[1] |
搜狐网. 开发30亿风电, 引领绿色发展, 落实“30·60”目标——《风能北京宣言》发布[EB/OL]. http://www.cnenergynews.cn/huizhan/2020/10/15/detail_2020101579954.html, [2020-10-15].
|
[2] |
黎作武, 贺德馨. 风能工程中流体力学问题的研究现状与进展[J]. 力学进展, 2013, 43(5): 472-525.LI Z W, HE D X. Reviews of fluid dynamics researches in wind energy engineering[J]. Advances in Mechanics, 2013, 43(5): 472-525. (in Chinese)
|
[3] |
王同光. 风力机空气动力学面临的挑战[C]//第五届全国风能技术应用年会论文集. 中国空气动力学会, 2008: 59-68.
|
[4] |
王同光, 钟伟, 钱耀如. 风力机空气动力性能计算方法[M]. 北京: 科学出版社, 2019.
|
[5] |
朱呈勇. 水平轴风力机叶片三维旋转动态失速特性研究[D]. 南京航空航天大学, 2020.ZHU C Y. Three-dimensional rotational and dynamic stall of horizontal axis wind turbine blades[D]. Nanjing University of Aeronautics and Astronautics, 2020.
|
[6] |
WANG L, LIU X W, KOLIOS A. State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling[J]. Renewable and Sustainable Energy Reviews, 2016, 64: 195-210. DOI: 10.1016/j.rser.2016.06.007
|
[7] |
孙振业. 大型海上风力机叶片气动与结构设计研究[D]. 重庆: 重庆大学, 2017.
|
[8] |
TIMMER W A, BAK C. 4-Aerodynamic characteristics of wind turbine blade airfoils[M]//BRøNDSTED P, NIJSSEN R P L. Advances in wind turbine blade design and materials. Woodhead Publishing, 2013: 109-149. doi: 10.1533/9780857097286.1.109
|
[9] |
VAN ROOIJ R, TIMMER N. Design of airfoils for wind turbine blades[EB/OL]. http://gcep.stanford.edu/pdfs/energy_workshops_04_04/wind_van_rooij.pdf
|
[10] |
黎作武, 陈江, 陈宝, 等. 风力机组叶片的先进翼型族设计[J]. 空气动力学学报, 2012, 30(1): 130-136. doi: 10.3969/j.issn.0258-1825.2012.01.023LI Z W, CHEN J, CHEN B, et al. Design of advanced airfoil families for wind turbines[J]. Acta Aerodynamica Sinica, 2012, 30(1): 130-136. (in Chinese) doi: 10.3969/j.issn.0258-1825.2012.01.023
|
[11] |
TANGLER J L, SOMERS D M. Status of the special-purpose airfoil families[R/OL]. SERI/TP-217-3264, 1987: 229-335. https://www.nrel.gov/docs/legosti/old/3264.pdf
|
[12] |
DRELA M. XFOIL: an analysis and design system for low Reynolds number airfoils[C/OL]//Low Reynolds Number Aerodynamics, 1989. http://web.mit.edu/drela/Public/papers/xfoil_sv.pdf
|
[13] |
VAN ROOIJ R. Modification of the boundary layer in XFOIL for improved airfoil stall prediction[R]. IW-96087R. The Netherlands: Delft University of Technology, 1996.
