A perspective of the future development of key helicopter technologies
-
摘要: 本文针对直升机特有的技术特点,尤其是其区别于固定翼飞机的飞行原理、复杂气动和结构动力学特性、极致重量设计等,对包括气动、振动、噪声、地面共振/空中共振、抗坠毁、安全性及重量控制等方面的直升机技术难点进行剖析,对问题产生的原因、机理进行深入浅出的分析,对当前技术发展情况及解决方法进行了阐述。随后对世界直升机技术发展方向进行了分析与探讨,提出未来直升机技术将以高速、绿色、智能化、无人及安全飞行等方向为重点,并结合我国直升机技术发展现状和未来发展趋势,提出了我国直升机技术未来发展的三个重要方向—先进直升机旋翼桨叶翼型设计技术、智能旋翼技术和高速直升机技术,提出了各发展方向的关键技术的科学内涵和解决途径,为我国直升机未来发展提供思路。Abstract: This paper focuses on the special technical characteristics of helicopters, especially on the flight principle that differs from fixed-wing aircrafts, complex aerodynamics and structural dynamics, and demanding weight design, etc. Technical difficulties in aerodynamics, vibration and noise, ground/air resonance, crashworthy, safety, and weight control, as well as the underlying physical mechanisms and solutions are also expounded. Based on the analyses and study about development directions of helicopter technology in the world, it is proposed that future helicopter technology will focuses on high-speed, green, intelligent, unmanned, and safe flight. Combining the present situation and future trend of the helicopter technology development in China, three important directions for the future development of helicopter technology in China are put forward. These directions are advanced rotor blade and airfoil design, smart rotor, and high-speed helicopter. The scientific connotation and possible solutions of key technologies for the above directions are further proposed, which can hopefully provide a good idea for the future development of Chinese helicopter technology.
-
Key words:
- helicopter /
- key technology /
- future development /
- smart rotor /
- high-speed helicopter
-
表 1 典型直升机参数对比
Table 1. A comparison of typical helicopter parameters
最大起飞
重量/T外廓尺寸/
m发动机
功率/kw空机
重量/T旋翼
直径/m最大速度 /
(km·h–1)最大航程/
km悬停
重量/T悬停
升限/m旋翼下洗
流速/(m·s–1)V22 27.4 19.2×25.78×5.56 2×4586 15.18 11.06 509 1800/956
(垂直起飞、标准任务)23.86 1646(21.5T) 10(24.6) CH53K 39.9 D24.08 11186 20.71 24.08 315 841 39.9 969 8(20.6) 直8 13 D18.9 3000 7.8 18.9 280 900 13 145 7(15) 蓝鲸? 35.0 19.2×25.78×5.56 2×4586 18.0 11.06 550 2000 30.06 4500 8(19.5) -
[1] 王咏梅. 全球民用直升机市场研究与分析[J]. 江苏科技信息, 2020, 37(17): 34-37. doi: 10.3969/j.issn.1004-7530.2020.17.011WANG Y M. Research and analysis on global civil helicopter market[J]. Jiangsu Science & Technology Information, 2020, 37(17): 34-37. (in Chinese) doi: 10.3969/j.issn.1004-7530.2020.17.011 [2] 杨婧, 詹月玫, 洪彬. 世界军用直升机装备现状及发展规划[J]. 直升机技术, 2020(3): 68-72.YANG J, ZHAN Y M, HONG B. Development status and plans of world military helicopter industry[J]. Helicopter Technique, 2020(3): 68-72. (in Chinese) [3] 罗贤明. 国内民用直升机发展前景探析[J]. 