留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AC-SDBD等离子体激励防/除冰研究现状与展望

孟宣市 惠伟伟 易贤 蔡晋生 李华星

孟宣市, 惠伟伟, 易贤, 等. AC-SDBD等离子体激励防/除冰研究现状与展望[J]. 空气动力学学报, 2022, 40(2): 31−49 doi: 10.7638/kqdlxxb-2021.0159
引用本文: 孟宣市, 惠伟伟, 易贤, 等. AC-SDBD等离子体激励防/除冰研究现状与展望[J]. 空气动力学学报, 2022, 40(2): 31−49 doi: 10.7638/kqdlxxb-2021.0159
MENG X S, HUI W W, YI X, et al. Anti-/De-icing by AC-SDBD plasma actuators: status and outlook[J]. Acta Aerodynamica Sinica, 2022, 40(2): 31−49 doi: 10.7638/kqdlxxb-2021.0159
Citation: MENG X S, HUI W W, YI X, et al. Anti-/De-icing by AC-SDBD plasma actuators: status and outlook[J]. Acta Aerodynamica Sinica, 2022, 40(2): 31−49 doi: 10.7638/kqdlxxb-2021.0159

AC-SDBD等离子体激励防/除冰研究现状与展望

doi: 10.7638/kqdlxxb-2021.0159
基金项目: 中国空气动力研究与发展中心结冰与防除冰重点实验室开放课题资助(IADL20210101);国家自然科学基金(12072284,11672245);航空科学基金(2018ZA53);国家级重点实验室基金(9140C420301110C42);飞行器复杂流动与控制引智基地项目(B17037)
详细信息
    作者简介:

    孟宣市*(1976-),男,陕西兴平人,博士,教授,博导,研究方向:分离涡、附面层转捩等复杂流动机理及流动控制研究;飞行器结冰机理与防/除冰方法研究. E-mail: mxsbear@nwpu.edu.cn

  • 中图分类号: V211.3

Anti-/De-icing by AC-SDBD plasma actuators: status and outlook

  • 摘要: 层流控制、复合材料、全电驱动等创新性航空技术的应用给传统防/除冰方法带来了新的挑战。基于高电压驱动的表面介质阻挡放电等离子体激励新概念防/除冰方法因其没有复杂的机械构造和潜在的气动耗损,从而有潜力成为下一代飞行器采用的防/除冰方法。该综述从飞行过程中的结冰与防/除冰研究、等离子体空气动力与热激励特性研究、等离子体激励防/除冰研究等三个方面,对等离子体防/除冰方法的研究现状和发展趋势进行了分析,指出等离子体防/除冰研究的关键科学问题主要包括:1)以等离子体空气动力与热激励为主要因素的多物理场耦合机制;2)等离子体激励下多物理场非平衡相变演化规律与防/除冰机理。上述科学问题的研究包含了等离子体物理特性、流动控制机理、结冰机理、防/除冰规律等众多流体力学前沿方向,等离子体防/除冰研究的难点在于涉及多物理场耦合和多时间尺度,因此,相应的数值模拟方法与实验观测技术成为解决上述科学问题的关键突破点。探索等离子体激励防/除冰机制以及解决面向工程应用的技术问题,是下一步需要聚焦的研究方向。
  • 图  1  SDBD 等离子体诱导空气动能及转换效率随均方根电流的变化[19]

    Figure  1.  Variation of the induced air kinetic energy and the energy transfer efficiency of SDBD with the square root of the current [19]

    图  2  飞机飞行过程中的防/除冰方法

    Figure  2.  Approaches for in-flight anti-/de-icing

    图  3  不同来流剪切作用下的水膜厚度变化 [13]

    Figure  3.  Variation of the water film thickness under different inflow shear [13]

    图  4  过冷水滴凝固的典型阶段 [45]

    Figure  4.  Typical phases for the frozen of a supercooled droplet [45]

    图  5  翼型前缘结冰对其升阻力特性的影响 [46]

    Figure  5.  Effect of the leading-edge icing of an airfoil on the lift/drag characteristics [46]

    图  6  积冰机翼表面控制体中能量平衡示意图 [50]

    Figure  6.  Schematic of the energy balance in the control volume on an icing airfoil surface [50]

    图  7  飞机失事过程再现 [53]

    Figure  7.  Repetition of the flight accident [53]

    图  8  表面介质阻挡放电(SDBD)等离子体激励器示意图 [62]

    Figure  8.  Schematic of the SDBD plasma actuator [62]

    图  9  放电区域内(虚线)的旋转(顶部)与振动(底部)温度云图 [65]

    Figure  9.  Contours of the rotational temperature (upper) and vibrational temperature (lower) in the discharge region (dashed box) [65]

    图  10  不同边界层状态下激励器表面温度比较 [69]

    Figure  10.  Comparison of the actuator surface temperatures under different boundary layer conditions [69]

    图  11  等离子体激励下空间启动涡的不同物理场特性 [71]

    Figure  11.  Physical characteristics of the spatial starting vortex generated by the plasma actuation [71]

    图  12  非定常等离子体激励下表面温度随时间的变化特性 [72]

    Figure  12.  Time variation of the surface temperature under unsteady plasma actuation [72]

    图  13  冰块对AC-SDBD等离子体激励器放电特性的影响

    Figure  13.  Effect of an ice cube on the discharge characteristics of the AC-SDBD plasma actuator

