留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFD不确定度量化方法研究综述

陈鑫 王刚 叶正寅 吴晓军

陈鑫, 王刚, 叶正寅, 等. CFD不确定度量化方法研究综述[J]. 空气动力学学报, 2021, 39(4): 1−13 doi: 10.7638/kqdlxxb-2021.0012
引用本文: 陈鑫, 王刚, 叶正寅, 等. CFD不确定度量化方法研究综述[J]. 空气动力学学报, 2021, 39(4): 1−13 doi: 10.7638/kqdlxxb-2021.0012
CHEN X, WANG G, YE Z Y, et al. A review of uncertainty quantification methods for Computational Fluid Dynamics[J]. Acta Aerodynamica Sinica, 2021, 39(4): 1−13 doi: 10.7638/kqdlxxb-2021.0012
Citation: CHEN X, WANG G, YE Z Y, et al. A review of uncertainty quantification methods for Computational Fluid Dynamics[J]. Acta Aerodynamica Sinica, 2021, 39(4): 1−13 doi: 10.7638/kqdlxxb-2021.0012

CFD不确定度量化方法研究综述

doi: 10.7638/kqdlxxb-2021.0012
基金项目: 国家数值风洞工程(NNW2019ZT7-B22);国家自然科学基金(11772265,92052109)
详细信息
    作者简介:

    陈鑫(1993-),男,江苏人,博士研究生,研究方向:流体力学. E-mail:nwpucxshining@163.com

    通讯作者:

    王刚*(1977-)男,教授,研究方向:计算流体力学. E-mail:wanggang@nwpu.edu.cn

  • 中图分类号: V211.3

A review of uncertainty quantification methods for Computational Fluid Dynamics

  • 摘要: 随着计算流体力学(CFD)算法和软件的不断发展和完善,CFD数值模拟已经在涉及流体力学的各个领域发挥着日益重要的作用。不确定性因素在CFD计算过程中普遍存在,并且会对数值模拟结果造成影响。发展CFD不确定度量化方法,既能满足工程实践中对CFD可信度评估的需求,同时也能够支撑飞行器的精细化设计。本文旨在总结不确定度量化方法及其在CFD领域中的发展与应用。首先介绍CFD计算中的不确定性来源,以及不确定性的表现形式—随机不确定性和认知不确定性。然后按照不确定性的表现形式介绍对应的不确定度量化方法。最后介绍不确定度量化方法在CFD计算中的发展与应用,并且给出进一步开展不确定度量化工作的建议。
  • 图  1  二维后台阶流动轴向速度分布[48]

    Figure  1.  Wall-normal profiles of axial velocities for a two-dimensional backward-facing-step laminar flow simulated by different grids[48]

    图  2  NACA5412翼型升力系数不确定带[51]

    Figure  2.  The uncertainty bounds of lift coefficient for NACA5412 airfoil[51]

    图  3  NASA SC(2)-0714翼型表面压力系数及脉动压力系数不确定带[61]

    Figure  3.  The mean and root-means-square of the pressure coefficient with uncertainty bounds[61]

    图  4  不同类别的湍流模型以及其中的不确定性来源[67]

    Figure  4.  A sketch of uncertainties introdued by turbulence models[67]

    图  5  雷诺偏应力张量不变量图[70]

    Figure  5.  Reynolds stress ellipsoids, in the eigenspace[70]

    图  6  摄动法雷诺应力椭球极值状态可视化显示[74]

    Figure  6.  Schematic visualization of the extremal states as Reynolds stress ellipsoids in the eigenspace perturbation methodology [74]

    图  7  MD30P30N多段翼型采用雷诺应力摄动法表面压力系数及摩擦力系数不确定带

    Figure  7.  The mean and root-mean-square of (a) pressure and (b) friction coefficients on MD30P30N with uncertainty bounds

    图  8  NACA0012翼型升力系数累积密度分布函数[86]

    Figure  8.  The cumulative probability distribution of lift coefficient for NACA0012[86]

    图  9  NACA0012翼型表面压力系数不确定带[85]

    Figure  9.  The total UQ of pressure coefficient for NACA0012[85]

    图  10  NASA CRM模型表面压力系数结果图[88]

    Figure  10.  Pressure coefficient for the NASA CRM configuration[88]