|
[14] |
李星星, 杨科, 张磊, 等. 大厚度钝尾缘翼型的设计研究[J]. 工程热物理学报, 2014, 35(9): 1744-1748.LI X X, YANG K, ZHANG L, et al. Design of large thickness airfoil with blunt trailing edge[J]. Journal of Engineering Thermophysics, 2014, 35(9): 1744-1748. (in Chinese)
|
[15] |
WANG Q, LI D S. A new airfoil design method for wind turbine to improve maximum lift of airfoil[J]. Wind Engineering, 2021: 0309524X2098442. doi: 10.1177/0309524x20984428
|
[16] |
吴江海. 大型风力机叶片及翼型优化设计[D]. 南京: 南京航空航天大学, 2012.WU J H. Large-scale wind turbine blade and airfoil optimization design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
|
[17] |
BAKER J P, MAYDA E A, VAN DAM C P. Experimental analysis of thick blunt trailing-edge wind turbine airfoils[J]. Journal of Solar Energy Engineering, 2006, 128(4): 422-431. DOI: 10.1115/1.2346701
|
[18] |
PAPADAKIS G, MANOLESOS M, DIAKAKIS K, et al. DES vs RANS: The flatback airfoil case[J]. Journal of Physics: Conference Series, 2020, 1618: 052062. DOI: 10.1088/1742-6596/1618/5/052062
|
[19] |
吕文春, 汪建文, 段亚范, 等. 翼型凹变对风轮旋转噪声影响特性分析[J]. 振动与冲击, 2021, 40(1): 45-51, 85.LYU W C, WANG J W, DUAN Y F, et al. Effects of airfoil concave change on rotating noise of wind turbine[J]. Journal of Vibration and Shock, 2021, 40(1): 45-51, 85. (in Chinese)
|
[20] |
乔晨亮, 许和勇, 叶正寅. 钝后缘风力机翼型的环量控制研究[J]. 力学学报, 2019, 51(1): 135-145. doi: 10.6052/0459-1879-18-164QIAO C L, XU H Y, YE Z Y. Circulation control on wind turbine airfoil with blunt trailing edge[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 135-145. (in Chinese) doi: 10.6052/0459-1879-18-164
|
[21] |
MILLER M, LEE SLEW K, MATIDA E. The development of a flatback wind turbine airfoil family[J]. Wind Energy, 2018, 21(12): 1372-1382. DOI: 10.1002/we.2260
|
[22] |
LI X X, ZHANG L, SONG J J, et al. Airfoil design for large horizontal axis wind turbines in low wind speed regions[J]. Renewable Energy, 2020, 145: 2345-2357. DOI: 10.1016/j.renene.2019.07.163
|
[23] |
吴蔚, 杨科, 张磊, 等. 6 MW大厚度钝尾缘风电叶片结构分析[J]. 工程热物理学报, 2013, 34(6): 1074-1078.WU W, YANG K, ZHANG L, et al. Structure analysis of 6 MW wind turbine blade with large thickness and blunt trailing edge[J]. Journal of Engineering Thermophysics, 2013, 34(6): 1074-1078. (in Chinese)
|
[24] |
WEN H, SANG S, QIU C H, et al. A new optimization method of wind turbine airfoil performance based on Bessel equation and GABP artificial neural network[J]. Energy, 2019, 187: 116106. DOI: 10.1016/j.energy.2019.116106
|
[25] |
PEERINGA J, BROOD R, CEYHAN O, et al. Upwind 20 MW wind turbine pre-design[R/OL]. ECN-E–11-017, 2011. https://publications.tno.nl/publication/34629096/7MK62j/e11017.pdf
|
[26] |
PIRES O, MUNDUATE X, CEYHAN O, et al. Analysis of high Reynolds numbers effects on a wind turbine airfoil using 2D wind tunnel test data[J]. Journal of Physics: Conference Series, 2016, 753: 022047. DOI: 10.1088/1742-6596/753/2/022047
|
[27] |
乔志德. 先进翼型设计技术及应用研究进展[C]//中国风能发展战略论坛. 北京: 中国工程院, 中国可再生能源学会. 2006: 206-214.
|
[28] |
韩忠华, 宋文萍, 高永卫. 大型风力机翼型族的设计与实验[J]. 应用数学和力学, 2013, 34(10): 1012-1027. doi: 10.3879/j.issn.1000-0887.2013.10.002HAN Z H, SONG W P, GAO Y W. Design and wind-tunnel verification of large-size wind turbine airfoils[J]. Applied Mathematics and Mechanics, 2013, 34(10): 1012-1027. (in Chinese) doi: 10.3879/j.issn.1000-0887.2013.10.002
|
[29] |
LIU J, ZHU W Q, XIAO Z X, et al. DDES with adaptive coefficient for stalled flows past a wind turbine airfoil[J]. Energy, 2018, 161: 846-858. DOI: 10.1016/j.energy.2018.07.176
|
[30] |
SOLÍS-GALLEGO I, MEANA-FERNÁNDEZ A, FERNÁNDEZ ORO J M, et al. LES-based numerical prediction of the trailing edge noise in a small wind turbine airfoil at different angles of attack[J]. Renewable Energy, 2018, 120: 241-254. DOI: 10.1016/j.renene.2017.12.082