    图  14  AC-SDBD等离子体激励器防结冰过程(U = 15 m/s, T = −10℃) [81-82]

    Figure  14.  Anti-icing process of the AC-SDBD plasma actuator at U = 15 m/s, T = −10℃ [81-82]

    图  15  NACA0012翼型等离子防结冰效果(U = 90 m/s, T = −7℃, LWC = 0.5 g/m3) [83]

    Figure  15.  Plasma anti-icing effect on NACA0012 airfoil at U = 90 m/s, T = −7℃, LWC = 0.5 g/m3 [83]

    图  16  定常与非定常控制下翼型表面上动态积冰过程的时间演变(U = 40 m/s, T = −5℃, LWC = 1.0 g/m3) [85]

    Figure  16.  Time evolution of the dynamical icing process on the lower surface of the airfoil under steady and unsteady control at U = 40 m/s, T = −5℃, LWC = 1.0 g/m3 [85]

    图  17  原始布局与优化后的防结冰等离子体激励器布局示意图(U = 40 m/s, T = −5℃, LWC = 1.0 g/m3) [86]

    Figure  17.  Schematic of the plasma actuator layout for anti-icing before and after the optimization at U = 40 m/s, T = −5℃, LWC = 1.0 g/m3 [86]

    图  18  原始布局与优化后的等离子体激励防结冰结果比较(U = 40 m/s, T = −5℃, LWC = 1.0 g/m3) [86]

    Figure  18.  Comparison of the anti-icing effects by plasma actuators before and after the layout optimization(U = 40 m/s, T = −5℃, LWC = 1.0 g/m3) [86]

    图  19  可以诱导不同方向射流的防结冰等离子体激励器 [87]

    Figure  19.  Anti-icing plasma actuators inducing jets in different directions [87]

    图  20  可以诱导不同方向射流的等离子体激励器具有不同的防结冰效果(U = 40 m/s, T = −5℃, LWC = 1.0 g/m3) [87]

    Figure  20.  Different anti-icing effects generated by plasma actuators inducing jets in different directions at U = 40 m/s, T = −5℃, LWC = 1.0 g/m3 [87]

    图  21  等离子体激励防结冰机理示意图 [87]

    Figure  21.  Schematic of the anti-icing mechanism by plasma actuators [87]

    图  22  流向和展向分布等离子体激励器防冰效果比较(U = 30 m/s, T = −10℃, LWC = 0.7 g/m3) [88-89]

    Figure  22.  Comparison of the anti-icing effects by plasma actuators with streamwise and spanwise distributions at U = 30 m/s, T = −10℃, LWC = 0.7 g/m3 [88-89]

    图  23  流向和展向分布等离子体激励器防结冰效果比较(U = 40 m/s, T = −5℃, LWC = 1.5 g/m3) [90]

    Figure  23.  Comparison of the anti-icing effects by plasma actuators with streamwise and spanwise distributions at U = 40 m/s, T = −5℃, LWC = 1.5 g/m3 [90]

    图  24  “流式等离子热刀”的侧视图和俯视图 [92]

    Figure  24.  Side and top views of the streamwise plasma heat knife [92]

    图  25  “流式等离子热刀”防结冰过程(U = 65 m/s,T = −5℃, LWC = 0.5 g/m3) [90]

    Figure  25.  Anti-icing process of the streamwise plasma heat knife at U = 65 m/s, T = −5℃, LWC = 0.5 g/m3 [90]

    图  26  多时间尺度下NS-SDBD等离子体激励热耦合防冰策略[95]

    Figure  26.  Heat coupled anti-icing strategy by NS-SDBD plasma actuation under multi time scales [95]

    图  27  AC-SDBD等离子体激励除积冰过程(U = 15 m/s, T = −10℃) [81-82]

    Figure  27.  De-icing process by AC-SDBD plasma actuation at U = 15 m/s, T = −10℃ [81-82]

    图  28  NS-SDBD等离子体激励除积冰过程(U = 0 m/s) [96]

    Figure  28.  De-icing process by NS-SDBD plasma actuation at U = 0 m/s [96]

    图  29  AC-SDBD等离子体激励防/除冰功率随来流速度变化曲线

    Figure  29.  Variation of the anti-/de-icing power of AC-SDBD plasma actuation with the freestream velocity

    图  30  等离子体激励器冰型调控过程(U = 65 m/s, T = −5℃, LWC = 0.5 g/m3)[101]

    Figure  30.  Ice shape adjusting process by plasama actuators at U = 65 m/s, T = −5℃, LWC = 0.5 g/m3 [101]

    图  31  等离子体锥杆的破冰过程 [102-103]

    Figure  31.  Ice breaking process by the cone rod of plasma[102-103]

    图  32  低电压等离子体激励防结冰过程(VRMS = 2 kV) [104]

    Figure  32.  Anti-icing process by low voltage plasma acutation at VRMS = 2 kV[104]

    表  1  AC-SDBD等离子体激励防/除冰功率(瞬时电流电压积分法)

    Table  1.   Anti-/De-icing power by AC-SDBD plasma actuation (integration method of instantaneous current and voltage)