  • [1] JAMESON A. Computational aerodynamics for aircraft design[J]. Science, 1989, 245(4916): 361-371. DOI: 10.1126/science.245.4916.361.
    [2] AGARWAL R. Computational fluid dynamics of whole-body aircraft[J]. Annual Review of Fluid Mechanics, 1999, 31(1): 125-169. DOI: 10.1146/annurev.fluid.31.1.125.
    [3] OBERKAMPF W L, SINDIR M N, CONLISK A T. Guide: Guide for the verification and validation of computational fluid dynamics simulations(AIAA G-077-1998(2002))[M]. American Institute of Aeronautics and Astronautics, 1998.
    [4] OBERKAMPF W L, DELAND S M, RUTHERFORD B M, et al. Estimation of total uncertainty in modeling and simulation[R]. Sandia National Laboratories, SAND 2000-0824, 2000.
    [5] SCHWER L E. Guide for verification and validation in computational solid mechanics: an overview of the PTC 60/V&V 10[M]. The American Society of Mechanical Engineers, 2006.https://cstools.asme.org/csconnect/FileUpload.cfm?View=yes&ID=24816
    [6] ASME V&V 20-2009. Standard for verification and validation in computational fluid dynamics and heat transfer[S]. The American Society of Mechanical Engineers, 2009. https://files.asme.org/Catalog/Codes/PrintBook/21356.pdf
    [7] ASME V&V 10.1-2012. An illustration of the concepts of verification and validation in computational solid mechanics[S]. The American Society of Mechanical Engineers, 2012. https://www.asme.org/getmedia/ae188d7f-e6ad-483f-bf6f-194d1049d17a/31917.pdf
    [8] HIRSCH C. NODESIM-CFD: Non-deterministic simulation for CFD based design methodologies[R]. AST5-CT-2006-030959, 2006. https://trimis.ec.europa.eu/sites/default/files/project/documents/20121026_100225_36867_Aerodays-2011.pdf
    [9] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: a path to revolutionary computational aerosciences[R]. NASA Langley Research Center, Hampton, Virginia, NASA CR-2014-218178. https://core.ac.uk/download/pdf/42732819.pdf
    [10] Airbus Group Innovations. Current engineering practices in UQ&M in aeronautics and associated challenges[Z/OL]. 2016.https://reseau-mexico.fr/sites/mexicoD8/files/Mangeant_2.pdf
    [11] 张涵信. 关于CFD计算结果的不确定度问题[J]. 空气动力学学报, 2008, 26(1): 47-49, 90. doi: 10.3969/j.issn.0258-1825.2008.01.009

    ZHANG H X. On the uncertainty about CFD results[J]. Acta Aerodynamica Sinica, 2008, 26(1): 47-49, 90. (in Chinese) doi: 10.3969/j.issn.0258-1825.2008.01.009
    [12] 王瑞利, 江松. 多物理耦合非线性偏微分方程与数值解不确定度量化数学方法[J]. 中国科学: 数学, 2015, 45(6): 723-738. doi: 10.1360/N012014-00115

    WANG R L, JIANG S. Mathematical methods for uncertainty quantification in nonlinear multi-physics systems and their numerical simulations[J]. SCIENTIA SINICA Mathematica, 2015, 45(6): 723-738. (in Chinese) doi: 10.1360/N012014-00115
    [13] 梁霄, 王瑞利. 爆炸波问题中偶然不确定度的量化[J]. 高压物理学报, 2016, 30(6): 531-536.

    LIANG X, WANG R L. Quantification of aleatory uncertainty in blast wave problem[J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 531-536. (in Chinese)
    [14] 梁霄, 王瑞利. 爆炸波中的混合不确定度量化方法[J]. 计算物理, 2017, 34(5): 574-582. doi: 10.3969/j.issn.1001-246X.2017.05.006

    LIANG X, WANG R L. Mixed uncertainty quantification of blast wave problem[J]. Chinese Journal of Computational Physics, 2017, 34(5): 574-582. (in Chinese) doi: 10.3969/j.issn.1001-246X.2017.05.006
    [15] 王运涛, 刘刚, 陈作斌. 第一届航空CFD可信度研讨会总结[J]. 空气动力学学报, 2019, 37(2): 247-261, 246. doi: 10.7638/kqdlxxb-2018.0219

    WANG Y T, LIU G, CHEN Z B. Summary of the first aeronautical computational fluid dynamics credibility workshop[J]. Acta Aerodynamica Sinica, 2019, 37(2): 247-261, 246. (in Chinese) doi: 10.7638/kqdlxxb-2018.0219
    [16] 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J]. 中国科学: 技术科学, 2020(在线发表).

