留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风能利用中的空气动力学研究进展Ⅰ:风力机气动特性

王同光 田琳琳 钟伟 王珑 朱呈勇

王同光, 田琳琳, 钟伟, 等. 风能利用中的空气动力学研究进展Ⅰ:风力机气动特性[J]. 空气动力学学报, 2022, 40(4): 1−21 doi: 10.7638/kqdlxxb-2021.0114
引用本文: 王同光, 田琳琳, 钟伟, 等. 风能利用中的空气动力学研究进展Ⅰ:风力机气动特性[J]. 空气动力学学报, 2022, 40(4): 1−21 doi: 10.7638/kqdlxxb-2021.0114
WANG T G, TIAN L L, ZHONG W, et al. Aerodynamic research progress in wind energy Ⅰ: Wind turbine aerodynamic characteristics[J]. Acta Aerodynamica Sinica, 2022, 40(4): 1−21 doi: 10.7638/kqdlxxb-2021.0114
Citation: WANG T G, TIAN L L, ZHONG W, et al. Aerodynamic research progress in wind energy Ⅰ: Wind turbine aerodynamic characteristics[J]. Acta Aerodynamica Sinica, 2022, 40(4): 1−21 doi: 10.7638/kqdlxxb-2021.0114

风能利用中的空气动力学研究进展Ⅰ:风力机气动特性

doi: 10.7638/kqdlxxb-2021.0114
基金项目: 国家重点研发计划(2019YFE0192600,2019YFB1503700);国家自然科学基金青年科学基金(11802122)
详细信息
    作者简介:

    王同光*(1962-),男,山东蓬莱人,教授,研究方向:风力机空气动力学. E-mail:tgwang@nuaa.edu.cn

  • 中图分类号: TM315

Aerodynamic research progress in wind energy Ⅰ: Wind turbine aerodynamic characteristics

  • 摘要: 随着世界各国纲领性行业政策的积极制定,风电行业将继续高速发展。风电机组大型化(达到多兆瓦级甚至十兆瓦级)、海洋化(从陆地扩展至海上)、智能化(辅以智能化结构、材料和控制策略)、数字化(精准预测和实时感知调控)是风电发展的大趋势。空气动力学研究作为风力机技术研发的首要任务,由此将面临一系列新的问题和挑战。本文以水平轴风力机为研究对象,就其风能利用中的空气动力学问题进行探讨,本篇为第一部分“风力机气动特性”。首先分析其空气动力学问题的复杂性及原因;然后,针对风力机专用翼型的气动特性、风力机气动特性、现代化风力机设计(特别是海上风电技术、台风问题、大叶片气弹问题)与流动控制等关键空气动力学问题,从理论分析、数值计算、风洞实验和外场测量等多种研究手段与技术着手,对其研究现状及取得的关键进展进行综述和讨论;最后对今后的研究方向进行分析与展望,为大尺寸风力机叶片设计提供参考。
  • 图  1  白天和晚上的陆上大气边界层结构及湍流风示意图

    Figure  1.  Schematic of the onshore atmospheric boundary layer (ABL) structures during the day and night as well as the evolution of the turbulent wind

    图  2  偏航条件下NREL Phase VI叶片三维旋转效应和动态失速的耦合作用示意图(基于DDES方法模拟)[5]

    Figure  2.  Schematic of coupling between the three-dimensional rotational effect and the dynamic stall under yaw conditions for the NREL Phase VI blade (based on the DDES turbulence model)[5]

    图  3  大变形叶片周围的流场云图 ( 基于CFD的气动弹性模拟 ) [6]

    Figure  3.  Flow contour around a largely deformed blade (CFD-based aeroelastic modelling)[6]

    图  4  水平轴风力机对翼型的要求(根据文献[9]重绘)

    Figure  4.  Design goals of horizontal-axis wind turbine airfoils (adapted from reference [9])

    图  5  水平轴风力机叶片几何构型和单个叶素的当地入流与气动力示意图[39]

    Figure  5.  Schematic of the horizontal-axis blade geometry and the local inflow and aerodynamic forces of blade elements[39]

    图  6  风力机SCADA数据和叶片设计的功率曲线对比

    Figure  6.  Wind turbine’s power curve comparison between the measured SCADA data and the theoretical design

    图  7  叶片气动特性[41]

    Figure  7.  Blade aerodynamic characteristics[41]

    图  8  水平轴风力机叶片PIV风洞实验的流动显示结果(叶尖速比为3)[49]

    Figure  8.  Flow visualisation of the PIV measured windtunnel experimental data for the horizontal-axis turbine (tip speed ratio TSR = 3)[49]

    图  9  基于动态失速模型预测到的NREL S809翼型升力系数迟滞环与实验值对比 (8°±10° , k = 0.078)[5]

    Figure  9.  Comparison between the lift force curve obtained with dynamic stall models and experimental measurement for the NREL S809 airfoil (8°±10°, k = 0.078))[5]

    图  10  自由涡尾迹方法的尾迹离散示意图[56]

    Figure  10.  Layout of the free-wake modelling of a blade[56]

    图  11  新一期MEXICO风力机实验:不同计算方法(包含VWM、BEM、CFD)得到的切向力随径向位置分布[86]