    参考文献 孟宣市等[81],蔡晋生等[82] 孟宣市等[87] Yang Liu等[85]
    实验条件 U= 15 m/s, T= –10°C,
    MVD = 50~200 μm
    U= 40 m/s, T= –5°C,
    MVD = 10~100 μm
    LWC = 1.0 g/m3
    U= 40 m/s, T= –5°C,
    MVD = 10~100 μm
    LWC= 1.0 g/m3
    实验模型 圆柱(D = 50 mm) 翼型(NACA0012) 翼型(NACA0012)
    除积冰(kW/m2) 13.0
    防结冰(kW/m2) 17.9 10
    参考文献 Kolbakir等[90] 田苗等[97] 田永强等[83]
    实验条件 U= 40 m/s, T= –5°C,
    MVD = 10~100 μm
    LWC = 1.5 g/m3
    U= 65 m/s, T= –10°C,
    MVD = 25 μm
    LWC = 0.5 g/m3
    U= 90 m/s, T= –7°C,
    MVD = 20 μm
    LWC = 0.5 g/m3
    实验模型 翼型(NACA0012) 翼型(NACA0012) 翼型(NACA0012)
    除积冰(kW/m2)
    防结冰(kW/m2) 12.2~15 26.8 28.1,30.7
    下载: 导出CSV
  • [1] CEBECI T, KAFYEKE F. Aircraft icing[J]. Annual Review of Fluid Mechanics, 2003, 35(1): 11-21. DOI: 10.1146/annurev.fluid.35.101101.161217
    [2] 常士楠. 大型飞机的防/除冰问题[C]//大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集. 深圳, 2007: 469-475.
    [3] 邢玉明, 刘海丽, 徐柳青. 飞机发动机结冰研究进展[J]. 空军工程大学学报(自然科学版), 2011, 12(6): 8-12

    XING Y M, LIU H L, XU L Q. Research evolvement on icing of aircraft engine[J]. Journal of Air Force Engineering University (Natural Science Edition), 2011, 12(6): 8-12. (in Chinese)
    [4] 东乔天, 金哲岩, 杨志刚. 风力机结冰问题研究综述[J]. 机械设计与制造, 2014(10): 269-272 doi: 10.3969/j.issn.1001-3997.2014.10.081

    DONG Q T, JIN Z Y, YANG Z G. A review of icing effect on horizontal axis wind turbine[J]. Machinery Design & Manufacture, 2014(10): 269-272. (in Chinese) doi: 10.3969/j.issn.1001-3997.2014.10.081
    [5] CAO Y H, TAN W Y, WU Z L. Aircraft icing: an ongoing threat to aviation safety[J]. Aerospace Science and Technology, 2018, 75: 353-385. DOI: 10.1016/j.ast.2017.12.028
    [6] 陈年旭, 桑为民, 陈迎春, 等. 民用飞机结冰研究相关技术及进展[J]. 飞行力学, 2009, 27(5): 11-14

    CHEN N X, SANG W M, CHEN Y C, et al. Development and technologies to the study of civil aircraft icing[J]. Flight Dynamics, 2009, 27(5): 11-14. (in Chinese)
    [7] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报, 2011, 32(5): 765-784

    ZHU Z Q, WU Z C, DING J C. Laminar flow control technology and application[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 765-784. (in Chinese)
    [8] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12 doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12. (in Chinese) doi: 10.3321/j.issn:1000-3851.2007.01.001
    [9] 陈绍杰. 复合材料技术发展及其对我国航空工业的挑战[J]. 高科技纤维与应用, 2010, 35(1): 1-7 doi: 10.3969/j.issn.1007-9815.2010.01.001

    CHEN S J. Development of composite technologies and its challenges to China aviation industry[J]. Hi-Tech Fiber & Application, 2010, 35(1): 1-7. (in Chinese) doi: 10.3969/j.issn.1007-9815.2010.01.001
    [10] MASSON P J, LUONGO C A. High power density superconducting motor for all-electric aircraft propulsion[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2226-2229. DOI: 10.1109/TASC.2005.849618
    [11] 李军, 李明, 陈洪, 等. 开展飞机结冰试验技术研究是发展我国大型飞机的迫切需要[C]// 大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集(气动专题52), 深圳, 2007: 1410−1415.
    [12] PALACIOS J, SMITH E, ROSE J, et al. Ultrasonic de-icing of wind-tunnel impact icing[J]. Journal of Aircraft, 2011, 48(3): 1020-1027. DOI: 10.2514/1.C031201
    [13] LIU Y, CHEN W L, BOND L J, et al. An experimental study on the characteristics of wind-driven surface water film flows by using a multi-transducer ultrasonic pulse-echo technique[J]. Physics of Fluids, 2017, 29(1): 012102. DOI: 10.1063/1.4973398
    [14] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. DOI: 10.1007/s004250050096
    [15] 肖春华, 胡站伟, 桂业伟, 等. 疏水涂层表面防冰效果的结冰风洞实验研究[J]. 实验流体力学, 2013, 27(2): 41-45, 55 doi: 10.3969/j.issn.1672-9897.2013.02.008

    XIAO C H, HU Z W, GUI Y W, et al. Test study on anti-icing effects of hydrophobic coating in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 41-45, 55. (in Chinese) doi: 10.3969/j.issn.1672-9897.2013.02.008
    [16] SHEN Y Z, WU X H, TAO J, et al. Icephobic materials: Fundamentals, performance evaluation, and applications[J]. Progress in Materials Science, 2019, 103: 509-557. DOI: 10.1016/j.pmatsci.2019.03.004
    [17] HE Y, JIANG C Y, CAO X B, et al. Reducing ice adhesion by hierarchical micro-nano-Pillars[J]. Applied Surface Science, 2014, 305: 589-595. DOI: 10.1016/j.apsusc.2014.03.139
    [18] 蒋浩, 金龙, 牛上维, 等. 基于合成热射流的机翼除冰实验研究[J]. 实验流体力学, 2017, 31(3): 94-100