|
[31] |
侯银珠, 宋文萍, 张坤. 考虑转捩影响的风力机翼型气动特性计算研究[J]. 空气动力学学报, 2010, 28(2): 234-237. doi: 10.3969/j.issn.0258-1825.2010.02.019HOU Y Z, SONG W P, ZHANG K. Calculation of aerodynamic performance of wind turbine airfoil incorporating transition prediction[J]. Acta Aerodynamica Sinica, 2010, 28(2): 234-237. (in Chinese) doi: 10.3969/j.issn.0258-1825.2010.02.019
|
[32] |
陈进, 孙振业, 谢翌, 等. γ-Reθ转捩模型在风力机翼型数值计算中的应用[J]. 哈尔滨工程大学学报, 2015, 36(2): 218-221.CHEN J, SUN Z Y, XIE Y, et al. Γ-Reθ transition model in numerical simulation of airfoil for wind turbine[J]. Journal of Harbin Engineering University, 2015, 36(2): 218-221. (in Chinese)
|
[33] |
CUI W Y, XIAO Z X, YUAN X J. Simulations of transition and separation past a wind-turbine airfoil near stall[J]. Energy, 2020, 205: 118003. DOI: 10.1016/j.energy.2020.118003
|
[34] |
BAI C J, WANG W C. Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)[J]. Renewable and Sustainable Energy Reviews, 2016, 63: 506-519. DOI: 10.1016/j.rser.2016.05.078
|
[35] |
李国强, 张卫国, 陈立, 等. 风力机叶片翼型动态试验技术研究[J]. 力学学报, 2018, 50(4): 751-765. doi: 10.6052/0459-1879-18-108LI G Q, ZHANG W G, CHEN L, et al. Research on dynamic test technology for wind turbine blade airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 751-765. (in Chinese) doi: 10.6052/0459-1879-18-108
|
[36] |
LI G Q, HUANG X, JIANG Y B, et al. An experimental study of the dynamic aerodynamic characteristics of a yaw-oscillating wind turbine airfoil[J]. Physics of Fluids, 2019, 31(6): 067102. DOI: 10.1063/1.5088854
|
[37] |
LANZAFAME R, MESSINA M. Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory[J]. Renewable Energy, 2007, 32(14): 2291-2305. DOI: 10.1016/j.renene.2006.12.010
|
[38] |
LIU S, JANAJREH I. Development and application of an improved blade element momentum method model on horizontal axis wind turbines[J]. International Journal of Energy and Environmental Engineering, 2012, 3(1): 1-10. DOI: 10.1186/2251-6832-3-30
|
[39] |
AGEZE M B, HU Y F, WU H C. Wind turbine aeroelastic modeling: basics and cutting edge trends[J]. International Journal of Aerospace Engineering, 2017, 2017: 1-15. DOI: 10.1155/2017/5263897
|
[40] |
王珑, 王同光. 风力机设计及其空气动力学问题[J]. 中国科学: 物理学 力学 天文学, 2013, 43(12): 1579-1588.WANG L, WANG T G. Wind turbine design and its aerodynamic issues[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2013, 43(12): 1579-1588. (in Chinese)
|
[41] |
ZHONG W, SHEN W Z, WANG T, et al. A tip loss correction model for wind turbine aerodynamic performance prediction[J]. Renewable Energy, 2020, 147: 223-238. DOI: 10.1016/j.renene.2019.08.125
|
[42] |
GLAUERT H. Airplane propellers[M]//DURAND W F, ed. Aerodynamic Theory. Springer, Berlin, Heidelberg: 169-360. doi: 10.1007/978-3-642-91487-4_3
|
[43] |
SHEN W Z, MIKKELSEN R, SØRENSEN J, et al. Tip loss corrections for wind turbine computations[J]. Wind Energy, 2005, 8(4): 457-475.https://onlinelibrary.wiley.com/doi/epdf/10.1002/we.153 DOI: 10.1002/WE.153
|
[44] |
WIMSHURST A, WILLDEN R H J. Analysis of a tip correction factor for horizontal axis turbines[J]. Wind Energy, 2017, 20(9): 1515-1528. DOI: 10.1002/we.2106
|
[45] |
SCHMITZ S, MANIACI D C. Methodology to determine a tip-loss factor for highly loaded wind turbines[J]. AIAA Journal, 2017, 55(2): 341-351. DOI: 10.2514/1.j055112
|
[46] |
DU Z H, SELIG M. A 3-D stall-delay model for horizontal axis wind turbine performance prediction[C]// 1998 ASME Wind Energy Symposium, Reno, NV. Reston, Virginia: AIAA. AIAA 98-16846. doi: 10.2514/6.1998-21
|
[47] |
HIMMELSKAMP H. Profile investigations on a rotating airscrew[D]. Germany: Gottingen University, 1945.