    Figure  11.  New MEXICO wind turbine experiment: tangential force along the radial direction for different computational methods (including VWM, BEM and CFD)[86]

    图  12  IEA 任务14/18中的外场实验图(采用探针测量入流角)[86]

    Figure  12.  IEA Task 14/18 facility with probes[86]

    图  13  MEXICO风力机尾涡结构[96]

    Figure  13.  Vortex structures in the wake region of the MEXICO turbine[96]

    图  14  台风“黑格比”(0822)全过程风速场模拟[101]

    Figure  14.  Typhoon “Hagupit” (0822) full-track simulation[101]

    图  15  风力机的气动弹性建模与模拟策略示意图[39]

    Figure  15.  Schematic of the wind turbine aeroelastic modelling stretagy[39]

    图  16  基于摆动尾缘襟翼的智能叶片示意图[124]

    Figure  16.  Smart blade with flapping trailing edges[124]

    图  17  各种不同类型的风力机仿生叶片设计

    Figure  17.  Various types of biomimetic wind turbine blade design

  • [1] 搜狐网. 开发30亿风电, 引领绿色发展, 落实“30·60”目标——《风能北京宣言》发布[EB/OL]. http://www.cnenergynews.cn/huizhan/2020/10/15/detail_2020101579954.html, [2020-10-15].
    [2] 黎作武, 贺德馨. 风能工程中流体力学问题的研究现状与进展[J]. 力学进展, 2013, 43(5): 472-525.

    LI Z W, HE D X. Reviews of fluid dynamics researches in wind energy engineering[J]. Advances in Mechanics, 2013, 43(5): 472-525. (in Chinese)
    [3] 王同光. 风力机空气动力学面临的挑战[C]//第五届全国风能技术应用年会论文集. 中国空气动力学会, 2008: 59-68.
    [4] 王同光, 钟伟, 钱耀如. 风力机空气动力性能计算方法[M]. 北京: 科学出版社, 2019.
    [5] 朱呈勇. 水平轴风力机叶片三维旋转动态失速特性研究[D]. 南京航空航天大学, 2020.

    ZHU C Y. Three-dimensional rotational and dynamic stall of horizontal axis wind turbine blades[D]. Nanjing University of Aeronautics and Astronautics, 2020.
    [6] WANG L, LIU X W, KOLIOS A. State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling[J]. Renewable and Sustainable Energy Reviews, 2016, 64: 195-210. DOI: 10.1016/j.rser.2016.06.007
    [7] 孙振业. 大型海上风力机叶片气动与结构设计研究[D]. 重庆: 重庆大学, 2017.
    [8] TIMMER W A, BAK C. 4-Aerodynamic characteristics of wind turbine blade airfoils[M]//BRøNDSTED P, NIJSSEN R P L. Advances in wind turbine blade design and materials. Woodhead Publishing, 2013: 109-149. doi: 10.1533/9780857097286.1.109
    [9] VAN ROOIJ R, TIMMER N. Design of airfoils for wind turbine blades[EB/OL]. http://gcep.stanford.edu/pdfs/energy_workshops_04_04/wind_van_rooij.pdf
    [10] 黎作武, 陈江, 陈宝, 等. 风力机组叶片的先进翼型族设计[J]. 空气动力学学报, 2012, 30(1): 130-136. doi: 10.3969/j.issn.0258-1825.2012.01.023

    LI Z W, CHEN J, CHEN B, et al. Design of advanced airfoil families for wind turbines[J]. Acta Aerodynamica Sinica, 2012, 30(1): 130-136. (in Chinese) doi: 10.3969/j.issn.0258-1825.2012.01.023
    [11] TANGLER J L, SOMERS D M. Status of the special-purpose airfoil families[R/OL]. SERI/TP-217-3264, 1987: 229-335. https://www.nrel.gov/docs/legosti/old/3264.pdf
    [12] DRELA M. XFOIL: an analysis and design system for low Reynolds number airfoils[C/OL]//Low Reynolds Number Aerodynamics, 1989. http://web.mit.edu/drela/Public/papers/xfoil_sv.pdf
    [13] VAN ROOIJ R. Modification of the boundary layer in XFOIL for improved airfoil stall prediction[R]. IW-96087R. The Netherlands: Delft University of Technology, 1996.
    [14] 李星星, 杨科, 张磊, 等. 大厚度钝尾缘翼型的设计研究[J]. 工程热物理学报, 2014, 35(9): 1744-1748.

    LI X X, YANG K, ZHANG L, et al. Design of large thickness airfoil with blunt trailing edge[J]. Journal of Engineering Thermophysics, 2014, 35(9): 1744-1748. (in Chinese)
    [15] WANG Q, LI D S. A new airfoil design method for wind turbine to improve maximum lift of airfoil[J]. Wind Engineering, 2021: 0309524X2098442. doi: 10.1177/0309524x20984428
    [16] 吴江海. 大型风力机叶片及翼型优化设计[D]. 南京: 南京航空航天大学, 2012.

