2819284.
|
[48] |
CELIK I B, GHIA U,. ROACHE P J, et al.. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications[J]. Journal of Fluids Engineering, 2008, 130(7): 078001. DOI: 10.1115/1.2960953.
|
[49] |
赵训友, 林景松, 童晓艳. 基于Richardson外推法的CFD中离散不确定度估计[J]. 系统仿真学报, 2014, 26(10): 2315-2320.ZHAO X Y, LIN J S, TONG X Y. Discretization uncertainty estimation in CFD based on Richardson extrapolation method[J]. Journal of System Simulation, 2014, 26(10): 2315-2320. (in Chinese)
|
[50] |
SCHAEFER J A, HOSDER S, MANI M, et al. The effect of grid topology and flow solver on turbulence model closure coefficient uncertainties for a transonic airfoil[C]//46th AIAA Fluid Dynamics Conference, Washington D C. Reston, Virginia: AIAA, 2016. doi: 10.2514/6.2016-4400
|
[51] |
LOEVEN A, BIJL H. Airfoil analysis with uncertain geometry using the probabilistic collocation method[C]// 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schaumburg, IL, 2008. AIAA 2008-2070. doi: 10.2514/6.2008-2070
|
[52] |
PARUSSINI L, PEDIRODA V, POLONI C. Prediction of geometric uncertainty effects on Fluid Dynamics by Polynomial Chaos and Fictitious Domain method[J]. Computers & Fluids, 2010, 39(1): 137-151. DOI: 10.1016/j.compfluid.2009.07.008.
|
[53] |
LIU D S, LITVINENKO A, SCHILLINGS C, et al. Quantification of airfoil geometry-induced aerodynamic uncertainties---comparison of approaches[J]. SIAM/ASA Journal on Uncertainty Quantification, 2017, 5(1): 334-352. DOI: 10.1137/15m1050239.
|
[54] |
LIU Z Y, WANG X D, KANG S. Stochastic performance evaluation of horizontal axis wind turbine blades using non-deterministic CFD simulations[J]. Energy, 2014, 73: 126-136. DOI: 10.1016/j.energy.2014.05.107.
|
[55] |
TROJAK W, WATSON R, SCILLITOE A, et al. Effect of mesh quality on flux reconstruction in multi-dimensions[J]. Journal of Scientific Computing, 2020, 82(3): 1-36. DOI: 10.1007/s10915-020-01184-2.
|
[56] |
Liu S Y, Wang Y B, Qin N, Zhao N. Quantification of Airfoil Aerodynamic Uncertainty due to Pressure-Sensitive Paint Thickness[J]. AIAA JOURNAL, 2020, 58(4): 1432-1440. DOI: 10.2514/1.J058801.
|
[57] |
XIU D B, KARNIADAKIS G E. The Wiener: askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2): 619-644. DOI: 10.1137/s1064827501387826.
|
[58] |
LOEVEN G J A, BIJL H. Probabilistic Collocation used in a Two-Step approach for efficient uncertainty quantification in computational fluid dynamics[J]. Computer Modeling in Engineering and Sciences, 2008, 36(3): 193-212. DOI: 10.3970/cmes.2008.036.193.
|
[59] |
MARIOTTI A, SALVETTI M V, SHOEIBI OMRANI P, et al. Stochastic analysis of the impact of freestream conditions on the aerodynamics of a rectangular 5: 1 cylinder[J]. Computers & Fluids, 2016, 136: 170-192. DOI: 10.1016/j.compfluid.2016.06.008.
|
[60] |
AVDONIN A, POLIFKE W. Quantification of the impact of uncertainties in operating conditions on the flame transfer function with nonintrusive polynomial chaos expansion[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(1): 011020. DOI: 10.1115/1.4040745.
|
[61] |
ZHU H Y, WANG G, LIU Y, et al. Numerical investigation of transonic buffet on supercritical airfoil considering uncertainties in wind tunnel testing[J]. International Journal of Modern Physics B, 2020, 34(14n16): 2040083. DOI: 10.1142/s0217979220400834.