|
[48] |
SNEL H, HOUWINK R, BOSSCHERS J. Sectional prediction of lift coefficients on rotating wind turbine blades in stall[R]. ECN-C-93-052. Netherlands: Energy Research Center of the Netherlands, 1994.
|
[49] |
LEE H M, WU Y H. An experimental study of stall delay on the blade of a horizontal-axis wind turbine using tomographic particle image velocimetry[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 123: 56-68. DOI: 10.1016/j.jweia.2013.10.005
|
[50] |
ZHU C Y, CHEN J, WU J H, et al. Dynamic stall control of the wind turbine airfoil via single-row and double-row passive vortex generators[J]. Energy, 2019, 189: 116272. DOI: 10.1016/j.energy.2019.116272
|
[51] |
SCHEPERS J G, BOORSMA K, CHO T, et al. Final report of IEA wind task 29: Mexnext (Phase 2)[R]. Energy research Centre of the Netherlands, 2014.
|
[52] |
RAMSAY R F, HOFFMAN M J, GREGOREK G M. Effects of grit roughness and pitch oscillations on the S809 airfoil[R]. NREL/TP-442-7817, 1995. https://www.osti.gov/servlets/purl/205563 doi: 10.2172/205563
|
[53] |
SHENG W N, GALBRAITH R A M, COTON F N. On the S809 airfoil's unsteady aerodynamic characteristics[J]. Wind Energy, 2009, 12(8): 752-767. DOI: 10.1002/we.331
|
[54] |
DISOTELL K J, NIKOUEEYAN P, NAUGHTON J W, et al. Global surface pressure measurements of static and dynamic stall on a wind turbine airfoil at low Reynolds number[J]. Experiments in Fluids, 2016, 57(5): 1-15. DOI: 10.1007/s00348-016-2175-z
|
[55] |
PEREIRA R, SCHEPERS G, PAVEL M D. Validation of the Beddoes-Leishman dynamic stall model for horizontal axis wind turbines using MEXICO data[J]. Wind Energy, 2013, 16(2): 207-219. DOI: 10.1002/we.541
|
[56] |
PROSPATHOPOULOS J M, RIZIOTIS V A, SCHWARZ E, et al. Simulation of oscillating trailing edge flaps on wind turbine blades using ranging fidelity tools[J]. Wind Energy, 2021, 24(4): 357-378. DOI: 10.1002/we.2578
|
[57] |
KOCUREK D. Lifting surface performance analysis for horizontal axis wind turbines[R/OL]. SERI/STR-217-3163. DE87001176. https://www.nrel.gov/docs/legosti/old/3163.pdf
|
[58] |
DUMITRESCU H, CARDOS V. Wind turbine aerodynamic performance by lifting line method[J]. International Journal of Rotating Machinery, 1998, 4(3): 141-149. DOI: 10.1155/s1023621x98000128
|
[59] |
WANG T G. Unsteady aerodynamic modelling of horizontal axis wind turbine performance[D]. University of Glasgow, 1999.http://theses.gla.ac.uk/4039/1/1999WangPhD.pdf
|
[60] |
COTON F N, WANG T. The prediction of horizontal axis wind turbine performance in yawed flow using an unsteady prescribed wake model[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1999, 213(1): 33-43. DOI: 10.1243/0957650991537419
|
[61] |
WANG T G, COTON F N. A high resolution tower shadow model for downwind wind turbines[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(10): 873-892. DOI: 10.1016/S0167-6105(01)00072-1
|
[62] |
WANG T, COTON F N. Prediction of the unsteady aerodynamic characteristics of horizontal axis wind turbines including three-dimensional effects[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2000, 214(5): 385-400. DOI: 10.1243/0957650001537958
|
[63] |
XU B F, LIU B B, CAI X, et al. Accuracy of the aerodynamic performance of wind turbines using vortex core models in the free vortex wake method[J]. Journal of Renewable and Sustainable Energy, 2019, 11(5): 053307. DOI: 10.1063/1.5121419
|
[64] |
SHEN X, HU P, CHEN J G, et al. The unsteady aerodynamics of floating wind turbine under platform pitch motion[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2018, 232(8): 1019-1036. DOI: 10.1177/0957650918766606
|