    JIANG H, JIN L, NIU S W, et al. Experimental analysis of de-icing on airfoil using heated dual synthetic jet actuators[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 94-100. (in Chinese)
    [19] MOREAU E. Airflow control by non-thermal plasma actuators[J]. Journal of Physics D: Applied Physics, 2007, 40(3): 605-636. DOI: 10.1088/0022-3727/40/3/s01
    [20] YADALA S, BENARD N, KOTSONIS M, et al. Effect of dielectric barrier discharge plasma actuators on vortical structures in a mixing layer[J]. Physics of Fluids, 2020, 32(12): 124111. DOI: 10.1063/5.0031207
    [21] WONG C W, WANG L J, MA W Q, et al. New sawtooth plasma actuator configuration and mechanism behind improved control performance[J]. AIAA Journal, 2020, 58(4): 1881-1886. DOI: 10.2514/1.J058814
    [22] 张海灯, 吴云, 李应红, 等. 高负荷压气机失速及其等离子体流动控制[J]. 工程热物理学报, 2019, 40(2): 289-299

    ZHANG H D, WU Y, LI Y H, et al. Rotating stall of a highly loaded compressor and its plasma flow control[J]. Journal of Engineering Thermophysics, 2019, 40(2): 289-299. (in Chinese)
    [23] ZHANG P F, WANG J J, FENG L H, et al. Experimental study of plasma flow control on highly swept delta wing[J]. AIAA Journal, 2010, 48(1): 249-252. DOI: 10.2514/1.40274
    [24] 何伟, 牛中国, 潘波, 等. 等离子抑制翼尖涡实验研究[J]. 工程力学, 2013, 30(5): 277-281

    HE W, NIU Z G, PAN B, et al. Study on experiments for suppressing wingtip vortices with plasma[J]. Engineering Mechanics, 2013, 30(5): 277-281. (in Chinese)
    [25] MENG X S, LONG Y X, WANG J L, et al. Dynamics and control of the vortex flow behind a slender conical forebody by a pair of plasma actuators[J]. Physics of Fluids, 2018, 30(2): 024101. DOI: 10.1063/1.5005514
    [26] HUANG X, ZHANG X. Plasma actuators for noise control[J]. International Journal of Aeroacoustics, 2010, 9(4-5): 679-703. DOI: 10.1260/1475-472x.9.4-5.679
    [27] FENG L H, CHOI K S, WANG J J. Flow control over an airfoil using virtual Gurney flaps[J]. Journal of Fluid Mechanics, 2015, 767: 595-626. DOI: 10.1017/jfm.2015.22
    [28] MENG X S, ABBASI A A, LI H X, et al. Bioinspired experimental study of leading-edge plasma tubercles on wing[J]. AIAA Journal, 2018, 57(1): 462-466. DOI: 10.2514/1.J057351
    [29] 杜海, 史志伟, 倪芳原, 等. 基于等离子体激励的飞翼布局飞行器气动力矩控制[J]. 航空学报, 2013, 34(9): 2038-2046

    DU H, SHI Z W, NI F Y, et al. Aerodynamic moment control of flying wing vehicle using plasma actuators[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2038-2046. (in Chinese)
    [30] 张鑫, 黄勇, 阳鹏宇, 等. 等离子体无人机失速分离控制飞行试验[J]. 航空学报, 2018, 39(2): 115-122

    ZHANG X, HUANG Y, YANG P Y, et al. Flight test of flow separation control using plasma UAV[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 115-122. (in Chinese)
    [31] 杨欢, 刘汝兵, 王萌萌, 等. 等离子体射流及其发生器研究进展[J]. 机电技术, 2013, 36(5): 148-153 doi: 10.3969/j.issn.1672-4801.2013.05.054
    [32] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2): 381-405

    WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405. (in Chinese)
    [33] 罗振兵, 夏智勋, 邓雄, 等. 合成双射流及其流动控制技术研究进展[J]. 空气动力学学报, 2017, 35(2): 252-264 doi: 10.7638/kqdlxxb-2017.0053

    LUO Z B, XIA Z X, DENG X, et al. Research progress of dual synthetic jets and its flow control technology[J]. Acta Aerodynamica Sinica, 2017, 35(2): 252-264. (in Chinese) doi: 10.7638/kqdlxxb-2017.0053
    [34] 史志伟, 杜海, 李铮, 等. 等离子体流动控制技术原理及典型应用[J]. 高压电器, 2017, 53(4): 72-78

    SHI Z W, DU H, LI Z, et al. Mechanism and applications of plasma flow control technology[J]. High Voltage Apparatus, 2017, 53(4): 72-78. (in Chinese)
    [35] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3): 685-705

    SHAO T, ZHANG C, WANG R X, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705. (in Chinese)
    [36] 卢新培, 严萍, 任春生, 等. 大气压脉冲放电等离子体的研究现状与展望[J]. 中国科学 (物理学 力学 天文学), 2011, 41(7): 801-815