|
[62] |
刘智益, 王晓东, 康顺. 叶顶间隙尺度的不确定性对压气机性能影响的CFD模拟[J]. 工程热物理学报, 2013, 34(4): 628-631.LIU Z Y, WANG X D, KANG S. CFD simulations of uncertain tip clearance effect on compressor performance[J]. Journal of Engineering Thermophysics, 2013, 34(4): 628-631. (in Chinese)
|
[63] |
邬晓敬, 张伟伟, 宋述芳, 等. 翼型跨声速气动特性的不确定性及全局灵敏度分析[J]. 力学学报, 2015, 47(4): 587-595. doi: 10.6052/0459-1879-14-372WU X J, ZHANG W W, SONG S F, et al. Uncertainty quantification and global sensitivity analysis of transonic aerodynamics about airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 587-595. (in Chinese) doi: 10.6052/0459-1879-14-372
|
[64] |
WANG Y J, ZHANG S D. Uncertainty quantification of numerical simulation of flows around a cylinder using non-intrusive polynomial chaos[J]. Chinese Physics Letters, 2016, 33(9): 090501. DOI: 10.1088/0256-307x/33/9/090501.
|
[65] |
邓小兵, 陈琦, 袁先旭, 等. 复杂构型细长体飞行器大迎角气动不确定性机理研究[J]. 中国科学: 技术科学, 2016, 46(5): 493-499. doi: 10.1360/N092015-00053DENG X B, CHEN Q, YUAN X X, et al. Study of aerodynamic uncertainty on the complex slender vehicle at high angle of attack[J]. SCIENTIA SINICA Technologica, 2016, 46(5): 493-499. (in Chinese) doi: 10.1360/N092015-00053
|
[66] |
徐林程, 王刚, 武洁, 等. 翼型风洞试验中不确定性分析的自动微分方法[J]. 航空学报, 2014, 35(8): 2102-2111.XU L C, WANG G, WU J, et al. Uncertainty analysis of airfoil wind tunnel tests with automatic differentiation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8): 2102-2111. (in Chinese)
|
[67] |
DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual Review of Fluid Mechanics, 2019, 51(1): 357-377. DOI: 10.1146/annurev-fluid-010518-040547.
|
[68] |
XIAO H, CINNELLA P. Quantification of model uncertainty in RANS simulations: a review[J]. Progress in Aerospace Sciences, 2019, 108: 1-31. DOI: 10.1016/j.paerosci.2018.10.001.
|
[69] |
LUMLEY J L, NEWMAN G R. The return to isotropy of homogeneous turbulence[J]. Journal of Fluid Mechanics, 1977, 82(1): 161-178. DOI: 10.1017/s0022112077000585.
|
[70] |
BANERJEE S, KRAHL R, DURST F, et al. Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches[J]. Journal of Turbulence, 2007, 8: N32. DOI: 10.1080/14685240701506896.
|
[71] |
EMORY M, PECNIK R, IACCARINO G. Modeling structural uncertainties in Reynolds-averaged computations of shock/boundary layer interactions[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida. Reston, Virginia: AIAA, 2011. doi: 10.2514/6.2011-479
|
[72] |
EMORY M, LARSSON J, IACCARINO G. Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures[J]. Physics of Fluids, 2013, 25(11): 110822. DOI: 10.1063/1.4824659.
|
[73] |
IACCARINO G, MISHRA A A, GHILI S, Eigenspace perturbations for uncertainty estimation of single-point turbulence closures[J]. Physical Review Fluids, 2017, 2(2): 024605.Doi: 10.1103/PhysRevFluids.2.024605.
|
[74] |
MISHRA A A, MUKHOPADHAYA J, IACCARINO G, et al. Uncertainty estimation module for turbulence model predictions in SU2[J]. AIAA Journal, 2018, 57(3): 1066-1077. DOI: 10.2514/1.J057187.
|
[75] |
XIAO H, WANG J X, GHANEM R G. A random matrix approach for quantifying model-form uncertainties in turbulence modeling[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 941-965. DOI: 10.1016/j.cma.2016.10.025.
|
[76] |
WANG J X, SUN R, XIAO H. Quantification of uncertainties in turbulence modeling: a comparison of physics-based and random matrix theoretic approaches[J]. International Journal of Heat and Fluid Flow, 2016, 62: 577-592. DOI: 10.1016/j.ijheatfluidflow.2016.07.005.
|
[77] |
EDELING W N, IACCARINO G, CINNELLA P. Data-free and data-driven RANS predictions with quantified uncertainty[J]. Flow, Turbulence and Combustion, 2018, 100(3): 593-616. DOI: 10.1007/s10494-017-9870-6.