    CHEN J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J]. SCIENTIA SINICA Technologica, 2020(online). (in Chinese) doi: 10.1360/SST-2020-0334
    [17] LEE H B, GHIA U, BAYYUK S, et al. Development and use of engineering standards for computational fluid dynamics for complex aerospace systems[C]//46th AIAA Fluid Dynamics Conference, Washington D C, Reston, Virginia: AIAA, 2016. doi: 10.2514/6.2016-3811
    [18] NASA-STD-7009. Standard for Models and Simulations[S]. National Aeronautics and Space Administration, 2008. https://standards.nasa.gov/sites/default/files/nasa-std-7009.pdf
    [19] SCHAEFER J A, ROMERO V J, SCHAFER S R, et al. Approaches for quantifying uncertainties in computational modeling for aerospace applications[C]//AIAA Scitech 2020 Forum, Orlando, FL. Reston, Virginia: AIAA, 2020. doi: 10.2514/6.2020-1520
    [20] CULLEN A, FREY H C. Probabilistic techniques in exposure assessment: A handbook for dealing with variability and uncertainty in models and inputs[M]. Plenum Press, New York, 1999.
    [21] SÁNDOR Z, ANDRÁS P. Alternative sampling methods for estimating multivariate normal probabilities[J]. Journal of Econometrics, 2004, 120(2): 207-234. DOI: 10.1016/S0304-4076(03)00212-4.
    [22] LE MAÎTRE O P, KNIO O M. Spectral methods for uncertainty quantification: with applications to computational fluid dynamics[M]. Springer, 2010. doi: 10.1007/978-90-481-3520-2
    [23] MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21(2): 239. DOI: 10.2307/1268522.
    [24] SANTNER T J, WILLIAMS B J, NOTZ W I. The design and analysis of computer experiments[M]. New York, NY: Springer New York, 2003. doi: 10.1007/978-1-4757-3799-8
    [25] HELTON J C, DAVIS F J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[J]. Reliability Engineering & System Safety, 2003, 81(1): 23-69. DOI: 10.1016/S0951-8320(03)00058-9.
    [26] HELTON J C, JOHNSON J D, SALLABERRY C J P, et al. Survey of sampling-based methods for uncertainty and sensitivity analysis.[R]. Sandia National Laboratories, SAND 2006-2901, 2006. https://digital.library.unt.edu/ark:/67531/metadc891681/m2/1/high_res_d/886897.pdf
    [27] GHANEM R G, SPANOS P D. Stochastic finite elements: A spectral approach[M]. New York, NY: Springer New York, 1991. doi: 10.1007/978-1-4612-3094-6
    [28] DINESCU C, SMIRNOV S, HIRSCH C, et al. Assessment of intrusive and non-intrusive non-deterministic CFD methodologies based on polynomial chaos expansions[J]. International Journal of Engineering Systems Modelling and Simulation, 2010, 2(1/2): 87-98.. DOI: 10.1504/ijesms.2010.031874.
    [29] MYERS R H, MONTGOMERY D C. Response surface methodology[J]. IIE Transactions, 1996, 28(12): 1031-1032. DOI: 10.1080/15458830.1996.11770760.
    [30] HOSDER S, WALTERS R W, BALCH M. Point-collocation nonintrusive polynomial chaos method for stochastic computational fluid dynamics[J]. AIAA Journal, 2010, 48(12): 2721-2730. DOI: 10.2514/1.39389.
    [31] ELDRED M. Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, California. Reston, Virginia: AIAA, 2009. doi: 10.2514/6.2009-2274
    [32] XIU D B, LUCOR D, SU C H, et al. Stochastic modeling of flow-structure interactions using generalized polynomial chaos[J]. Journal of Fluids Engineering, 2002, 124(1): 51-59. DOI: 10.1115/1.1436089.
    [33] WITTEVEEN J A S, BIJL H. Modeling arbitrary uncertainties using gram-Schmidt polynomial chaos[C]//44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virginia: AIAA, 2006. doi: 10.2514/6.2006-896