[65] |
RODRIGUEZ S N, JAWORSKI J W. Strongly-coupled aeroelastic free-vortex wake framework for floating offshore wind turbine rotors. Part 2: Application[J]. Renewable Energy, 2020, 149: 1018-1031. DOI: 10.1016/j.renene.2019.10.094
|
[66] |
LEE H, LEE D J. Numerical investigation of the aerodynamics and wake structures of horizontal axis wind turbines by using nonlinear vortex lattice method[J]. Renewable Energy, 2019, 132: 1121-1133. DOI: 10.1016/j.renene.2018.08.087
|
[67] |
GRECO L, TESTA C. Wind turbine unsteady aerodynamics and performance by a free-wake panel method[J]. Renewable Energy, 2021, 164: 444-459. DOI: 10.1016/j.renene.2020.08.002
|
[68] |
LIU Z Y, WANG X D, KANG S. Stochastic performance evaluation of horizontal axis wind turbine blades using non-deterministic CFD simulations[J]. Energy, 2014, 73: 126-136. DOI: 10.1016/j.energy.2014.05.107
|
[69] |
杨祥生, 赵宁, 田琳琳. 基于改进k-ω SST模型的风力机尾流数值模拟[J]. 太阳能学报, 2017, 38(4): 920-927.YANG X S, ZHAO N, TIAN L L. Numerical simulation OF wind turbine wake based ON improved k-ω sst model[J]. Acta Energiae Solaris Sinica, 2017, 38(4): 920-927. (in Chinese)
|
[70] |
阎超, 屈峰, 赵雅甜, 等. 航空航天CFD物理模型和计算方法的述评与挑战[J]. 空气动力学学报, 2020, 38(5): 829-857.YAN C, QU F, ZHAO Y T, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics[J]. Acta Aerodynamica Sinica, 2020, 38(5): 829-857. (in Chinese)
|
[71] |
ZHANG R K, WU V D J Z. Aerodynamic characteristics of wind turbine blades with a sinusoidal leading edge[J]. Wind Energy, 2012, 15(3): 407-424. DOI: 10.1002/we.479
|
[72] |
MOSHFEGHI M, SONG Y J, XIE Y H. Effects of near-wall grid spacing on SST-K-ω model using NREL Phase VI horizontal axis wind turbine[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 107-108: 94-105. DOI: 10.1016/j.jweia.2012.03.032
|
[73] |
MUIRURI P I, MOTSAMAI O S, NDEDA R. A comparative study of RANS-based turbulence models for an upscale wind turbine blade[J]. SN Applied Sciences, 2019, 1(3): 1-15. DOI: 10.1007/s42452-019-0254-5
|
[74] |
KHLAIFAT N, ALTAEE A, ZHOU J, et al. A review of the key sensitive parameters on the aerodynamic performance of a horizontal wind turbine using Computational Fluid Dynamics modelling[J]. AIMS Energy, 2020, 8(3): 493-524. DOI: 10.3934/energy.2020.3.493
|
[75] |
ABDELSALAM A M, RAMALINGAM V. Wake prediction of horizontal-axis wind turbine using full-rotor modeling[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 124: 7-19. DOI: 10.1016/j.jweia.2013.11.005
|
[76] |
ZHONG W, TANG H W, WANG T G, et al. Accurate RANS simulation of wind turbine stall by turbulence coefficient calibration[J]. Applied Sciences, 2018, 8(9): 1444. DOI: 10.3390/app8091444
|
[77] |
LI H R, ZHANG Y F, CHEN H X. Aerodynamic prediction of iced airfoils based on modified three-equation turbulence model[J]. AIAA Journal, 2020, 58(9): 3863-3876. DOI: 10.2514/1.J059206
|
[78] |
XU H Y, QIAO C L, YANG H Q, et al. Delayed detached eddy simulation of the wind turbine airfoil S809 for angles of attack up to 90 degrees[J]. Energy, 2017, 118: 1090-1109. DOI: 10.1016/j.energy.2016.10.131
|
[79] |
QIAN Y R, WANG T G, YUAN Y P, et al. Comparative study on wind turbine wakes using a modified partially-averaged Navier-Stokes method and large eddy simulation[J]. Energy, 2020, 206: 118147. DOI: 10.1016/j.energy.2020.118147
|
[80] |
RASAM A, POURANSARI Z, BOLIN K, et al. Detached-eddy simulation of a horizontal axis wind turbine[M]//Progress in Hybrid RANS-LES Modelling, 2018: 357-367. doi: 10.1007/978-3-319-70031-1_30
|
[81] |
REN N X, OU J P. Aerodynamic interference effect between large wind turbine blade and tower[M]//Computational Structural Engineering, 2009: 489-495. doi: 10.1007/978-90-481-2822-8_54
