孟宣市, 惠伟伟, 易贤, 等. AC-SDBD等离子体激励防/除冰研究现状与展望[J]. 空气动力学学报, 2022, 40(2): 31−49. DOI: 10.7638/kqdlxxb-2021.0159
引用本文: 孟宣市, 惠伟伟, 易贤, 等. AC-SDBD等离子体激励防/除冰研究现状与展望[J]. 空气动力学学报, 2022, 40(2): 31−49. DOI: 10.7638/kqdlxxb-2021.0159
MENG X S, HUI W W, YI X, et al. Anti-/De-icing by AC-SDBD plasma actuators: status and outlook[J]. Acta Aerodynamica Sinica, 2022, 40(2): 31−49. DOI: 10.7638/kqdlxxb-2021.0159
Citation: MENG X S, HUI W W, YI X, et al. Anti-/De-icing by AC-SDBD plasma actuators: status and outlook[J]. Acta Aerodynamica Sinica, 2022, 40(2): 31−49. DOI: 10.7638/kqdlxxb-2021.0159

AC-SDBD等离子体激励防/除冰研究现状与展望

Anti-/De-icing by AC-SDBD plasma actuators: status and outlook

  • 摘要: 层流控制、复合材料、全电驱动等创新性航空技术的应用给传统防/除冰方法带来了新的挑战。基于高电压驱动的表面介质阻挡放电等离子体激励新概念防/除冰方法因其没有复杂的机械构造和潜在的气动耗损,从而有潜力成为下一代飞行器采用的防/除冰方法。该综述从飞行过程中的结冰与防/除冰研究、等离子体空气动力与热激励特性研究、等离子体激励防/除冰研究等三个方面,对等离子体防/除冰方法的研究现状和发展趋势进行了分析,指出等离子体防/除冰研究的关键科学问题主要包括:1)以等离子体空气动力与热激励为主要因素的多物理场耦合机制;2)等离子体激励下多物理场非平衡相变演化规律与防/除冰机理。上述科学问题的研究包含了等离子体物理特性、流动控制机理、结冰机理、防/除冰规律等众多流体力学前沿方向,等离子体防/除冰研究的难点在于涉及多物理场耦合和多时间尺度,因此,相应的数值模拟方法与实验观测技术成为解决上述科学问题的关键突破点。探索等离子体激励防/除冰机制以及解决面向工程应用的技术问题,是下一步需要聚焦的研究方向。

     

    Abstract: The application of innovative technologies in aerospace, such as the laminar flow control, composite materials, and fully electric propulsion, brings new challenges to traditional anti-/de-icing methods in recent years. The new concept of anti-/de-icing based on high voltage driven surface dielectric barrier discharge (SDBD) plasma actuators which have no complicated mechanical structures nor potential aerodynamic loss, has the great potential to be applied to the next-generation flight vehicle. The present study reviews the anti-/de-icing technique using SDBD plasma actuators from three aspects, i.e. in-flight icing mechanism and available anti-/de-icing approaches, characteristics of the plasma aerodynamics and the thermal actuation effect, and anti-/de-icing applications using SDBD plasma actuators. It is pointed out that the key scientific issues in the research of anti-/de-icing using plasma actuators mainly include the following: 1) multi-physics coupling mechanism, especially the plasma aerodynamics and thermal actuation effect as the two main factors; 2) evolution and mechanism of non-equilibrium phase transition of multi-physics during the anti-/de-icing process. Those scientific issues include many frontier areas in fluid mechanics, such as the physical properties of plasma, flow control mechanism, in-flight icing mechanism, and anti-/de-icing rules. The difficulty of the research of plasma anti-/de-icing lies in the coupling of multiple physical fields and multiple time scales. Numerical simulation methods and experimental measurement techniques can lead to critical breakthroughs in solving these issues. Mechanism exploration of anti-/de-icing by SDBD plasma actuators and solutions to technical problems faced by engineering applications are the future research directions that need to be focused on.

     

/

返回文章
返回