    [34] RESMINI A, PETER J, LUCOR D. Sparse grids-based stochastic approximations with applications to aerodynamics sensitivity analysis[J]. International Journal for Numerical Methods in Engineering, 2016, 106(1): 32-57. DOI: 10.1002/nme.5005.
    [35] BOMPARD M, PETER J, DÉSIDÉRI J S. Surrogate models based on function and derivative values for aerodynamic global optimization[C]//V European Conference on Computational, 2010, Lisbonne, Portugal. INRIA-00537120. https://hal.inria.fr/inria-00537120/document
    [36] HANSEN E, WALSTER G W. Global optimization using interval analysis[M]. New York: Marcel Dekker, 1992.
    [37] TABER R. The fuzzy systems handbook: a practitioner's guide to building, using, and maintaining fuzzy systems (earl cox)[J]. SIAM Review, 1995, 37(2): 281-282. DOI: 10.1137/1037078.
    [38] TUCKER W T, FERSON S. Sensitivity in risk analyses with uncertain numbers[R]. Sandia Report, SAND 2006-2801, 2006. https://digital.library.unt.edu/ark:/67531/metadc874250/m2/1/high_res_d/886899.pdfdoi: 10.2172/886899
    [39] FERSON S, TUCKER W T. Sensitivity analysis using probability bounding[J]. Reliability Engineering & System Safety, 2006, 91(10-11): 1435-1442. DOI: 10.1016/j.ress.2005.11.052.
    [40] GOODMAN I R, NGUYEN H T. Probability updating using second order probabilities and conditional event algebra[J]. Information Sciences, 1999, 121(3-4): 295-347. DOI: 10.1016/S0020-0255(99)00089-4.
    [41] SWILER L P, PAEZ T L, MAYES R L. Epistemic uncertainty quantification tutorial[C]//IMAC XXVII conference and exposition on structural dynamics, Orlando, FL, 2009. https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/294_swi.pdf
    [42] ELDRED M S, SWILER L P, TANG G. Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation[J]. Reliability Engineering & System Safety, 2011, 96(9): 1092-1113. DOI: 10.1016/j.ress.2010.11.010.
    [43] WILLIAMSON R C, DOWNS T. Probabilistic arithmetic. I. Numerical methods for calculating convolutions and dependency bounds[J]. International Journal of Approximate Reasoning, 1990, 4(2): 89-158. DOI: 10.1016/0888-613X(90)90022-T.
    [44] FERSON S, KREINOVICK V, GINZBURG L, et al. Constructing probability boxes and dempster-shafer structures[R]. Sandia Report, SAND 2002-4015, 2003. https://www.researchgate.net/publication/2898381_Constructing_Probability_Boxes_and_Dempster-Shafer_Structures doi: 10.2172/809606
    [45] ROMERO V. Approximate probability boxes and other shortcuts in a broad-before-deep approach to balanced UQ[C]//ASME 2015 V&V Symposium, Las Vegas, NV. SAND 2015-3605C. https://www.osti.gov/servlets/purl/1252925
    [46] RICHARDSON L F. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam[J]. Philosophical Transactions of the Royal Society A, 1911, 210(1): 459-470. DOI: 10.1098/rsta.1911.0009 https://royalsocietypublishing.org/doi/pdf/ 10.1098/rsta.1911.0009.
    [47] CELIK I, KARATEKIN O. Numerical experiments on application of Richardson extrapolation with nonuniform grids[J]. Journal of Fluids Engineering, 1997, 119(3): 584-590. DOI: 10.1115/1.2819284.
    [48] CELIK I B, GHIA U,. ROACHE P J, et al.. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications[J]. Journal of Fluids Engineering, 2008, 130(7): 078001. DOI: 10.1115/1.2960953.
    [49] 赵训友, 林景松, 童晓艳. 基于Richardson外推法的CFD中离散不确定度估计[J]. 系统仿真学报, 2014, 26(10): 2315-2320.