航空制造技术, 2015, 58(3): 12-15. doi: 10.16080/j.issn1671-833x.2015.03.012LUO X M. Prospect analysis of domestic civil helicopter development[J]. Aeronautical Manufacturing Technology, 2015, 58(3): 12-15. (in Chinese)DOI: 10.16080/j.issn1671-833x.2015.03.012. [4] 肖中云, 郭永恒, 张露, 等. 直升机CFD仿真现状与发展趋势分析[J]. 空气动力学学报, 2021, 39(5): 1-9.XIAO Z Y, GUO Y H, ZHANG L, et al. State-of-the-art and trend analyses in CFD based simulation of rotorcraft[J]. Acta Aerodynamica Sinica, 2021, 39(5): 1-9. [5] 王适存, 徐国华. 直升机旋翼空气动力学的发展[J]. 南京航空航天大学学报, 2001, 33(3): 203-211. doi: 10.3969/j.issn.1005-2615.2001.03.001WANG S C, XU G H. Progress of helicopter rotor aerodynamics[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2001, 33(3): 203-211. (in Chinese) doi: 10.3969/j.issn.1005-2615.2001.03.001 [6] 胡少华, 魏斌斌. 基于遗传算法的翼型多目标气动设计与分析[J]. 电子设计工程, 2019, 27(13): 49-52, 57. doi: 10.14022/j.cnki.dzsjgc.2019.13.011HU S H, WEI B B. Multi objective aerodynamic design and analysis of airfoil based on genetic algorithm[J]. Electronic Design Engineering, 2019, 27(13): 49-52, 57. (in Chinese)DOI: 10.14022/j.cnki.dzsjgc.2019.13.011. [7] 张武林. 基于振动预测的直升机振动故障分析[J]. 现代机械, 2019(5): 26-30. doi: 10.13667/j.cnki.52-1046/th.2019.05.007ZHANG W L. Vibration fault analysis of helicopter based on vibration prediction technology[J]. Modern Machinery, 2019(5): 26-30. (in Chinese)DOI: 10.13667/j.cnki.52-1046/th.2019.05.007. [8] 陈平剑, 仲唯贵, 段广战. 直升机气动噪声研究进展[J]. 实验流体力学, 2015, 29(3): 18-24.CHEN P J, ZHONG W G, DUAN G Z. Progress in aero-acoustic technology of helicopter[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3): 18-24. (in Chinese) [9] 田翔, 沈亚娟, 马小艳. 旋翼主动控制技术研究[J]. 中国科技信息, 2019(Z1): 37-44.TIAN X, SHEN Y J, MA X Y. Rotor active control technology research[J]. China Science and Technology Information, 2019(Z1): 37-44. (in Chinese) [10] 代志雄, 钱峰, 冯志壮. 直升机主减液弹隔振技术的发展现状及趋势[J]. 航空科学技术, 2020, 31(6): 19-26. doi: 10.19452/j.issn1007-5453.2020.06.004DAI Z X, QIAN F, FENG Z Z. Development and trend of helicopter main reduction fluidlastic vibration isolation technology[J]. Aeronautical Science & Technology, 2020, 31(6): 19-26. (in Chinese)DOI: 10.19452/j.issn1007-5453.2020.06.004. [11] 林长亮, 王金亮, 张亚军, 等. 直升机振动主动控制技术研究现状[C]//探索 创新 交流——第六届中国航空学会青年科技论坛论文集. 沈阳, 2014: 557-562. [12] 马小艳, 陈浩. 直升机地面共振影响参数优化设计[J]. 直升机技术, 2020(2): 10-14. doi: 10.3969/j.issn.1673-1220.2020.02.003MA X Y, CHEN H. Design optimization of ground resonance influence parametersfor a helicopter[J]. Helicopter Technique, 2020(2): 10-14. (in Chinese) doi: 10.3969/j.issn.1673-1220.2020.02.003 [13] 杨开天. 直升机主动控制技术发展研究[J]. 航空科学技术, 2006, 17(5): 21-25. doi: 10.3969/j.issn.1007-5453.2006.05.007YANG K T. Research on the development of helicopter active control technology[J]. Aeronautical Science and Technology, 2006, 17(5): 21-25. (in Chinese) doi: 10.3969/j.issn.1007-5453.2006.05.007 [14] 赵则利, 许锋. 