    LU X P, YAN P, REN C S, et al. Review on atmospheric pressure pulsed DC discharge[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2011, 41(7): 801-815. (in Chinese)
    [37] 蔡晋生, 徐双艳, 田永强, 等. 一种介质阻挡放电等离子体除积冰装置及方法: 中国, 公告号: CN 104875894A. 公开日期[2015-09-02]. https://wenku.baidu.com/view/1c69206cd6d8d15abe23482fb4daa58da1111c09?fr=xueshu
    [38] 蔡晋生, 田永强, 孟宣市, 等. 一种介质阻挡放电等离子体防结冰装置及方法: 中国, 公告号: CN 104890881A. 公开日期[2015-09-09]. https://wenku.baidu.com/view/b1c656dab5360b4c2e3f5727a5e9856a561226a8?fr=xueshu
    [39] COBER S G, ISAAC G A. Characterization of aircraft icing environments with supercooled large drops for application to commercial aircraft certification[J]. Journal of Applied Meteorology and Climatology, 2012, 51(2): 265-284. DOI: 10.1175/jamc-d-11-022.1
    [40] 沈浩, 韩冰冰, 张丽芬. 航空发动机中冰晶结冰的研究进展[J]. 实验流体力学, 2020, 34(6): 1-7

    SHEN H, HAN B B, ZHANG L F. Research progress of the ice crystal icing in aero-engine[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 1-7. (in Chinese)
    [41] 李清英, 白天, 朱春玲. 飞机机械除冰系统的研究综述[J]. 飞机设计, 2015, 35(4): 73-77

    LI Q Y, BAI T, ZHU C L. Research summary of mechnical de-icing systems of aircrafts[J]. Aircraft Design, 2015, 35(4): 73-77. (in Chinese)
    [42] 易贤, 王斌, 李伟斌, 等. 飞机结冰冰形测量方法研究进展[J]. 航空学报, 2017, 38(2): 13-24

    YI X, WANG B, LI W B, et al. Research progress on ice shape measurement approaches for aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 13-24. (in Chinese)
    [43] YARIN A L. DROP IMPACT DYNAMICS: splashing, spreading, receding, bouncing…[J]. Annual Review of Fluid Mechanics, 2006, 38(1): 159-192. DOI: 10.1146/annurev.fluid.38.050304.092144
    [44] 朱程香, 孙志国, 付斌, 等. 水滴多尺寸分布对水滴撞击特性和结冰增长的影响[J]. 南京航空航天大学学报, 2010, 42(5): 620-624 doi: 10.3969/j.issn.1005-2615.2010.05.015

    ZHU C X, SUN Z G, FU B, et al. Effects of multi-dispersed droplet distribution on droplet impingement and ice accretion[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(5): 620-624. (in Chinese) doi: 10.3969/j.issn.1005-2615.2010.05.015
    [45] 肖光明, 杜雁霞, 王桥, 等. 考虑非平衡效应的过冷水滴凝固特性[J]. 航空学报, 2017, 38(2): 74-80

    XIAO G M, DU Y X, WANG Q, et al. Freezing characteristics of supercooled water droplet in consideration of non-equilibrium effect[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 74-80. (in Chinese)
    [46] BROEREN A P, ADDY H E, LEE S, et al. Validation of 3-D ice accretion measurement methodology for experimental aerodynamic simulation[C]//6th AIAA Atmospheric and Space Environments Conference, Atlanta, GA., Reston, Virginia: AIAA, 2014. doi: 10.2514/6.2014-2614
    [47] 朱东宇,张付昆,裴如男,等. 临界冰形确定方法及其对气动特性影响研究[J].空气动力学学报,2016,34(6):714-720. doi: 10.7638/kqdlxxb-2015.0217

    Zhu D Y, Zhang F K, Pei R N, et al. Research on critical ice shape determination and itseffects on aerodynamics[ doi: 10.7638/kqdlxxb-2015.0217
    [48] 张恒, 李杰, 龚志斌. 多段翼型缝翼前缘结冰大迎角分离流动数值模拟[J]. 航空学报, 2017, 38(2): 520746

    ZHANG H, LI J, GONG Z B. Numerical simulation of separated flow around a multi-element airfoil at high angle of attack with iced slat[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520746. (in Chinese)
    [49] 杜雁霞, 李明, 桂业伟, 等. 飞机结冰热力学行为研究综述[J]. 航空学报, 2017, 38(2): 520717

    DU Y X, LI M, GUI Y W, et al. Review of thermodynamic behaviors in aircraft icing process[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520717. (in Chinese)
    [50] LIU Y, HU H. An experimental investigation on the unsteady heat transfer process over an ice accreting airfoil surface[J]. International Journal of Heat and Mass Transfer, 2018, 122: 707-718. DOI: 10.1016/j.ijheatmasstransfer.2018.02.023
    [51] 董葳, 赵冬梅. 飞机结冰动力学的研究发展综述[C]//中国第一届近代空气动力学与气动热力学会议, 2006: | 283-288
    [52] 刘森云, 朱程香, 朱春玲, 等. 水滴动力学行为对其撞击特性影响[J]. 航空动力学报, 2018, 33(3): 581-589