    ZHAO X Y, LIN J S, TONG X Y. Discretization uncertainty estimation in CFD based on Richardson extrapolation method[J]. Journal of System Simulation, 2014, 26(10): 2315-2320. (in Chinese)
    [50] SCHAEFER J A, HOSDER S, MANI M, et al. The effect of grid topology and flow solver on turbulence model closure coefficient uncertainties for a transonic airfoil[C]//46th AIAA Fluid Dynamics Conference, Washington D C. Reston, Virginia: AIAA, 2016. doi: 10.2514/6.2016-4400
    [51] LOEVEN A, BIJL H. Airfoil analysis with uncertain geometry using the probabilistic collocation method[C]// 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schaumburg, IL, 2008. AIAA 2008-2070. doi: 10.2514/6.2008-2070
    [52] PARUSSINI L, PEDIRODA V, POLONI C. Prediction of geometric uncertainty effects on Fluid Dynamics by Polynomial Chaos and Fictitious Domain method[J]. Computers & Fluids, 2010, 39(1): 137-151. DOI: 10.1016/j.compfluid.2009.07.008.
    [53] LIU D S, LITVINENKO A, SCHILLINGS C, et al. Quantification of airfoil geometry-induced aerodynamic uncertainties---comparison of approaches[J]. SIAM/ASA Journal on Uncertainty Quantification, 2017, 5(1): 334-352. DOI: 10.1137/15m1050239.
    [54] LIU Z Y, WANG X D, KANG S. Stochastic performance evaluation of horizontal axis wind turbine blades using non-deterministic CFD simulations[J]. Energy, 2014, 73: 126-136. DOI: 10.1016/j.energy.2014.05.107.
    [55] TROJAK W, WATSON R, SCILLITOE A, et al. Effect of mesh quality on flux reconstruction in multi-dimensions[J]. Journal of Scientific Computing, 2020, 82(3): 1-36. DOI: 10.1007/s10915-020-01184-2.
    [56] Liu S Y, Wang Y B, Qin N, Zhao N. Quantification of Airfoil Aerodynamic Uncertainty due to Pressure-Sensitive Paint Thickness[J]. AIAA JOURNAL, 2020, 58(4): 1432-1440. DOI: 10.2514/1.J058801.
    [57] XIU D B, KARNIADAKIS G E. The Wiener: askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2): 619-644. DOI: 10.1137/s1064827501387826.
    [58] LOEVEN G J A, BIJL H. Probabilistic Collocation used in a Two-Step approach for efficient uncertainty quantification in computational fluid dynamics[J]. Computer Modeling in Engineering and Sciences, 2008, 36(3): 193-212. DOI: 10.3970/cmes.2008.036.193.
    [59] MARIOTTI A, SALVETTI M V, SHOEIBI OMRANI P, et al. Stochastic analysis of the impact of freestream conditions on the aerodynamics of a rectangular 5: 1 cylinder[J]. Computers & Fluids, 2016, 136: 170-192. DOI: 10.1016/j.compfluid.2016.06.008.
    [60] AVDONIN A, POLIFKE W. Quantification of the impact of uncertainties in operating conditions on the flame transfer function with nonintrusive polynomial chaos expansion[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(1): 011020. DOI: 10.1115/1.4040745.
    [61] ZHU H Y, WANG G, LIU Y, et al. Numerical investigation of transonic buffet on supercritical airfoil considering uncertainties in wind tunnel testing[J]. International Journal of Modern Physics B, 2020, 34(14n16): 2040083. DOI: 10.1142/s0217979220400834.
    [62] 刘智益, 王晓东, 康顺. 叶顶间隙尺度的不确定性对压气机性能影响的CFD模拟[J]. 工程热物理学报, 2013, 34(4): 628-631.