舰载直升机“舰面共振”动力学分析[J]. 科学技术与工程, 2020, 20(16): 6650-6657. doi: 10.3969/j.issn.1671-1815.2020.16.053ZHAO Z L, XU F. Dynamic analysis of “ship resonance” for shipboard helicopter[J]. Science Technology and Engineering, 2020, 20(16): 6650-6657. (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.16.053 [15] 程元彪, 梅中义, 云庆文. 直升机抗坠毁数据库系统设计及研究[J]. 机械工程与自动化, 2017(1): 85-87. doi: 10.3969/j.issn.1672-6413.2017.01.033CHENG Y B, MEI Z Y, YUN Q W. Research and design of database system about crashworthy helicopter[J]. Mechanical Engineering & Automation, 2017(1): 85-87. (in Chinese) doi: 10.3969/j.issn.1672-6413.2017.01.033 [16] 罗漳平, 向锦武. 直升机起落架抗坠毁性能的有限元仿真评估[J]. 航空学报, 2003, 24(3): 216-219. doi: 10.3321/j.issn:1000-6893.2003.03.006LUO Z P, XIANG J W. Crashworthiness performance evaluation to helicopter landing gear by finite element simulation[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(3): 216-219. (in Chinese) doi: 10.3321/j.issn:1000-6893.2003.03.006 [17] 任宪文, 马智勇. 直升机燃油系统部分附件抗坠毁设计综述[J]. 直升机技术, 2020(4): 69-72. doi: 10.3969/j.issn.1673-1220.2020.04.016REN X W, MA Z Y. Crashworthiness design of helicopter fuel system components[J]. Helicopter Technique, 2020(4): 69-72. (in Chinese) doi: 10.3969/j.issn.1673-1220.2020.04.016 [18] 张海龙. 直升机防雷击措施研究[J]. 直升机技术, 2014(4): 35-38. doi: 10.3969/j.issn.1673-1220.2014.04.007ZHANG H L. The technology of helicopter lightning protection[J]. Helicopter Technique, 2014(4): 35-38. (in Chinese) doi: 10.3969/j.issn.1673-1220.2014.04.007 [19] 宋武生, 杨长盛. 直升机减速器干运转能力设计与分析[J]. 机械传动, 2020, 44(1): 156-162. doi: 10.16578/j.issn.1004.2539.2020.01.026SONG W S, YANG C S. Design and analysis of loss-of-lubrication capacity of helicopter reducer[J]. Journal of Mechanical Transmission, 2020, 44(1): 156-162. (in Chinese)DOI: 10.16578/j.issn.1004.2539.2020.01.026. [20] 刘红亮. 浅谈直升机电源系统发展[J]. 电子制作, 2018(11): 82-83. doi: 10.16589/j.cnki.cn11-3571/tn.2018.11.033LIU H L. The development of helicopter power supply system[J]. Practical Electronics, 2018(11): 82-83. (in Chinese)DOI: 10.16589/j.cnki.cn11-3571/tn.2018.11.033. [21] 王鹤, 李显耀, 汪涛, 等. 直升机自转试验及安全特性研究[J]. 工程与试验, 2015, 55(1): 34-37. doi: 10.3969/j.issn.1674-3407.2015.01.011WANG H, LI X Y, WANG T, et al. Research on helicopter autorotation experiment and safety characteristics[J]. Engineering & Test, 2015, 55(1): 34-37. (in Chinese) doi: 10.3969/j.issn.1674-3407.2015.01.011 [22] 林长亮, 王益锋, 王浩文, 等. 直升机旋翼桨叶鸟撞动态响应计算[J]. 振动与冲击, 2013, 32(10): 62-68. doi: 10.13465/j.cnki.jvs.2013.10.017LIN C L, WANG Y F, WANG H W, et al. Computation of dynamic response of helicopter blade under bird impact[J]. Journal of Vibration and Shock, 2013, 32(10): 62-68. (in Chinese)DOI: 10.13465/j.cnki.jvs.2013.10.017. [23] 赵千惠. RMSG-3下民用直升机L/HIRF分析[J]. 