留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向爆轰冲击的分离式流固耦合数值模拟

张森 郭晓威 甘新标 龚春叶 杨文祥 李超

张森, 郭晓威, 甘新标, 等. 面向爆轰冲击的分离式流固耦合数值模拟[J]. 空气动力学学报, 2021, 39(X): 1−10 doi: 10.7638/kqdlxxb-2021.0095
引用本文: 张森, 郭晓威, 甘新标, 等. 面向爆轰冲击的分离式流固耦合数值模拟[J]. 空气动力学学报, 2021, 39(X): 1−10 doi: 10.7638/kqdlxxb-2021.0095
ZHANG S, GUO X W, GAN X B, et al. Numerical study of detonation shock with partitioned fluid-structure interaction simulations[J]. Acta Aerodynamica Sinica, 2021, 39(X): 1−10 doi: 10.7638/kqdlxxb-2021.0095
Citation: ZHANG S, GUO X W, GAN X B, et al. Numerical study of detonation shock with partitioned fluid-structure interaction simulations[J]. Acta Aerodynamica Sinica, 2021, 39(X): 1−10 doi: 10.7638/kqdlxxb-2021.0095

面向爆轰冲击的分离式流固耦合数值模拟

doi: 10.7638/kqdlxxb-2021.0095
基金项目: 国家数值风洞工程(NNW);国家自然科学基金(61902413,62032023);湖南省自然科学基金(2019JJ50723);并行与分布式处理国防科技重点实验室(PDL)基金(6142110180203)
详细信息
    作者简介:

    张森(1997-),男,安徽涡阳人,硕士研究生,研究方向:大规模科学与工程计算. E-mail:Jensen_zs@163.com

    通讯作者:

    郭晓威 (1986-) , 助理研究员,研究方向:大规模科学与工程计算. E-mail:guoxiaowei@nudt.edu.cn

  • 中图分类号: TP39

Numerical study of detonation shock with partitioned fluid-structure interaction simulations

Funds: The project supported by the (12345678) and (9876543)
  • 摘要: 为准确高效地模拟爆轰冲击作用下固体响应的过程,对爆轰波传播、损伤评估等领域的工程应用提供技术支持,设计实现了面向爆轰冲击的分离式流固耦合数值模拟求解系统。采用分离式流固耦合的方法,基于开源软件实现数值模拟的求解系统。爆轰波传播模型建立在基于OpenFOAM的开源多分量求解器blastFoam之上,同时利用deal.Ⅱ有限元库对固体形变响应进行模拟,流体与固体求解器之间通过适配开源多物理场耦合库preCICE进行耦合。通过三维竖直墙体在高爆轰作用下的运动过程验证求解系统的正确性,模拟结果展示的爆轰过程与Beyer报告中的爆轰波传播过程一致。求解系统具有良好的并行可扩展性,在网格总规模为510万单元的案例中,总并行度达256核的加速比为178,并行效率为69.5%。总体而言,通过集成各开源软件,实现了适用于爆轰波冲击响应的分离式流固耦合求解系统,对诸多工程应用具有重要的现实意义。
  • 图  1  测试算例的计算域示意图及其三视图

    Figure  1.  Computational domain and its three views

    图  2  中心截面处竖直墙体周围的采样点分布示意图

    Figure  2.  Distribution of sampling points around the central section of the vertical wall

    图  3  网格无关性检验(采样点1和2处的压力变化)

    Figure  3.  Mesh independency test (pressure at sampling points 1 and 2)

    图  4  Beyer报告[23]中的爆轰过程定性分析图

    Figure  4.  A sketch of denotation process provided by Ref.[23]

    图  5  三维竖直铁板墙体在高爆轰作用下运动过程的整体模拟图(时间跨度0.1~0.9 ms,间隔0.1 ms)

    Figure  5.  The movement of a 3D vertical iron wall under the condition of a high-explosive detonation(the time span is 0.1 ~ 0.9 ms, the interval time is 0.1 ms)