|
[82] |
钱耀如. 风力机非定常气动特性和流场的数值计算[D]. 南京: 南京航空航天大学, 2018.QIAN Y R. Numerical study on unsteady characteristics of wind turbine aerodynamics and wake[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
|
[83] |
LI G Q, YI S H. Large eddy simulation of dynamic stall flow control for wind turbine airfoil using plasma actuator[J]. Energy, 2020, 212: 118753. DOI: 10.1016/j.energy.2020.118753
|
[84] |
LUO K, ZHANG S X, GAO Z Y, et al. Large-eddy simulation and wind-tunnel measurement of aerodynamics and aeroacoustics of a horizontal-axis wind turbine[J]. Renewable Energy, 2015, 77: 351-362. DOI: 10.1016/j.renene.2014.12.024
|
[85] |
WASALA S H, STOREY R C, NORRIS S E, et al. Aeroacoustic noise prediction for wind turbines using Large Eddy Simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 145: 17-29. DOI: 10.1016/j.jweia.2015.05.011
|
[86] |
SCHEPERS J G, SCHRECK S J. Aerodynamic measurements on wind turbines[J]. Wiley Interdisciplinary Reviews: Energy and Environment, 2019, 8(1): e320. DOI: 10.1002/wene.320
|
[87] |
ESFAHANIAN V, SALAVATI POUR A, HARSINI I, et al. Numerical analysis of flow field around NREL Phase II wind turbine by a hybrid CFD/BEM method[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 120: 29-36. DOI: 10.1016/j.jweia.2013.06.006
|
[88] |
YANG H, SHEN W Z, XU H R, et al. Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD[J]. Renewable Energy, 2014, 70: 107-115. DOI: 10.1016/j.renene.2014.05.002
|
[89] |
TORREGROSA A J, GIL A, QUINTERO P, et al. Enhanced design methodology of a low power stall regulated wind turbine. BEMT and MRF-RANS combination and comparison with existing designs[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 230-244. DOI: 10.1016/j.jweia.2019.04.019
|
[90] |
LOMBARDI N, ORDONEZ-SANCHEZ S, ZANFORLIN S, et al. A hybrid BEM-CFD virtual blade model to predict interactions between tidal stream turbines under wave conditions[J]. Journal of Marine Science and Engineering, 2020, 8(12): 969. DOI: 10.3390/jmse8120969
|
[91] |
SCHEPERS J G, BRAND A, MADSEN H. Final report of IEA Annex XVIII: Enhanced field rotor aerodynamics database[R]. ECN-C-02-016, 2002.
|
[92] |
SCHEPERS J G, BRAND A, BRUINING A, et al. , Final Report of IEA Annex XIV: Field Rotor Aerodynamics[R]. ECN-C-97-027, 1997.
|
[93] |
SCHAFFARCZYK A P, SCHWAB D, BREUER M. Experimental detection of laminar-turbulent transition on a rotating wind turbine blade in the free atmosphere[J]. Wind Energy, 2017, 20(2): 211-220. DOI: 10.1002/we.2001
|
[94] |
BANGGA G, LUTZ T. Aerodynamic modeling of wind turbine loads exposed to turbulent inflow and validation with experimental data[J]. Energy, 2021, 223: 120076. DOI: 10.1016/j.energy.2021.120076
|
[95] |
HAND M M, SIMMS D A, FINGERSH L J, et al. Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns[R]. NREL/TP-500-29955, 2001. https://www.nrel.gov/docs/fy02osti/29955.pdf doi: 10.2172/15000240
|
[96] |
SCHEPERS JG, BOORSMA K, CHO T, et al. Final report of IEA Task 29, Mexnext (phase 1): analysis of MEXICO wind tunnel measurements [R]. ECN-E–12-004, 2012.
|
[97] |
SCHEPERS J G, BOORSMA K, MADSEN H A, et al. IEA Wind TCP Task 29, Phase IV: Detailed Aerodynamics of Wind Turbines[R /OL]. IEA Wind, 2021. https://zenodo.org/record/4817875/files/Final_report_Task29_May26_with_cover.pdf?download = 1 doi: 10.5281/zenodo.4817875
|
[98] |
AHMED I, TEICH M, LAWERENZ M. 3D RANS Simulation of NREL Phase-VI and MEXICO Wind Turbines [C]. 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC2017), Dec 2017, Maui, United States.