    LIU S Y, ZHU C X, ZHU C L, et al. Effect of dynamic behaviour on its impingement characteristics for droplets[J]. Journal of Aerospace Power, 2018, 33(3): 581-589. (in Chinese)
    [53] SIBILSKI K, LASEK M, LADYZYNSKA-KOZDRAS E, et al. Aircraft climbing flight dynamics with simulated ice accretion[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, Rhode Island, Reston, Virginia: AIAA, 2004. AIAA 2004-4948. doi: 10.2514/6.2004-4948
    [54] WHALEN E, BRAGG M B. Aircraft characterization in icing using flight test data[J]. Journal of Aircraft, 2005, 42(3): 792-794. DOI: 10.2514/1.11198
    [55] 苏媛, 徐忠达, 吴祯龙. 飞机积冰后若干飞行力学问题综述[J]. 航空动力学报, 2014, 29(8): 1878-1893

    SU Y, XU Z D, WU Z L. Overview of several ice accretion effects on aircraft flight dynamics[J]. Journal of Aerospace Power, 2014, 29(8): 1878-1893. (in Chinese)
    [56] 桂业伟, 周志宏, 李颖晖, 等. 关于飞机结冰的多重安全边界问题[J]. 航空学报, 2017, 38(2): 520734

    GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520734. (in Chinese)
    [57] 裴彬彬, 徐浩军, 薛源, 等. 基于复杂动力学仿真的结冰情形下飞行安全窗构建方法[J]. 航空学报, 2017, 38(2): 520708

    PEI B B, XU H J, XUE Y, et al. Development of flight safety window in icing conditions based on complex dynamics simulation[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520708. (in Chinese)
    [58] MALIK M, WEINSTEIN L, HUSSAINI M. Ion wind drag reduction[C]//21st Aerospace Sciences Meeting, Reno, NV, USA. Reston, Virigina: AIAA, 1983. AIAA 83-0231. doi: 10.2514/6.1983-231
    [59] LIU C, ROTH J R. Plasma-related characteristics of a steady-state glow discharge at atmospheric pressure[C]//International Conference on Plasma Sciences (ICOPS), Vancouver, BC, Canada, 1993: 129. doi: 10.1109/PLASMA.1993.593248
    [60] CORKE T, CAVALIERI D, CORKE T, et al. Controlled experiments on instabilities and transition to turbulence in supersonic boundary layers[C]//28th Fluid Dynamics Conference, Snowmass Village, CO. Reston, Virginia: AIAA, 1997. AIAA 1997-1817. doi: 10.2514/6.1997-1817
    [61] ROTH J R, SHERMAN D M, WILKINSON S P. Electrohydrodynamic flow control with a glow-discharge surface plasma[J]. AIAA Journal, 2000, 38(7): 1166-1172. DOI: 10.2514/2.1110
    [62] POST M L, CORKE T C. Separation control on HIgh angle of attack airfoil using plasma actuators[J]. AIAA Journal, 2004, 42(11): 2177-2184. DOI: 10.2514/1.2929
    [63] WANG J J, CHOI K S, FENG L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62: 52-78. DOI: 10.1016/j.paerosci.2013.05.003
    [64] 孟宣市, 宋科, 龙玥霄, 等. NS-SDBD等离子体流动控制研究现状与展望[J]. 空气动力学学报, 2018, 36(6): 901-916 doi: 10.7638/kqdlxxb-2018.0078