    图  6  三维竖直混凝土墙体在高爆轰作用下的形变过程图(时间跨度0.1~1.0 ms,间隔0.1 ms)

    Figure  6.  The movement of a 3D vertical concrete wall under the condition of a high-explosive detonation(the time span is 0.1 ~ 1.0 ms, the interval time is 0.1 ms)

    图  7  中截面后半部分在0.4 ms、0.8 ms、1.2 ms和1.6 ms的速度流线图

    Figure  7.  The velocity streamlines in the second part of the central cross section at 0.4 ms, 0.8 ms, 1.2 ms, and 1.6 ms

    图  8  中截面后半部分在0.4 ms、0.8 ms、1.2 ms和1.6 ms的压力等值线图

    Figure  8.  The pressure contours in the second part of the central cross section at 0.4 ms, 0.8 ms, 1.2 ms, and 1.6 ms

    图  9  中截面后半部分在0.4 ms、0.8 ms、1.2 ms和1.6 ms的密度等值线图

    Figure  9.  The density contours in the second part of the central cross section at 0.4 ms, 0.8 ms, 1.2 ms, and 1.6 ms

    图  10  采样点处的压力-时间历程曲线

    Figure  10.  The time histories of pressure

    图  11  采样点处的密度-时间历程曲线

    Figure  11.  The time histories of density

    图  12  网格1和网格2在串行显式和并行显式耦合格式下的时间开销(400个时间步)和对应的加速比。

    Figure  12.  The time costs (400 time-steps) and the speedup ratios of Mesh1 and Mesh2 with serial-explicit and parallel-explicit coupling schemes.

    表  1  流体计算模块各相材料的状态方程及其系数值

    Table  1.   The EOS and coefficients of each phase in the fluid module

    各相材料状态方程模型系数系数值
    $ A $609.77×109
    $ B $12.95×109
    C4炸药JWL$ {R_1} $4.5
    $ {R_2} $1.4
    $ \omega $0.25
    $\;{\rho _0}$1601
    $ \gamma $1.4
    空气硬化气体$ a $0
    $\; {\rho _0}$1.225
    下载: 导出CSV
  • [1] CIRAK F, DEITERDING R, MAUCH S P. Large-scale fluid-structure interaction simulation of viscoplastic and fracturing thin-shells subjected to shocks and detonations[J]. Computers & Structures, 2007, 85(11-14): 1049-1065. DOI: 10.1016/j.compstruc.2006.11.014
    [2] ZOU S, YUAN X F, YANG X J, et al. An integrated lattice Boltzmann and finite volume method for the simulation of viscoelastic fluid flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2014, 211: 99-113. DOI: 10.1016/j.jnnfm.2014.07.003
    [3] ZHANG S, GUO X W, LI C, et al. Numerical study of the turbulent flow from a steam dumping pressurizer relief tank[J]. Energies, 2020, 13(16): 4059. DOI: 10.3390/en13164059
    [4] UNVERDI S O, TRYGGVASON G. A front-tracking method for viscous, incompressible, multi-fluid flows[J]. Journal of Computational Physics, 1992, 100(1): 25-37. DOI: 10.1016/0021-9991(92)90307-K
    [5] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. DOI: 10.1016/0021-9991(81)90145-5
    [6] OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics, 1988, 79(1): 12-49. DOI: 10.1016/0021-9991(88)90002-2
    [7] LARROUTUROU B. How to preserve the mass fractions positivity when computing compressible multi-component flows[J]. Journal of Computational Physics, 1991, 95(1): 59-84. DOI: 10.1016/0021-9991(91)90253-H
    [8] ABGRALL R, KARNI S. Computations of compressible multifluids[J]. Journal of Computational Physics, 2001, 169(2): 594-623. DOI: 10.1006/jcph.2000.6685
    [9] SHYUE K M. An efficient shock-capturing algorithm for compressible multicomponent problems[J]. Journal of Computational Physics, 1998, 142(1): 208-242. DOI: 10.1006/jcph.1998.5930
    [10] 许爱国, 陈杰, 宋家辉, 等. 多相流系统的离散玻尔兹曼研究进展[J]. 空气动力学学报, 2021, 39(3): 138-169 doi: 10.7638/kqdlxxb-2021.0021