    WU J H. Large-scale wind turbine blade and airfoil optimization design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
    [17] BAKER J P, MAYDA E A, VAN DAM C P. Experimental analysis of thick blunt trailing-edge wind turbine airfoils[J]. Journal of Solar Energy Engineering, 2006, 128(4): 422-431. DOI: 10.1115/1.2346701
    [18] PAPADAKIS G, MANOLESOS M, DIAKAKIS K, et al. DES vs RANS: The flatback airfoil case[J]. Journal of Physics: Conference Series, 2020, 1618: 052062. DOI: 10.1088/1742-6596/1618/5/052062
    [19] 吕文春, 汪建文, 段亚范, 等. 翼型凹变对风轮旋转噪声影响特性分析[J]. 振动与冲击, 2021, 40(1): 45-51, 85.

    LYU W C, WANG J W, DUAN Y F, et al. Effects of airfoil concave change on rotating noise of wind turbine[J]. Journal of Vibration and Shock, 2021, 40(1): 45-51, 85. (in Chinese)
    [20] 乔晨亮, 许和勇, 叶正寅. 钝后缘风力机翼型的环量控制研究[J]. 力学学报, 2019, 51(1): 135-145. doi: 10.6052/0459-1879-18-164

    QIAO C L, XU H Y, YE Z Y. Circulation control on wind turbine airfoil with blunt trailing edge[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 135-145. (in Chinese) doi: 10.6052/0459-1879-18-164
    [21] MILLER M, LEE SLEW K, MATIDA E. The development of a flatback wind turbine airfoil family[J]. Wind Energy, 2018, 21(12): 1372-1382. DOI: 10.1002/we.2260
    [22] LI X X, ZHANG L, SONG J J, et al. Airfoil design for large horizontal axis wind turbines in low wind speed regions[J]. Renewable Energy, 2020, 145: 2345-2357. DOI: 10.1016/j.renene.2019.07.163
    [23] 吴蔚, 杨科, 张磊, 等. 6 MW大厚度钝尾缘风电叶片结构分析[J]. 工程热物理学报, 2013, 34(6): 1074-1078.

    WU W, YANG K, ZHANG L, et al. Structure analysis of 6 MW wind turbine blade with large thickness and blunt trailing edge[J]. Journal of Engineering Thermophysics, 2013, 34(6): 1074-1078. (in Chinese)
    [24] WEN H, SANG S, QIU C H, et al. A new optimization method of wind turbine airfoil performance based on Bessel equation and GABP artificial neural network[J]. Energy, 2019, 187: 116106. DOI: 10.1016/j.energy.2019.116106
    [25] PEERINGA J, BROOD R, CEYHAN O, et al. Upwind 20 MW wind turbine pre-design[R/OL]. ECN-E–11-017, 2011. https://publications.tno.nl/publication/34629096/7MK62j/e11017.pdf
    [26] PIRES O, MUNDUATE X, CEYHAN O, et al. Analysis of high Reynolds numbers effects on a wind turbine airfoil using 2D wind tunnel test data[J]. Journal of Physics: Conference Series, 2016, 753: 022047. DOI: 10.1088/1742-6596/753/2/022047
    [27] 乔志德. 先进翼型设计技术及应用研究进展[C]//中国风能发展战略论坛. 北京: 中国工程院, 中国可再生能源学会. 2006: 206-214.
    [28] 韩忠华, 宋文萍, 高永卫. 大型风力机翼型族的设计与实验[J]. 应用数学和力学, 2013, 34(10): 1012-1027. doi: 10.3879/j.issn.1000-0887.2013.10.002

    HAN Z H, SONG W P, GAO Y W. Design and wind-tunnel verification of large-size wind turbine airfoils[J]. Applied Mathematics and Mechanics, 2013, 34(10): 1012-1027. (in Chinese) doi: 10.3879/j.issn.1000-0887.2013.10.002
    [29] LIU J, ZHU W Q, XIAO Z X, et al. DDES with adaptive coefficient for stalled flows past a wind turbine airfoil[J]. Energy, 2018, 161: 846-858. DOI: 10.1016/j.energy.2018.07.176
    [30] SOLÍS-GALLEGO I, MEANA-FERNÁNDEZ A, FERNÁNDEZ ORO J M, et al. LES-based numerical prediction of the trailing edge noise in a small wind turbine airfoil at different angles of attack[J]. Renewable Energy, 2018, 120: 241-254. DOI: 10.1016/j.renene.2017.12.082
    [31] 侯银珠, 宋文萍, 张坤. 考虑转捩影响的风力机翼型气动特性计算研究[J]. 空气动力学学报, 2010, 28(2): 234-237. doi: 10.3969/j.issn.0258-1825.2010.02.019

    HOU Y Z, SONG W P, ZHANG K. Calculation of aerodynamic performance of wind turbine airfoil incorporating transition prediction[J]. Acta Aerodynamica Sinica, 2010, 28(2): 234-237. (in Chinese) doi: 10.3969/j.issn.0258-1825.2010.02.019
    [32] 陈进, 孙振业, 谢翌, 等. γ-Reθ转捩模型在风力机翼型数值计算中的应用[J]. 哈尔滨工程大学学报, 2015, 36(2): 218-221.