现代信息科技, 2020, 4(6): 34-36. doi: 10.19850/j.cnki.2096-4706.2020.06.012ZHAO Q H. Analysis of civil helicopter L/HIRF under RMSG-3[J]. Modern Information Technology, 2020, 4(6): 34-36. (in Chinese)DOI: 10.19850/j.cnki.2096-4706.2020.06.012. [24] 张海涛. 基于重量的直升机目标成本估算方法研究[J]. 航空科学技术, 2013, 24(2): 18-21. doi: 10.3969/j.issn.1007-5453.2013.02.007ZHANG H T. Helicopter cost estimating based on the empty weight[J]. Aeronautical Science & Technology, 2013, 24(2): 18-21. (in Chinese) doi: 10.3969/j.issn.1007-5453.2013.02.007 [25] 徐文佳. 人工智能技术在直升机上的应用[J]. 电子技术与软件工程, 2020(2): 153-154.XU W J. Artificial intelligence technology in helicopter[J]. Electronic Technology & Software Engineering, 2020(2): 153-154. (in Chinese) [26] Tony Osborne, 袁宗仪, 陈宇. 大数据助力直升机健康监测[J]. 航空维修与工程, 2019(1): 27-28. doi: 10.19302/j.cnki.1672-0989.2019.01.006OSBORNE T, YUAN Z Y, CHEN Y. Big data simplifying HUMS for helicopters[J]. Aviation Maintenance & Engineering, 2019(1): 27-28. (in Chinese)DOI: 10.19302/j.cnki.1672-0989.2019.01.006. [27] 王锦盛. 基于机器学习的直升机飞行状态识别技术研究[D]. 南昌: 南昌航空大学, 2017. [28] 王锋, 张钧尧. 电动直升机发展与关键技术研究综述[J]. 现代制造技术与装备, 2020(1): 144-145. doi: 10.16107/j.cnki.mmte.2020.0060WANG F, ZHANG J Y. Development and key technology of electric helicopter[J]. Modern Manufacturing Technology and Equipment, 2020(1): 144-145. (in Chinese)DOI: 10.16107/j.cnki.mmte.2020.0060. [29] 孙侠生, 程文渊, 穆作栋, 等. 电动飞机发展白皮书[J]. 航空科学技术, 2019, 30(11): 1-7. doi: 10.19452/j.issn1007-5453.2019.11.001SUN X S, CHENG W Y, MU Z D, et al. White paper on the development of electric aircraft[J]. Aeronautical Science & Technology, 2019, 30(11): 1-7. (in Chinese)DOI: 10.19452/j.issn1007-5453.2019.11.001. [30] 李开省. 电动飞机核心技术研究综述[J]. 航空科学技术, 2019, 30(11): 8-17. doi: 10.19452/j.issn1007-5453.2019.11.002LI K S. Summary of research on core technology of electric aircraft[J]. Aeronautical Science & Technology, 2019, 30(11): 8-17. (in Chinese)DOI: 10.19452/j.issn1007-5453.2019.11.002. [31] 李开省. 电动飞机技术的发展研究[J]. 航空科学技术, 2019, 30(1): 1-7. doi: 10.19452/j.issn1007-5453.2019.30.001LI K S. Research on the development of electric aircraft technology[J]. Aeronautical Science & Technology, 2019, 30(1): 1-7. (in Chinese)DOI: 10.19452/j.issn1007-5453.2019.30.001. [32] 尹欣繁, 张代兵, 张纪阳, 等. 微型无人直升机发展现状及关键技术[J]. 飞航导弹, 2018(5): 33-37. doi: 10.16338/j.issn.1009-1319.20170324YIN X F, ZHANG D B, ZHANG J Y, et al. Development status and key technologies of micro unmanned helicopter[J]. Aerodynamic Missile Journal, 2018(5): 33-37. (in Chinese)DOI: 10.16338/j.issn.1009-1319.20170324. [33] 韩志钢. 美军有人直升机与无人机协同技术发展及启示[J]. 电讯技术, 2018, 58(1): 113-118. doi: 10.3969/j.issn.1001-893x.2018.01.020HAN Z G. Developing progress and enlightenment of US cooperative technique for manned helicopters and unmanned aerial vehicles[J]. Telecommunication Engineering, 2018, 58(1): 113-118. (in Chinese) doi: 10.3969/j.issn.1001-893x.2018.01.020 [34] 卢福刚, 陈士超. 