|
[99] |
MONTEIRO J P, SILVESTRE M R, PIGGOTT H, et al. Wind tunnel testing of a horizontal axis wind turbine rotor and comparison with simulations from two Blade Element Momentum codes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 123: 99-106. DOI: 10.1016/j.jweia.2013.09.008
|
[100] |
LI S N, CARACOGLIA L. Experimental error examination and its effects on the aerodynamic properties of wind turbine blades[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104357. DOI: 10.1016/j.jweia.2020.104357
|
[101] |
王浩. 强台风过境海上风力机风速场模型及风致振动研究[D]. 南京航空航天大学, 2020.WANG H. Investigation on Wind Speed Field Model and Wind-induced Effects on Offshore Wind Turbine under Severe Typhoon[D]. Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese).
|
[102] |
张卫国, 史喆羽, 李国强, 等. 风力机翼型动态失速等离子体流动控制数值研究[J]. 力学学报, 2020, 52(6): 1678-1689. doi: 10.6052/0459-1879-20-090ZHANG W G, SHI Z Y, LI G Q, et al. Numerical study on dynamic stall flow control for wind turbine airfoil using plasma actuator[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1678-1689. (in Chinese) doi: 10.6052/0459-1879-20-090
|
[103] |
张佳丽, 李少彦. 海上风电产业现状及未来发展趋势展望[J]. 风能, 2018(10): 48-52.
|
[104] |
许移庆, 张友林. 漂浮式海上风电发展概述[J]. 风能, 2020(5): 56-61. doi: 10.3969/j.issn.1674-9219.2020.05.019
|
[105] |
VEERS P, DYKES K, LANTZ E, et al. Grand challenges in the science of wind energy. Science[J]. Science, 2019, 366(6464): eaau2027.https://www.science.org/doi/pdf/ 10.1126/science.aau2027 DOI: 10.1126/science.aau2027
|
[106] |
ROTUNNO R, CHEN Y, WANG W, et al. Large-eddy simulation of an idealized tropical cyclone[J]. Bulletin of the American Meteorological Society, 2009, 90(12): 1783-1788. DOI: 10.1175/2009bams2884.1
|
[107] |
ULMER F G, BALSS U. Spin-up time research on the weather research and forecasting model for atmospheric delay mitigations of electromagnetic waves[J]. Journal of Applied Remote Sensing, 2016, 10(1): 016027. DOI: 10.1117/1.jrs.10.016027
|
[108] |
LI J X, BAO Q, LIU Y M, et al. Effect of horizontal resolution on the simulation of tropical cyclones in the Chinese academy of sciences FGOALS-f3 climate system model[J]. Geoscientific Model Development, 2021, 14(10): 6113. https://gmd.copernicus.org/articles/14/6113/2021/gmd-14-6113-2021.pdf doi: 10.5194/gmd-14-6113-2021
|
[109] |
JU S H, HSU H H, HSIAO T Y. Three-dimensional wind fields of tropical cyclones for wind turbine structures[J]. Ocean Engineering, 2021, 237: 109437. DOI: 10.1016/j.oceaneng.2021.109437
|
[110] |
CHEN Y S, WU D, YU Y G, et al. Do cyclone impacts really matter for the long-term performance of an offshore wind turbine? [J]. Renewable Energy, 2021, 178: 184-201. DOI: 10.1016/j.renene.2021.06.044
|
[111] |
HAN T, MCCANN G, MÜCKE T A, et al. How can a wind turbine survive in tropical cyclone? [J]. Renewable Energy, 2014, 70: 3-10. DOI: 10.1016/j.renene.2014.02.014
|
[112] |
TANG D, XU M, MAO J F, et al. Unsteady performances of a parked large-scale wind turbine in the typhoon activity zones[J]. Renewable Energy, 2020, 149: 617-630. DOI: 10.1016/j.renene.2019.12.042
|
[113] |
SHENG C, HONG H P. Reliability and fragility assessment of offshore floating wind turbine subjected to tropical cyclone hazard[J]. Structural Safety, 2021, 93: 102138. DOI: 10.1016/j.strusafe.2021.102138
|
[114] |
KAMINSKI M, NOYES C, LOTH E, et al. Gravo-aeroelastic scaling of a 13-MW downwind rotor for 20% scale blades[J]. Wind Energy, 2021, 24(3): 229-245. DOI: 10.1002/we.2569
|
[115] |
HODGES D H. Geometrically exact, intrinsic theory for dynamics of curved and twisted anisotropic beams[J]. AIAA Journal, 2003, 41(6): 1131-1137. DOI: 10.2514/2.2054
|
[116] |