    MENG X S, SONG K, LONG Y X, et al. Airflow control by NS-SDBD plasma actuators[J]. Acta Aerodynamica Sinica, 2018, 36(6): 901-916. (in Chinese) doi: 10.7638/kqdlxxb-2018.0078
    [65] STANFIELD S A, MENART J, DEJOSEPH C, et al. Rotational and vibrational temperature distributions for a dielectric barrier discharge in air[J]. AIAA Journal, 2009, 47(5): 1107-1115. DOI: 10.2514/1.37648
    [66] NERETTI G, CRISTOFOLINI A, BORGHI C A, et al. Experimental results in DBD plasma actuators for air flow control[C]// 41st Plasmadynamics and Lasers Conference, Chicago, Illinois, 2010. AIAA 2010-4763. doi: 10.2514/6.2010-4763
    [67] ERFANI R, ZARE-BEHTASH H, KONTIS K. Plasma actuator: Influence of dielectric surface temperature[J]. Experimental Thermal and Fluid Science, 2012, 42: 258-264. DOI: 10.1016/j.expthermflusci.2012.04.023
    [68] VERSAILLES P, GINGRAS-GOSSELIN V, VO H D. Impact of pressure and temperature on the performance of plasma actuators[J]. AIAA Journal, 2010, 48(4): 859-863. DOI: 10.2514/1.43852
    [69] JOUSSOT R, BOUCINHA V, WEBER-ROZENBAUM R, et al. Thermal characterization of a DBD plasma actuator: dielectric temperature measurements using infrared thermography[C]//40th Fluid Dynamics Conference and Exhibit, Chicago, Illinois. Reston, Virginia: AIAA, 2010. AIAA 2010-5102. doi: 10.2514/6.2010-5102
    [70] TIRUMALA R, BENARD N, MOREAU E, et al. Temperature characterization of dielectric barrier discharge actuators: influence of electrical and geometric parameters[J]. Journal of Physics D: Applied Physics, 2014, 47(25): 255203. DOI: 10.1088/0022-3727/47/25/255203
    [71] RODRIGUES F, PASCOA J, TRANCOSSI M. Heat generation mechanisms of DBD plasma actuators[J]. Experimental Thermal and Fluid Science, 2018, 90: 55-65. DOI: 10.1016/j.expthermflusci.2017.09.005
    [72] JUKES T N, CHOI K S, SEGAWA T, et al. Jet flow induced by a surface plasma actuator[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 2008, 222(5): 347-56. DOI: 10.1243/09596518JSCE504
    [73] ABBASI A A, LI H X, MENG X S. Coupled aerodynamic and thermal effects for steady and unsteady plasma actuation[J]. AIAA Journal, 2019, 58(1): 488-495. DOI: 10.2514/1.J058458
    [74] SHYY W, JAYARAMAN B, ANDERSSON A. Modeling of glow discharge-induced fluid dynamics[J]. Journal of Applied Physics, 2002, 92(11): 6434-6443. DOI: 10.1063/1.1515103
    [75] SUZEN Y, HUANG G. Simulations of flow separation control using plasma actuators[C]//44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006. AIAA 2006-0877. https://www.comsol.ru/forum/thread/attachment/146561/Suzen-and-hwang-28861.pdf doi: 10.2514/6.2006-877
    [76] MADEN I, MADUTA R, KRIEGSEIS J, et al. Experimental and computational study of the flow induced by a plasma actuator[J]. International Journal of Heat and Fluid Flow, 2013, 41: 80-89. DOI: 10.1016/j.ijheatfluidflow.2013.02.013
    [77] JAYARAMAN B, THAKUR S, SHYY W. Modeling of fluid dynamics and heat transfer induced by dielectric barrier plasma actuator[J]. Journal of Heat Transfer, 2007, 129(4): 517-525. DOI: 10.1115/1.2709659
    [78] YU J Y, CHEN F, LIU H P, et al. Numerical study of fluid dynamics and heat transfer induced by plasma discharges[J]. Plasma Science and Technology, 2015, 17(1): 41-49. DOI: 10.1088/1009-0630/17/1/09
    [79] SOLOVIEV V R. Analytical estimation of the thrust generated by a surface dielectric barrier discharge[J]. Journal of Physics D: Applied Physics, 2012, 45(2): 025205. DOI: 10.1088/0022-3727/45/2/025205
    [80] MENG X S, CHEN Z L, SONG K. AC- and NS-DBD plasma flow control research[C]//2nd NPU-Workshop on Aerodynamics, DLR, Inst. DLR-IB 2014, 124-2014/5.
    [81] MENG X S, CAI J S, TIAN Y Q, et al. Experimental study of anti-icing and deicing on a cylinder by DBD plasma actuation[C]//47th AIAA Plasmadynamics and Lasers Conference, Washington, D. C.. Reston, Virginia: AIAA, 2016. AIAA 2016-4019. doi: 10.2514/6.2016-4019
    [82] CAI J S, TIAN Y Q, MENG X S, et al. An experimental study of icing control using DBD plasma actuator[J]. Experiments in Fluids, 2017, 58(8): 1-8. DOI: 10.1007/s00348-017-2378-y
    [83] TIAN Y Q, ZHANG Z K, CAI J S, et al. Experimental study of an anti-icing method over an airfoil based on pulsed dielectric barrier discharge plasma[J]. Chinese Journal of Aeronautics, 2018, 31(7): 1449-1460. DOI: 10.1016/j.cja.2018.05.008
    [84] ZHOU W W, LIU Y, HU H, et al. Utilization of thermal effect induced by plasma generation for aircraft icing mitigation[J]. AIAA Journal, 2018, 56(3): 1097-1104. DOI: 10.2514/1.J056358
    [85] LIU Y, KOLBAKIR C, HU H Y, et al. An experimental study on the thermal effects of duty-cycled plasma actuation pertinent to aircraft icing mitigation[J]. International Journal of Heat and Mass Transfer, 2019, 136: 864-876. DOI: 10.1016/j.ijheatmasstransfer.2019.03.068
    [86] HU H Y, MENG X S, CAI J S, et al. Optimization of dielectric barrier discharge plasma actuators for icing control[J]. Journal of Aircraft, 2020, 57(2): 383-387. DOI: 10.2514/1.c035697
    [87] MENG X S, HU H Y, LI C, et al. Mechanism study of coupled aerodynamic and thermal effects using plasma actuation for anti-icing[J]. Physics of Fluids, 2019, 31(3): 037103. DOI: 10.1063/1.5086884
    [88] 赵彬彬, 董威, 刘娟, 等. 等离子体射流防冰性能实验研究Ⅰ. DBD-PA参数化分析及防冰效果验证[J]. 上海交通大学学报, 2018, 52(8): 924-929

    ZHAO B B, DONG W, LIU J, et al. Experimental study on the anti-icing performance of plasma jet Ⅰ. Parametric analysis of DBD-PA and verification on the anti-icing performance[J]. Journal of Shanghai Jiao Tong University, 2018, 52(8): 924-929. (in Chinese
    [89] 赵彬彬, 董威, 张屹. 等离子体射流防冰性能实验研究Ⅱ. 流向和展向布置DBD-PA防冰性能比较[J]. 上海交通大学学报, 2018, 52(11): 1532-1536