    CHEN J, SUN Z Y, XIE Y, et al. Γ-Reθ transition model in numerical simulation of airfoil for wind turbine[J]. Journal of Harbin Engineering University, 2015, 36(2): 218-221. (in Chinese)
    [33] CUI W Y, XIAO Z X, YUAN X J. Simulations of transition and separation past a wind-turbine airfoil near stall[J]. Energy, 2020, 205: 118003. DOI: 10.1016/j.energy.2020.118003
    [34] BAI C J, WANG W C. Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)[J]. Renewable and Sustainable Energy Reviews, 2016, 63: 506-519. DOI: 10.1016/j.rser.2016.05.078
    [35] 李国强, 张卫国, 陈立, 等. 风力机叶片翼型动态试验技术研究[J]. 力学学报, 2018, 50(4): 751-765. doi: 10.6052/0459-1879-18-108

    LI G Q, ZHANG W G, CHEN L, et al. Research on dynamic test technology for wind turbine blade airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 751-765. (in Chinese) doi: 10.6052/0459-1879-18-108
    [36] LI G Q, HUANG X, JIANG Y B, et al. An experimental study of the dynamic aerodynamic characteristics of a yaw-oscillating wind turbine airfoil[J]. Physics of Fluids, 2019, 31(6): 067102. DOI: 10.1063/1.5088854
    [37] LANZAFAME R, MESSINA M. Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory[J]. Renewable Energy, 2007, 32(14): 2291-2305. DOI: 10.1016/j.renene.2006.12.010
    [38] LIU S, JANAJREH I. Development and application of an improved blade element momentum method model on horizontal axis wind turbines[J]. International Journal of Energy and Environmental Engineering, 2012, 3(1): 1-10. DOI: 10.1186/2251-6832-3-30
    [39] AGEZE M B, HU Y F, WU H C. Wind turbine aeroelastic modeling: basics and cutting edge trends[J]. International Journal of Aerospace Engineering, 2017, 2017: 1-15. DOI: 10.1155/2017/5263897
    [40] 王珑, 王同光. 风力机设计及其空气动力学问题[J]. 中国科学: 物理学 力学 天文学, 2013, 43(12): 1579-1588.