LI Z W, WEN B R, DONG X J, et al. Aerodynamic and aeroelastic characteristics of flexible wind turbine blades under periodic unsteady inflows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 197: 104057. DOI: 10.1016/j.jweia.2019.104057
|
[117] |
AUBRUN S, LEROY A, DEVINANT P. A review of wind turbine-oriented active flow control strategies[J]. Experiments in Fluids, 2017, 58(10): 1-21. DOI: 10.1007/s00348-017-2412-0
|
[118] |
郝文星, 李春, 刘青松, 等. 风力机叶片气动降载与流动分离控制技术综述[J]. 热能动力工程, 2019, 34(9): 1-13.HAO W X, LI C, LIU Q S, et al. Review of aerodynamic load reduction and flow separation control technology for wind turbine blades[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(9): 1-13. (in Chinese)
|
[119] |
MOHAMED GAD-EL-HAK. Flow control: Passive, active, and reactive flow management[M]. Cambridge: Cambridge University Press, 2000. ISBN-13: 978-0521770064
|
[120] |
TROSHIN V, SEIFERT A. Performance recovery of a thick turbulent airfoil using a distributed closed-loop flow control system[J]. Experiments in Fluids, 2013, 54(1): 1-19. DOI: 10.1007/s00348-012-1443-9
|
[121] |
COONEY J A, SZLATENYI C, FINE N E. The development and demonstration of a plasma flow control system on a 20 kW wind turbine[C]// 54th AIAA Aerospace Sciences Meeting, San Diego, California, USA. Reston, Virginia: AIAA, 2016 doi: 10.2514/6.2016-1302
|
[122] |
郝文星, 李春, 丁勤卫, 等. 自适应襟翼流动分离控制数值研究[J]. 中国电机工程学报, 2019, 39(2): 536-542, 650.HAO W X, LI C, DING Q W, et al. Numerical study on flow separation control of adaptive flap[J]. Proceedings of the CSEE, 2019, 39(2): 536-542, 650. (in Chinese)
|
[123] |
SEDIGHI H, AKBARZADEH P, SALAVATIPOUR A. Aerodynamic performance enhancement of horizontal axis wind turbines by dimples on blades: Numerical investigation[J]. Energy, 2020, 195: 117056. DOI: 10.1016/j.energy.2020.117056
|
[124] |
ZHUANG C, YANG G, ZHU Y W, et al. Effect of morphed trailing-edge flap on aerodynamic load control for a wind turbine blade section[J]. Renewable Energy, 2020, 148: 964-974. DOI: 10.1016/j.renene.2019.10.082
|
[125] |
PEREZ-BECKER S, MARTEN D, PASCHEREIT C O. Active flap control with the trailing edge flap hinge moment as a sensor: using it to estimate local blade inflow conditions and to reduce extreme blade loads and deflections[J]. Wind Energy Science, 2021, 6(3): 791-814. DOI: 10.5194/wes-6-791-2021
|
[126] |
BARTHOLOMAY S, WESTER T T B, PEREZ-BECKER S, et al. Pressure-based lift estimation and its application to feedforward load control employing trailing-edge flaps[J]. Wind Energy Science, 2021, 6(1): 221-245. DOI: 10.5194/wes-6-221-2021
|
[127] |
GOMEZ GONZALEZ A, ENEVOLDSEN P B, BARLAS A, et al. Field test of an active flap system on a full-scale wind turbine[J]. Wind Energy Science, 2021, 6(1): 33-43. DOI: 10.5194/wes-6-33-2021
|
[128] |
杨阳, 曾攀, 雷丽萍. 大型水平轴风力机新型叶片结构设计思想和研究进展[J]. 工程力学, 2019, 36(10): 1-7.YANG Y, ZENG P, LEI L P. Concept and development of novel blade structure of large horizontal-axis wind turbine[J]. Engineering Mechanics, 2019, 36(10): 1-7. (in Chinese)
|
[129] |
ZHANG Y N, CAO H J, ZHANG M M. Investigation of leading-edge protuberances for the performance improvement of thick wind turbine airfoil1[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 217: 104736. DOI: 10.1016/j.jweia.2021.104736
|
[130] |
ZHONG J W, LI J Y. Aerodynamic performance prediction of NREL phase VI blade adopting biplane airfoil[J]. Energy, 2020, 206: 118182. DOI: 10.1016/j.energy.2020.118182
|
[131] |
MOMENI F, SABZPOUSHAN S, VALIZADEH R, et al. Plant leaf-mimetic smart wind turbine blades by 4D printing[J]. Renewable Energy. 2019, 130: 329-351. DOI: 10.1016/j.renene.2018.05.095
|