    ZHAO B B, DONG W, ZHANG Y. Experimental study on the anti-icing performance of plasma jet Ⅱ. Comparison of anti-icing performance using streamwise and spanwise DBD-PA[J]. Journal of Shanghai Jiao Tong University, 2018, 52(11): 1532-1536. (in Chinese)
    [90] KOLBAKIR C, HU H Y, LIU Y, et al. An experimental study on different plasma actuator layouts for aircraft icing mitigation[J]. Aerospace Science and Technology, 2020, 107: 106325. DOI: 10.1016/j.ast.2020.106325
    [91] KOLBAKIR C, LIU Y, HU H, et al. An experimental investigation on the thermal effects of NS-DBD and AC-DBD plasma actuators for aircraft icing mitigation[C]//2018 AIAA Aerospace Sciences Meeting, Kissimmee, Florida. Reston, Virginia: AIAA, 2018. AIAA 2018-0164. doi: 10.2514/6.2018-0164
    [92] WEI B, WU Y, LIANG H, et al. SDBD based plasma anti-icing: a stream-wise plasma heat knife configuration and criteria energy analysis[J]. International Journal of Heat and Mass Transfer, 2019, 138: 163-172. DOI: 10.1016/j.ijheatmasstransfer.2019.04.051
    [93] WEI B, WU Y, LIANG H, et al. Performance and mechanism analysis of nanosecond pulsed surface dielectric barrier discharge based plasma deicer[J]. Physics of Fluids, 2019, 31(9): 091701. DOI: 10.1063/1.5115272
    [94] NIU J, SANG W, ZHOU F, et al. Numerical investigation of an anti-icing method on airfoil based on the NSDBD plasma actuator[J]. Aircraft Engineering and Aerospace Technology, 2021, 93(4): 592-606. DOI: 10.1108/aeat-05-2020-0098
    [95] ZHU Y F, WU Y, WEI B, et al. Nanosecond-pulsed dielectric barrier discharge-based plasma-assisted anti-icing: modeling and mechanism analysis[J]. Journal of Physics D: Applied Physics, 2020, 53(14): 145205. DOI: 10.1088/1361-6463/ab6517
    [96] 陈杰, 梁华, 贾敏, 等. 大液滴撞击结冰传热过程及介质阻挡放电除冰实验研究[J]. 化工学报, 2018, 69(9): 3825-3834

    CHEN J, LIANG H, JIA M, et al. Unsteady heat transfer of large droplet icing and deicing process using dielectric barrier discharge[J]. CIESC Journal, 2018, 69(9): 3825-3834. (in Chinese)
    [97] 田苗, 宋慧敏, 梁华, 等. 介质阻挡放电等离子体防除冰实验研究[J]. 化工学报, 2019, 70(11): 4247-4256

    TIAN M, SONG H M, LIANG H, et al. Experimental study on DBD discharge plasma for anti-icing and de-icing[J]. CIESC Journal, 2019, 70(11): 4247-4256. (in Chinese)
    [98] 郑猩, 宋慧敏, 梁华, 等. 介质材料对NS-DBD等离子体除冰特性影响的实验研究[J]. 高电压技术, 2021-02-08(网络首发).doi: 10.13336/j.1003-6520.hve.20201216
    [99] 贾宇豪, 梁华, 魏彪, 等. 基于介质阻挡放电的等离子体除冰实验研究[J]. 高电压技术, 2021, 47(7): 2615-2623. doi: 10.13336/j.1003-6520.hve.20200632

    JIA Y H, LIANG H, WEI B, et al. Experimental investigation of plasma deicing based on dielectric barrier discharge[J]. High Voltage Engineering, 2021, 47(7): 2615-2623. (in Chinese) DOI: 10.13336/j.1003-6520.hve.20200632
    [100] 刘钟阳, 吴彦, 王宁会. DBD等离子体反应器放电功率测量的研究[J]. 仪器仪表学报, 2001, 22(S1): 78-79, 83

    LIU Z Y, WU Y, WANG N H. Researches on measurement of discharge power in DBD plasma reactor[J]. Chinese Journal of Scientific Instrument, 2001, 22(S1): 78-79, 83. (in Chinese)
    [101] WU Y, WEI B, LIANG H, et al. Flight safety oriented ice shape modulation using distributed plasma actuator units[J]. Chinese Journal of Aeronautics, 2021, 34(10): 1-5. Doi: 10.1016/j.cja.2020.12.044
    [102] 李玉杰, 罗振兵. 水滴结冰结霜及合成双射流除霜除冰实验研究[J]. 2016, 30(3): 27-32

    LI Y J, LUO Z B. An experimental investigation on the process of droplet icing/frosting and defrosting/deicing using dual synthetic j et[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 27-32. (in Chinese)
    [103] GAO T X, LUO Z B, ZHOU Y, et al. Experimental investigation on ice-breaking performance of a novel plasma striker [J]. Chinese Journal of Aeronautics. DOI: 10.1016/j.cja.2021.02.006
    [104] LINDNER M G, BERNDT D J, TSCHURTSCHENTHALER K, et al. Aircraft icing mitigation by DBD-based micro plasma actuators[C]// AIAA AVIATION 2020 FORUM, 2020. AIAA 2020-3243. doi: 10.2514/6.2020-3243
    [105] ABDOLLAHZADEH M, RODRIGUES F, PASCOA J C. Simultaneous ice detection and removal based on dielectric barrier discharge actuators[J]. Sensors and Actuators A: Physical, 2020, 315: 112361. DOI: 10.1016/j.sna.2020.112361
  • 加载中
图(32) / 表(1)
计量
  • 文章访问数:  631
  • HTML全文浏览量:  276
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-06
  • 修回日期:  2021-08-19
  • 录用日期:  2021-08-29
  • 网络出版日期:  2021-01-04
  • 刊出日期:  2022-05-05

目录

    /

    返回文章
    返回