    WANG L, WANG T G. Wind turbine design and its aerodynamic issues[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2013, 43(12): 1579-1588. (in Chinese)
    [41] ZHONG W, SHEN W Z, WANG T, et al. A tip loss correction model for wind turbine aerodynamic performance prediction[J]. Renewable Energy, 2020, 147: 223-238. DOI: 10.1016/j.renene.2019.08.125
    [42] GLAUERT H. Airplane propellers[M]//DURAND W F, ed. Aerodynamic Theory. Springer, Berlin, Heidelberg: 169-360. doi: 10.1007/978-3-642-91487-4_3
    [43] SHEN W Z, MIKKELSEN R, SØRENSEN J, et al. Tip loss corrections for wind turbine computations[J]. Wind Energy, 2005, 8(4): 457-475.https://onlinelibrary.wiley.com/doi/epdf/10.1002/we.153 DOI: 10.1002/WE.153
    [44] WIMSHURST A, WILLDEN R H J. Analysis of a tip correction factor for horizontal axis turbines[J]. Wind Energy, 2017, 20(9): 1515-1528. DOI: 10.1002/we.2106
    [45] SCHMITZ S, MANIACI D C. Methodology to determine a tip-loss factor for highly loaded wind turbines[J]. AIAA Journal, 2017, 55(2): 341-351. DOI: 10.2514/1.j055112
    [46] DU Z H, SELIG M. A 3-D stall-delay model for horizontal axis wind turbine performance prediction[C]// 1998 ASME Wind Energy Symposium, Reno, NV. Reston, Virginia: AIAA. AIAA 98-16846. doi: 10.2514/6.1998-21
    [47] HIMMELSKAMP H. Profile investigations on a rotating airscrew[D]. Germany: Gottingen University, 1945.
    [48] SNEL H, HOUWINK R, BOSSCHERS J. Sectional prediction of lift coefficients on rotating wind turbine blades in stall[R]. ECN-C-93-052. Netherlands: Energy Research Center of the Netherlands, 1994.
    [49] LEE H M, WU Y H. An experimental study of stall delay on the blade of a horizontal-axis wind turbine using tomographic particle image velocimetry[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 123: 56-68. DOI: 10.1016/j.jweia.2013.10.005
    [50] ZHU C Y, CHEN J, WU J H, et al. Dynamic stall control of the wind turbine airfoil via single-row and double-row passive vortex generators[J]. Energy, 2019, 189: 116272. DOI: 10.1016/j.energy.2019.116272
    [51] SCHEPERS J G, BOORSMA K, CHO T, et al. Final report of IEA wind task 29: Mexnext (Phase 2)[R]. Energy research Centre of the Netherlands, 2014.
    [52] RAMSAY R F, HOFFMAN M J, GREGOREK G M. Effects of grit roughness and pitch oscillations on the S809 airfoil[R]. NREL/TP-442-7817, 1995. https://www.osti.gov/servlets/purl/205563 doi: 10.2172/205563
    [53] SHENG W N, GALBRAITH R A M, COTON F N. On the S809 airfoil's unsteady aerodynamic characteristics[J]. Wind Energy, 2009, 12(8): 752-767. DOI: 10.1002/we.331
    [54] DISOTELL K J, NIKOUEEYAN P, NAUGHTON J W, et al. Global surface pressure measurements of static and dynamic stall on a wind turbine airfoil at low Reynolds number[J]. Experiments in Fluids, 2016, 57(5): 1-15. DOI: 10.1007/s00348-016-2175-z
    [55] PEREIRA R, SCHEPERS G, PAVEL M D. Validation of the Beddoes-Leishman dynamic stall model for horizontal axis wind turbines using MEXICO data[J]. Wind Energy, 2013, 16(2): 207-219. DOI: 10.1002/we.541
    [56] PROSPATHOPOULOS J M, RIZIOTIS V A, SCHWARZ E, et al. Simulation of oscillating trailing edge flaps on wind turbine blades using ranging fidelity tools[J]. Wind Energy, 2021, 24(4): 357-378. DOI: 10.1002/we.2578
    [57] KOCUREK D. Lifting surface performance analysis for horizontal axis wind turbines[R/OL]. SERI/STR-217-3163. DE87001176. https://www.nrel.gov/docs/legosti/old/3163.pdf
    [58] DUMITRESCU H, CARDOS V. Wind turbine aerodynamic performance by lifting line method[J]. International Journal of Rotating Machinery, 1998, 4(3): 141-149. DOI: 10.1155/s1023621x98000128
    [59] WANG T G. Unsteady aerodynamic modelling of horizontal axis wind turbine performance[D]. University of Glasgow, 1999.http://theses.gla.ac.uk/4039/1/1999WangPhD.pdf
    [60] COTON F N, WANG T. The prediction of horizontal axis wind turbine performance in yawed flow using an unsteady prescribed wake model[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1999, 213(1): 33-43. DOI: 10.1243/0957650991537419
    [61] WANG T G, COTON F N. A high resolution tower shadow model for downwind wind turbines[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(10): 873-892. DOI: 10.1016/S0167-6105(01)00072-1
    [62] WANG T, COTON F N. Prediction of the unsteady aerodynamic characteristics of horizontal axis wind turbines including three-dimensional effects[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2000, 214(5): 385-400. DOI: 10.1243/0957650001537958
    [63] XU B F, LIU B B, CAI X, et al. Accuracy of the aerodynamic performance of wind turbines using vortex core models in the free vortex wake method[J]. Journal of Renewable and Sustainable Energy, 2019, 11(5): 053307. DOI: 10.1063/1.5121419
    [64] SHEN X, HU P, CHEN J G, et al. The unsteady aerodynamics of floating wind turbine under platform pitch motion[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2018, 232(8): 1019-1036. DOI: 10.1177/0957650918766606
    [65] RODRIGUEZ S N, JAWORSKI J W. Strongly-coupled aeroelastic free-vortex wake framework for floating offshore wind turbine rotors. Part 2: Application[J]. Renewable Energy, 2020, 149: 1018-1031. DOI: 10.1016/j.renene.2019.10.094
    [66] LEE H, LEE D J. Numerical investigation of the aerodynamics and wake structures of horizontal axis wind turbines by using nonlinear vortex lattice method[J]. Renewable Energy, 2019, 132: 1121-1133. DOI: 10.1016/j.renene.2018.08.087
    [67] GRECO L, TESTA C. Wind turbine unsteady aerodynamics and performance by a free-wake panel method[J]. Renewable Energy, 2021, 164: 444-459. DOI: 10.1016/j.renene.2020.08.002
    [68] LIU Z Y, WANG X D, KANG S. Stochastic performance evaluation of horizontal axis wind turbine blades using non-deterministic CFD simulations[J]. Energy, 2014, 73: 126-136. DOI: 10.1016/j.energy.2014.05.107
    [69] 杨祥生, 赵宁, 田琳琳. 基于改进k-ω SST模型的风力机尾流数值模拟[J]. 太阳能学报, 2017, 38(4): 920-927.

    YANG X S, ZHAO N, TIAN L L. Numerical simulation OF wind turbine wake based ON improved k-ω sst model[J]. Acta Energiae Solaris Sinica, 2017, 38(4): 920-927. (in Chinese)
    [70] 阎超, 屈峰, 赵雅甜, 等. 航空航天CFD物理模型和计算方法的述评与挑战[J]. 空气动力学学报, 2020, 38(5): 829-857.