    LIU Z Y, WANG X D, KANG S. CFD simulations of uncertain tip clearance effect on compressor performance[J]. Journal of Engineering Thermophysics, 2013, 34(4): 628-631. (in Chinese)
    [63] 邬晓敬, 张伟伟, 宋述芳, 等. 翼型跨声速气动特性的不确定性及全局灵敏度分析[J]. 力学学报, 2015, 47(4): 587-595. doi: 10.6052/0459-1879-14-372

    WU X J, ZHANG W W, SONG S F, et al. Uncertainty quantification and global sensitivity analysis of transonic aerodynamics about airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 587-595. (in Chinese) doi: 10.6052/0459-1879-14-372
    [64] WANG Y J, ZHANG S D. Uncertainty quantification of numerical simulation of flows around a cylinder using non-intrusive polynomial chaos[J]. Chinese Physics Letters, 2016, 33(9): 090501. DOI: 10.1088/0256-307x/33/9/090501.
    [65] 邓小兵, 陈琦, 袁先旭, 等. 复杂构型细长体飞行器大迎角气动不确定性机理研究[J]. 中国科学: 技术科学, 2016, 46(5): 493-499. doi: 10.1360/N092015-00053

    DENG X B, CHEN Q, YUAN X X, et al. Study of aerodynamic uncertainty on the complex slender vehicle at high angle of attack[J]. SCIENTIA SINICA Technologica, 2016, 46(5): 493-499. (in Chinese) doi: 10.1360/N092015-00053
    [66] 徐林程, 王刚, 武洁, 等. 翼型风洞试验中不确定性分析的自动微分方法[J]. 航空学报, 2014, 35(8): 2102-2111.

    XU L C, WANG G, WU J, et al. Uncertainty analysis of airfoil wind tunnel tests with automatic differentiation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(8): 2102-2111. (in Chinese)
    [67] DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual Review of Fluid Mechanics, 2019, 51(1): 357-377. DOI: 10.1146/annurev-fluid-010518-040547.
    [68] XIAO H, CINNELLA P. Quantification of model uncertainty in RANS simulations: a review[J]. Progress in Aerospace Sciences, 2019, 108: 1-31. DOI: 10.1016/j.paerosci.2018.10.001.
    [69] LUMLEY J L, NEWMAN G R. The return to isotropy of homogeneous turbulence[J]. Journal of Fluid Mechanics, 1977, 82(1): 161-178. DOI: 10.1017/s0022112077000585.
    [70] BANERJEE S, KRAHL R, DURST F, et al. Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches[J]. Journal of Turbulence, 2007, 8: N32. DOI: 10.1080/14685240701506896.
    [71] EMORY M, PECNIK R, IACCARINO G. Modeling structural uncertainties in Reynolds-averaged computations of shock/boundary layer interactions[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida. Reston, Virginia: AIAA, 2011. doi: 10.2514/6.2011-479
    [72] EMORY M, LARSSON J, IACCARINO G. Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures[J]. Physics of Fluids, 2013, 25(11): 110822. DOI: 10.1063/1.4824659.
    [73] IACCARINO G, MISHRA A A, GHILI S, Eigenspace perturbations for uncertainty estimation of single-point turbulence closures[J]. Physical Review Fluids, 2017, 2(2): 024605.Doi: 10.1103/PhysRevFluids.2.024605.
    [74] MISHRA A A, MUKHOPADHAYA J, IACCARINO G, et al. Uncertainty estimation module for turbulence model predictions in SU2[J]. AIAA Journal, 2018, 57(3): 1066-1077. DOI: 10.2514/1.J057187.
    [75] XIAO H, WANG J X, GHANEM R G. A random matrix approach for quantifying model-form uncertainties in turbulence modeling[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 941-965. DOI: 10.1016/j.cma.2016.10.025.
    [76] WANG J X, SUN R, XIAO H. Quantification of uncertainties in turbulence modeling: a comparison of physics-based and random matrix theoretic approaches[J]. International Journal of Heat and Fluid Flow, 2016, 62: 577-592. DOI: 10.1016/j.ijheatfluidflow.2016.07.005.
    [77] EDELING W N, IACCARINO G, CINNELLA P. Data-free and data-driven RANS predictions with quantified uncertainty[J]. Flow, Turbulence and Combustion, 2018, 100(3): 593-616. DOI: 10.1007/s10494-017-9870-6.
    [78] POPE S B. Turbulent flows[M]. Cambridge, UK: Cambridge Univ. Press, 2000.
    [79] EISFELD B. Reynolds stress anisotropy in self-preserving turbulent shear flows[R]. DLR-Interner Bericht. DLR-IB-AS-BS-2017-106, 158 S. https://elib.dlr.de/113887/
    [80] DUNN M C, SHOTORBAN B, FRENDI A. Uncertainty quantification of turbulence model coefficients via Latin hypercube sampling method[J]. Journal of Fluids Engineering, 2011, 133(4): 041402. DOI: 10.1115/1.4003762.
    [81] PLATTEEUW P D A, LOEVEN G J A, BIJL H. Uncertainty quantification applied to the k-epsilon model of turbulence using the probabilistic collocation method[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schaumburg, IL. Reston, Virginia: AIAA, 2008. doi: 10.2514/6.2008-2150
    [82] SHAH H R, HOSDER S, WINTER T. A mixed uncertainty quantification approach with evidence theory and stochastic expansions[C]//16th AIAA Non-Deterministic Approaches Conference, National Harbor, Maryland. Reston, Virginia: AIAA, 2014. doi: 10.2514/6.2014-0298
    [83] WEST T K, HOSDER S, JOHNSTON C O. Multistep uncertainty quantification approach applied to hypersonic reentry flows[J]. Journal of Spacecraft and Rockets, 2013, 51(1): 296-310. DOI: 10.2514/1.A32592.
    [84] QUAGLIARELLA D, SERANI A, DIEZ M, et al. Benchmarking uncertainty quantification methods using the NACA2412 airfoil with geometrical and operational uncertainties[C]//AIAA Aviation 2019 Forum, Dallas, Texas. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-3555
    [85] DUQUE E P, LAWRENCE S. Spectre: a computational environment for managing total uncertainty quantification of CFD studies[C]//AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-2221
    [86] SCHAEFER J A, CARY A W, DUQUE E P, et al. Application of a CFD uncertainty quantification framework for industrial-scale aerodynamic analysis[C]//AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-1492
    [87] WIGNALL T J, HOULDEN H. Uncertainty quantification for launch vehicle aerodynamic lineloads[C]//AIAA Scitech 2020 Forum, Orlando, FL. Reston, Virginia: AIAA, 2020. doi: 10.2514/6.2020-1521
    [88] SCHAEFER J A, CARY A W, MANI M, et al. Uncertainty quantification and sensitivity analysis of SA turbulence model coefficients in two and three dimensions[C]//55th AIAA Aerospace Sciences Meeting, Grapevine, Texas. Reston, Virginia: AIAA, 2017. doi: 10.2514/6.2017-1710
    [89] 肖思男, 吕震宙, 王薇. 不确定性结构全局灵敏度分析方法概述[J]. 中国科学: 物理学 力学 天文学, 2018, 48(1): 8-25.