    XU A G, CHEN J, SONG J H, et al. Progress of discrete Boltzmann study on multiphase complex flows[J]. Acta Aerodynamica Sinica, 2021, 39(3): 138-169. (in Chinese)doi: 10.7638/kqdlxxb-2021.0021
    [11] ZHANG Y D, XU A G, ZHANG G C, et al. Kinetic modeling of detonation and effects of negative temperature coefficient[J]. Combustion and Flame, 2016, 173: 483-492. DOI: 10.1016/j.combustflame.2016.04.003
    [12] BlastFoam: An OpenFOAM Solver for Compressible Multi-Fluid Flow with Application to High-Explosive Detonation[R]. Synthetik Applied Technologies, LLC., 2020.
    [13] BREWER T, HEYLMUN J, VONK P. Employment of the Open-source Airblast Solver blastFoam to Support the Super Heavy Improvised Explosive Loading Demonstration (SHIELD) Test Program[C]. ISIEMS, USA, 2019.
    [14] ARNDT D, BANGERTH W, DAVYDOV D, et al. The deal. II finite element library: Design, features, and insights[J]. Computers & Mathematics With Applications, 2021, 81: 407-422. DOI: 10.1016/j.camwa.2020.02.022
    [15] MICHLER C, VAN BRUMMELEN E H, DE BORST R. An interface Newton-Krylov solver for fluid-structure interaction[J]. International Journal for Numerical Methods in Fluids, 2005, 47(10-11): 1189-1195. DOI: 10.1002/fld.850
    [16] VIERENDEELS J, LANOYE L, DEGROOTE J, et al. Implicit coupling of partitioned fluid-structure interaction problems with reduced order models[J]. Computers & Structures, 2007, 85(11-14): 970-976. DOI: 10.1016/j.compstruc.2006.11.006
    [17] DEGROOTE J, BATHE K J, VIERENDEELS J. Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction[J]. Computers & Structures, 2009, 87(11-12): 793-801. DOI: 10.1016/j.compstruc.2008.11.013
    [18] BOGAERS A E J, KOK S, REDDY B D, et al. Quasi-Newton methods for implicit black-box FSI coupling[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 279: 113-132. DOI: 10.1016/j.cma.2014.06.033
    [19] BUNGARTZ H J, LINDNER F, GATZHAMMER B, et al. preCICE - A fully parallel library for multi-physics surface coupling[J]. Computers & Fluids, 2016, 141: 250-258. DOI: 10.1016/j.compfluid.2016.04.003
    [20] GATZHAMMER B. Efficient and flexible partitioned simulation of fluid-structure interactions[D]. Germany: Technische Universität München, 2014.
    [21] UEKERMANN B W. Partitioned fluid-structure interaction on massively parallel systems[D]. Germany: Technische Universität München, 2016.
    [22] DE NAYER G, KALMBACH A, BREUER M, et al. Flow past a cylinder with a flexible splitter plate: a complementary experimental-numerical investigation and a new FSI test case (FSI-PfS-1a)[J]. Computers & Fluids, 2014, 99: 18-43. DOI: 10.1016/j.compfluid.2014.04.020
    [23] BEYER M E. Blast loads behind vertical walls[R]. CA (United States): NAVAL Civil Engineering Lab, 1986.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  311
  • HTML全文浏览量:  95
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-16
  • 录用日期:  2021-08-12
  • 修回日期:  2021-08-11
  • 网络出版日期:  2021-11-08

目录

    /

    返回文章
    返回