|
[78] |
POPE S B. Turbulent flows[M]. Cambridge, UK: Cambridge Univ. Press, 2000.
|
[79] |
EISFELD B. Reynolds stress anisotropy in self-preserving turbulent shear flows[R]. DLR-Interner Bericht. DLR-IB-AS-BS-2017-106, 158 S. https://elib.dlr.de/113887/
|
[80] |
DUNN M C, SHOTORBAN B, FRENDI A. Uncertainty quantification of turbulence model coefficients via Latin hypercube sampling method[J]. Journal of Fluids Engineering, 2011, 133(4): 041402. DOI: 10.1115/1.4003762.
|
[81] |
PLATTEEUW P D A, LOEVEN G J A, BIJL H. Uncertainty quantification applied to the k-epsilon model of turbulence using the probabilistic collocation method[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schaumburg, IL. Reston, Virginia: AIAA, 2008. doi: 10.2514/6.2008-2150
|
[82] |
SHAH H R, HOSDER S, WINTER T. A mixed uncertainty quantification approach with evidence theory and stochastic expansions[C]//16th AIAA Non-Deterministic Approaches Conference, National Harbor, Maryland. Reston, Virginia: AIAA, 2014. doi: 10.2514/6.2014-0298
|
[83] |
WEST T K, HOSDER S, JOHNSTON C O. Multistep uncertainty quantification approach applied to hypersonic reentry flows[J]. Journal of Spacecraft and Rockets, 2013, 51(1): 296-310. DOI: 10.2514/1.A32592.
|
[84] |
QUAGLIARELLA D, SERANI A, DIEZ M, et al. Benchmarking uncertainty quantification methods using the NACA2412 airfoil with geometrical and operational uncertainties[C]//AIAA Aviation 2019 Forum, Dallas, Texas. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-3555
|
[85] |
DUQUE E P, LAWRENCE S. Spectre: a computational environment for managing total uncertainty quantification of CFD studies[C]//AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-2221
|
[86] |
SCHAEFER J A, CARY A W, DUQUE E P, et al. Application of a CFD uncertainty quantification framework for industrial-scale aerodynamic analysis[C]//AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-1492
|
[87] |
WIGNALL T J, HOULDEN H. Uncertainty quantification for launch vehicle aerodynamic lineloads[C]//AIAA Scitech 2020 Forum, Orlando, FL. Reston, Virginia: AIAA, 2020. doi: 10.2514/6.2020-1521
|
[88] |
SCHAEFER J A, CARY A W, MANI M, et al. Uncertainty quantification and sensitivity analysis of SA turbulence model coefficients in two and three dimensions[C]//55th AIAA Aerospace Sciences Meeting, Grapevine, Texas. Reston, Virginia: AIAA, 2017. doi: 10.2514/6.2017-1710
|
[89] |
肖思男, 吕震宙, 王薇. 不确定性结构全局灵敏度分析方法概述[J]. 中国科学: 物理学 力学 天文学, 2018, 48(1): 8-25.XIAO S N, LV Z Z, WANG W. A review of global sensitivity analysis for uncertainty structure[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(1): 8-25. (in Chinese)
|
[90] |
STORLIE C B, SWILER L P, HELTON J C, et al. Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models[J]. Reliability Engineering & System Safety, 2009, 94(11): 1735-1763. DOI: 10.1016/j.ress.2009.05.007.
|
[91] |
SALTELLI A, ANNONI P, AZZINI I, et al. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[J]. Computer Physics Communications, 2010, 181(2): 259-270. DOI: 10.1016/j.cpc.2009.09.018.
|
[92] |
SUDRET B. Global sensitivity analysis using polynomial chaos expansions[J]. Reliability Engineering & System Safety, 2008, 93(7): 964-979. DOI: 10.1016/j.ress.2007.04.002.
|
[93] |
DUVIGNEAU R, PELLETIER D. A sensitivity equation method for fast evaluation of nearby flows and uncertainty analysis for shape parameters[J]. International Journal of Computational Fluid Dynamics, 2006, 20(7): 497-512. DOI: 10.1080/10618560600910059.
|
[94] |
FIORINI C, DESPRÉS B, PUSCAS M A. Sensitivity equation method for the Navier-Stokes equations applied to uncertainty propagation[J]. International Journal for Numerical Methods in Fluids, 2021, 93(1): 71-92. DOI: 10.1002/fld.4875.
|