    YAN C, QU F, ZHAO Y T, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics[J]. Acta Aerodynamica Sinica, 2020, 38(5): 829-857. (in Chinese)
    [71] ZHANG R K, WU V D J Z. Aerodynamic characteristics of wind turbine blades with a sinusoidal leading edge[J]. Wind Energy, 2012, 15(3): 407-424. DOI: 10.1002/we.479
    [72] MOSHFEGHI M, SONG Y J, XIE Y H. Effects of near-wall grid spacing on SST-K-ω model using NREL Phase VI horizontal axis wind turbine[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 107-108: 94-105. DOI: 10.1016/j.jweia.2012.03.032
    [73] MUIRURI P I, MOTSAMAI O S, NDEDA R. A comparative study of RANS-based turbulence models for an upscale wind turbine blade[J]. SN Applied Sciences, 2019, 1(3): 1-15. DOI: 10.1007/s42452-019-0254-5
    [74] KHLAIFAT N, ALTAEE A, ZHOU J, et al. A review of the key sensitive parameters on the aerodynamic performance of a horizontal wind turbine using Computational Fluid Dynamics modelling[J]. AIMS Energy, 2020, 8(3): 493-524. DOI: 10.3934/energy.2020.3.493
    [75] ABDELSALAM A M, RAMALINGAM V. Wake prediction of horizontal-axis wind turbine using full-rotor modeling[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 124: 7-19. DOI: 10.1016/j.jweia.2013.11.005
    [76] ZHONG W, TANG H W, WANG T G, et al. Accurate RANS simulation of wind turbine stall by turbulence coefficient calibration[J]. Applied Sciences, 2018, 8(9): 1444. DOI: 10.3390/app8091444
    [77] LI H R, ZHANG Y F, CHEN H X. Aerodynamic prediction of iced airfoils based on modified three-equation turbulence model[J]. AIAA Journal, 2020, 58(9): 3863-3876. DOI: 10.2514/1.J059206
    [78] XU H Y, QIAO C L, YANG H Q, et al. Delayed detached eddy simulation of the wind turbine airfoil S809 for angles of attack up to 90 degrees[J]. Energy, 2017, 118: 1090-1109. DOI: 10.1016/j.energy.2016.10.131
    [79] QIAN Y R, WANG T G, YUAN Y P, et al. Comparative study on wind turbine wakes using a modified partially-averaged Navier-Stokes method and large eddy simulation[J]. Energy, 2020, 206: 118147. DOI: 10.1016/j.energy.2020.118147
    [80] RASAM A, POURANSARI Z, BOLIN K, et al. Detached-eddy simulation of a horizontal axis wind turbine[M]//Progress in Hybrid RANS-LES Modelling, 2018: 357-367. doi: 10.1007/978-3-319-70031-1_30
    [81] REN N X, OU J P. Aerodynamic interference effect between large wind turbine blade and tower[M]//Computational Structural Engineering, 2009: 489-495. doi: 10.1007/978-90-481-2822-8_54
    [82] 钱耀如. 风力机非定常气动特性和流场的数值计算[D]. 南京: 南京航空航天大学, 2018.

    QIAN Y R. Numerical study on unsteady characteristics of wind turbine aerodynamics and wake[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
    [83] LI G Q, YI S H. Large eddy simulation of dynamic stall flow control for wind turbine airfoil using plasma actuator[J]. Energy, 2020, 212: 118753. DOI: 10.1016/j.energy.2020.118753
    [84] LUO K, ZHANG S X, GAO Z Y, et al. Large-eddy simulation and wind-tunnel measurement of aerodynamics and aeroacoustics of a horizontal-axis wind turbine[J]. Renewable Energy, 2015, 77: 351-362. DOI: 10.1016/j.renene.2014.12.024
    [85] WASALA S H, STOREY R C, NORRIS S E, et al. Aeroacoustic noise prediction for wind turbines using Large Eddy Simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 145: 17-29. DOI: 10.1016/j.jweia.2015.05.011
    [86] SCHEPERS J G, SCHRECK S J. Aerodynamic measurements on wind turbines[J]. Wiley Interdisciplinary Reviews: Energy and Environment, 2019, 8(1): e320. DOI: 10.1002/wene.320
    [87] ESFAHANIAN V, SALAVATI POUR A, HARSINI I, et al. Numerical analysis of flow field around NREL Phase II wind turbine by a hybrid CFD/BEM method[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 120: 29-36. DOI: 10.1016/j.jweia.2013.06.006
    [88] YANG H, SHEN W Z, XU H R, et al. Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD[J]. Renewable Energy, 2014, 70: 107-115. DOI: 10.1016/j.renene.2014.05.002
    [89] TORREGROSA A J, GIL A, QUINTERO P, et al. Enhanced design methodology of a low power stall regulated wind turbine. BEMT and MRF-RANS combination and comparison with existing designs[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 230-244. DOI: 10.1016/j.jweia.2019.04.019
    [90] LOMBARDI N, ORDONEZ-SANCHEZ S, ZANFORLIN S, et al. A hybrid BEM-CFD virtual blade model to predict interactions between tidal stream turbines under wave conditions[J]. Journal of Marine Science and Engineering, 2020, 8(12): 969. DOI: 10.3390/jmse8120969
    [91] SCHEPERS J G, BRAND A, MADSEN H. Final report of IEA Annex XVIII: Enhanced field rotor aerodynamics database[R]. ECN-C-02-016, 2002.
    [92] SCHEPERS J G, BRAND A, BRUINING A, et al. , Final Report of IEA Annex XIV: Field Rotor Aerodynamics[R]. ECN-C-97-027, 1997.
    [93] SCHAFFARCZYK A P, SCHWAB D, BREUER M. Experimental detection of laminar-turbulent transition on a rotating wind turbine blade in the free atmosphere[J]. Wind Energy, 2017, 20(2): 211-220. DOI: 10.1002/we.2001
    [94] BANGGA G, LUTZ T. Aerodynamic modeling of wind turbine loads exposed to turbulent inflow and validation with experimental data[J]. Energy, 2021, 223: 120076. DOI: 10.1016/j.energy.2021.120076
    [95] HAND M M, SIMMS D A, FINGERSH L J, et al. Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns[R]. NREL/TP-500-29955, 2001. https://www.nrel.gov/docs/fy02osti/29955.pdf doi: 10.2172/15000240
    [96] SCHEPERS JG, BOORSMA K, CHO T, et al. Final report of IEA Task 29, Mexnext (phase 1): analysis of MEXICO wind tunnel measurements [R]. ECN-E–12-004, 2012.
    [97] SCHEPERS J G, BOORSMA K, MADSEN H A, et al. IEA Wind TCP Task 29, Phase IV: Detailed Aerodynamics of Wind Turbines[R /OL]. IEA Wind, 2021. https://zenodo.org/record/4817875/files/Final_report_Task29_May26_with_cover.pdf?download = 1 doi: 10.5281/zenodo.4817875
    [98] AHMED I, TEICH M, LAWERENZ M. 3D RANS Simulation of NREL Phase-VI and MEXICO Wind Turbines [C]. 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC2017), Dec 2017, Maui, United States.
    [99] MONTEIRO J P, SILVESTRE M R, PIGGOTT H, et al. Wind tunnel testing of a horizontal axis wind turbine rotor and comparison with simulations from two Blade Element Momentum codes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 123: 99-106. DOI: 10.1016/j.jweia.2013.09.008
    [100] LI S N, CARACOGLIA L. Experimental error examination and its effects on the aerodynamic properties of wind turbine blades[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104357. DOI: 10.1016/j.jweia.2020.104357
    [101] 王浩. 强台风过境海上风力机风速场模型及风致振动研究[D]. 南京航空航天大学, 2020.