直升机载空地导弹精确打击智能化发展需求分析[J]. 飞航导弹, 2019,(3): 45-49. doi: 10.16338/j.issn.1009-1319.20180322LU F G, CHEN S C. Demand analysis of helicopter borne air to ground missile precision strike intelligence development[J]. Aerodynamic Missile Journal, 2019,(3): 45-49. (in Chinese)DOI: 10.16338/j.issn.1009-1319.20180322. [35] 赵振平, 路瑞敏, 王锦程, 等. 智能无人飞行器技术发展与展望[J]. 战术导弹技术, 2017(3): 1-7. doi: 10.16358/j.issn.1009-1300.2017.03.01ZHAO Z P, LU R M, WANG J C, et al. Development and prediction on intelligent unmanned aerial vehicle technology[J]. Tactical Missile Technology, 2017(3): 1-7. (in Chinese)DOI: 10.16358/j.issn.1009-1300.2017.03.01. [36] 吕少杰, 杨岩, 韩振飞. 军用直升机智能自主控制技术发展研究[J]. 航空科学技术, 2020, 31(10): 36-40. doi: 10.19452/j.issn1007-5453.2020.10.006LYU S J, YANG Y, HAN Z F. Research on the development of military helicopter intelligent and autonomous control technology[J]. Aeronautical Science & Technology, 2020, 31(10): 36-40. (in Chinese)DOI: 10.19452/j.issn1007-5453.2020.10.006. [37] 吴希明. 高速直升机发展现状、趋势与对策[J]. 南京航空航天大学学报, 2015, 47(2): 173-179. doi: 10.16356/j.1005-2615.2015.02.001WU X M. Current status, development trend and countermeasure for high-speed rotorcraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 173-179. (in Chinese)DOI: 10.16356/j.1005-2615.2015.02.001. [38] 周金龙, 董凌华, 杨卫东, 等. 基于加权最小二乘法辨识的后缘襟翼智能旋翼振动载荷闭环控制仿真研究[J]. 振动与冲击, 2019, 38(4): 237-244. doi: 10.13465/j.cnki.jvs.2019.04.035ZHOU J L, DONG L H, YANG W D, et al. Closed-loop vibration control simulation of a helicopter active rotor with trailing-edge flaps based on the weighted-least-squares-error identification method[J]. Journal of Vibration and Shock, 2019, 38(4): 237-244. (in Chinese)DOI: 10.13465/j.cnki.jvs.2019.04.035. [39] 李萍, 庄开莲, 李静. 国外直升机旋翼翼型研究综述[J]. 直升机技术, 2007(3): 103-109. doi: 10.3969/j.issn.1673-1220.2007.03.025LI P, ZHUANG K L, LI J. Review of Foreign Research on Helicopter Rotor Airfoil[J]. Helicopter Technique, 2007(3): 103-109. (in Chinese) doi: 10.3969/j.issn.1673-1220.2007.03.025 [40] 吴裕平, 习娟. 共轴刚性旋翼复合式高速直升机操纵与载荷研究[J]. 南京航空航天大学学报, 2019, 51(2): 166-170. doi: 10.16356/j.1005-2615.2019.02.005WU Y P, XI J. Control and load research of coaxial rigid rotor compound high speed helicopter[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 166-170. (in Chinese)DOI: 10.16356/j.1005-2615.2019.02.005. [41] 薛蒙, 孙强. 倾转旋翼机军事需求与关键技术分析[J]. 直升机技术, 2020(1): 47-49, 27. doi: 10.3969/j.issn.1673-1220.2020.01.010XUE M, SUN Q. Tiltrotor military requirement and critical technology analysis[J]. Helicopter Technique, 2020(1): 47-49, 27. (in Chinese) doi: 10.3969/j.issn.1673-1220.2020.01.010 -