    XIAO S N, LV Z Z, WANG W. A review of global sensitivity analysis for uncertainty structure[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(1): 8-25. (in Chinese)
    [90] STORLIE C B, SWILER L P, HELTON J C, et al. Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models[J]. Reliability Engineering & System Safety, 2009, 94(11): 1735-1763. DOI: 10.1016/j.ress.2009.05.007.
    [91] SALTELLI A, ANNONI P, AZZINI I, et al. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index[J]. Computer Physics Communications, 2010, 181(2): 259-270. DOI: 10.1016/j.cpc.2009.09.018.
    [92] SUDRET B. Global sensitivity analysis using polynomial chaos expansions[J]. Reliability Engineering & System Safety, 2008, 93(7): 964-979. DOI: 10.1016/j.ress.2007.04.002.
    [93] DUVIGNEAU R, PELLETIER D. A sensitivity equation method for fast evaluation of nearby flows and uncertainty analysis for shape parameters[J]. International Journal of Computational Fluid Dynamics, 2006, 20(7): 497-512. DOI: 10.1080/10618560600910059.
    [94] FIORINI C, DESPRÉS B, PUSCAS M A. Sensitivity equation method for the Navier-Stokes equations applied to uncertainty propagation[J]. International Journal for Numerical Methods in Fluids, 2021, 93(1): 71-92. DOI: 10.1002/fld.4875.
  • 加载中
图(10)
计量
  • 文章访问数:  1158
  • HTML全文浏览量:  598
  • PDF下载量:  332
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-22
  • 修回日期:  2021-05-24
  • 录用日期:  2021-05-26
  • 网络出版日期:  2021-06-16
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回