    WANG H. Investigation on Wind Speed Field Model and Wind-induced Effects on Offshore Wind Turbine under Severe Typhoon[D]. Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese).
    [102] 张卫国, 史喆羽, 李国强, 等. 风力机翼型动态失速等离子体流动控制数值研究[J]. 力学学报, 2020, 52(6): 1678-1689. doi: 10.6052/0459-1879-20-090

    ZHANG W G, SHI Z Y, LI G Q, et al. Numerical study on dynamic stall flow control for wind turbine airfoil using plasma actuator[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1678-1689. (in Chinese) doi: 10.6052/0459-1879-20-090
    [103] 张佳丽, 李少彦. 海上风电产业现状及未来发展趋势展望[J]. 风能, 2018(10): 48-52.
    [104] 许移庆, 张友林. 漂浮式海上风电发展概述[J]. 风能, 2020(5): 56-61. doi: 10.3969/j.issn.1674-9219.2020.05.019
    [105] VEERS P, DYKES K, LANTZ E, et al. Grand challenges in the science of wind energy. Science[J]. Science, 2019, 366(6464): eaau2027.https://www.science.org/doi/pdf/ 10.1126/science.aau2027 DOI: 10.1126/science.aau2027
    [106] ROTUNNO R, CHEN Y, WANG W, et al. Large-eddy simulation of an idealized tropical cyclone[J]. Bulletin of the American Meteorological Society, 2009, 90(12): 1783-1788. DOI: 10.1175/2009bams2884.1
    [107] ULMER F G, BALSS U. Spin-up time research on the weather research and forecasting model for atmospheric delay mitigations of electromagnetic waves[J]. Journal of Applied Remote Sensing, 2016, 10(1): 016027. DOI: 10.1117/1.jrs.10.016027
    [108] LI J X, BAO Q, LIU Y M, et al. Effect of horizontal resolution on the simulation of tropical cyclones in the Chinese academy of sciences FGOALS-f3 climate system model[J]. Geoscientific Model Development, 2021, 14(10): 6113. https://gmd.copernicus.org/articles/14/6113/2021/gmd-14-6113-2021.pdf doi: 10.5194/gmd-14-6113-2021
    [109] JU S H, HSU H H, HSIAO T Y. Three-dimensional wind fields of tropical cyclones for wind turbine structures[J]. Ocean Engineering, 2021, 237: 109437. DOI: 10.1016/j.oceaneng.2021.109437
    [110] CHEN Y S, WU D, YU Y G, et al. Do cyclone impacts really matter for the long-term performance of an offshore wind turbine? [J]. Renewable Energy, 2021, 178: 184-201. DOI: 10.1016/j.renene.2021.06.044
    [111] HAN T, MCCANN G, MÜCKE T A, et al. How can a wind turbine survive in tropical cyclone? [J]. Renewable Energy, 2014, 70: 3-10. DOI: 10.1016/j.renene.2014.02.014
    [112] TANG D, XU M, MAO J F, et al. Unsteady performances of a parked large-scale wind turbine in the typhoon activity zones[J]. Renewable Energy, 2020, 149: 617-630. DOI: 10.1016/j.renene.2019.12.042
    [113] SHENG C, HONG H P. Reliability and fragility assessment of offshore floating wind turbine subjected to tropical cyclone hazard[J]. Structural Safety, 2021, 93: 102138. DOI: 10.1016/j.strusafe.2021.102138
    [114] KAMINSKI M, NOYES C, LOTH E, et al. Gravo-aeroelastic scaling of a 13-MW downwind rotor for 20% scale blades[J]. Wind Energy, 2021, 24(3): 229-245. DOI: 10.1002/we.2569
    [115] HODGES D H. Geometrically exact, intrinsic theory for dynamics of curved and twisted anisotropic beams[J]. AIAA Journal, 2003, 41(6): 1131-1137. DOI: 10.2514/2.2054
    [116] LI Z W, WEN B R, DONG X J, et al. Aerodynamic and aeroelastic characteristics of flexible wind turbine blades under periodic unsteady inflows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 197: 104057. DOI: 10.1016/j.jweia.2019.104057
    [117] AUBRUN S, LEROY A, DEVINANT P. A review of wind turbine-oriented active flow control strategies[J]. Experiments in Fluids, 2017, 58(10): 1-21. DOI: 10.1007/s00348-017-2412-0
    [118] 郝文星, 李春, 刘青松, 等. 风力机叶片气动降载与流动分离控制技术综述[J]. 热能动力工程, 2019, 34(9): 1-13.

    HAO W X, LI C, LIU Q S, et al. Review of aerodynamic load reduction and flow separation control technology for wind turbine blades[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(9): 1-13. (in Chinese)
    [119] MOHAMED GAD-EL-HAK. Flow control: Passive, active, and reactive flow management[M]. Cambridge: Cambridge University Press, 2000. ISBN-13: 978-0521770064
    [120] TROSHIN V, SEIFERT A. Performance recovery of a thick turbulent airfoil using a distributed closed-loop flow control system[J]. Experiments in Fluids, 2013, 54(1): 1-19. DOI: 10.1007/s00348-012-1443-9
    [121] COONEY J A, SZLATENYI C, FINE N E. The development and demonstration of a plasma flow control system on a 20 kW wind turbine[C]// 54th AIAA Aerospace Sciences Meeting, San Diego, California, USA. Reston, Virginia: AIAA, 2016 doi: 10.2514/6.2016-1302
    [122] 郝文星, 李春, 丁勤卫, 等. 自适应襟翼流动分离控制数值研究[J]. 中国电机工程学报, 2019, 39(2): 536-542, 650.

    HAO W X, LI C, DING Q W, et al. Numerical study on flow separation control of adaptive flap[J]. Proceedings of the CSEE, 2019, 39(2): 536-542, 650. (in Chinese)
    [123] SEDIGHI H, AKBARZADEH P, SALAVATIPOUR A. Aerodynamic performance enhancement of horizontal axis wind turbines by dimples on blades: Numerical investigation[J]. Energy, 2020, 195: 117056. DOI: 10.1016/j.energy.2020.117056
    [124] ZHUANG C, YANG G, ZHU Y W, et al. Effect of morphed trailing-edge flap on aerodynamic load control for a wind turbine blade section[J]. Renewable Energy, 2020, 148: 964-974. DOI: 10.1016/j.renene.2019.10.082
    [125] PEREZ-BECKER S, MARTEN D, PASCHEREIT C O. Active flap control with the trailing edge flap hinge moment as a sensor: using it to estimate local blade inflow conditions and to reduce extreme blade loads and deflections[J]. Wind Energy Science, 2021, 6(3): 791-814. DOI: 10.5194/wes-6-791-2021
    [126] BARTHOLOMAY S, WESTER T T B, PEREZ-BECKER S, et al. Pressure-based lift estimation and its application to feedforward load control employing trailing-edge flaps[J]. Wind Energy Science, 2021, 6(1): 221-245. DOI: 10.5194/wes-6-221-2021
    [127] GOMEZ GONZALEZ A, ENEVOLDSEN P B, BARLAS A, et al. Field test of an active flap system on a full-scale wind turbine[J]. Wind Energy Science, 2021, 6(1): 33-43. DOI: 10.5194/wes-6-33-2021
    [128] 杨阳, 曾攀, 雷丽萍. 大型水平轴风力机新型叶片结构设计思想和研究进展[J]. 工程力学, 2019, 36(10): 1-7.

    YANG Y, ZENG P, LEI L P. Concept and development of novel blade structure of large horizontal-axis wind turbine[J]. Engineering Mechanics, 2019, 36(10): 1-7. (in Chinese)
    [129] ZHANG Y N, CAO H J, ZHANG M M. Investigation of leading-edge protuberances for the performance improvement of thick wind turbine airfoil1[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 217: 104736. DOI: 10.1016/j.jweia.2021.104736
    [130] ZHONG J W, LI J Y. Aerodynamic performance prediction of NREL phase VI blade adopting biplane airfoil[J]. Energy, 2020, 206: 118182. DOI: 10.1016/j.energy.2020.118182
    [131] MOMENI F, SABZPOUSHAN S, VALIZADEH R, et al. Plant leaf-mimetic smart wind turbine blades by 4D printing[J]. Renewable Energy. 2019, 130: 329-351. DOI: 10.1016/j.renene.2018.05.095
  • 加载中
图(17)
计量
  • 文章访问数:  850
  • HTML全文浏览量:  252
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-29
  • 修回日期:  2021-10-12
  • 录用日期:  2021-11-17
  • 网络出版日期:  2021-11-30
  • 刊出日期:  2022-08-10

目录

    /

    返回文章
    返回