[1] |
WESTLEY R, LILLEY G M. An investigation of the noise field from a small jet and methods for its reduction[R]. College of Aeronautics Cranfield, Report_No_53-1952.https://core.ac.uk/reader/137922
|
[2] |
LIGHTHILL M J. On sound generated aerodynamically I. General theory[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1952, 211(1107): 564-587. DOI: 10.1098/rspa.1952.0060
|
[3] |
钟思阳, 黄迅. 气动声学和流动噪声发展综述: 致初学者[J]. 空气动力学学报, 2018, 36(3): 363-371. doi: 10.7638/kqdlxxb-2017.0150ZHONG S Y, HUANG X. A review of aeroacoustics and flow-induced noise for beginners[J]. Acta Aerodynamica Sinica, 2018, 36(3): 363-371. (in Chinese) doi: 10.7638/kqdlxxb-2017.0150
|
[4] |
SHARLAND I J. Sources of noise in axial flow fans[J]. Journal of Sound and Vibration, 1964, 1(3): 302-322. DOI: 10.1016/0022-460X(64)90068-9
|
[5] |
KAJI S, OKAZAKI T. Generation of sound by rotor-stator interaction[J]. Journal of Sound and Vibration, 1970, 13(3): 281-307. DOI: 10.1016/S0022-460X(70)80020-7
|
[6] |
HUANG X, CHEN X X, MA Z K, et al. Efficient computation of spinning modal radiation through an engine bypass duct[J]. AIAA Journal, 2008, 46(6): 1413-1423. DOI: 10.2514/1.31136
|
[7] |
SEVIK M. Sound radiation from a subsonic rotor subjected to turbulence[C]//Fluid Mechanics, Acoustics, and Design of Turbomachinery, Part 2, 1974: 493-511. https://ntrs.nasa.gov/api/citations/19750003123/downloads/19750003123.pdf
|
[8] |
THOMPSON D E. Propeller unsteady thrust due to operation in turbulent inflows[C]//ASME 1978 International Gas Turbine Conference and Products Show, Volume 1A: General. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, London, England, 1978. doi: 10.1115/78-GT-94
|
[9] |
WIDNALL S E, WOLF T L. Effect of tip vortex structure on helicopter noise due to blade-vortex interaction[J]. Journal of Aircraft, 1980, 17(10): 705-711. DOI: 10.2514/3.44681
|
[10] |
BRENTNER K S. Prediction of helicopter rotor discrete frequency noise for three scale models[J]. Journal of Aircraft, 1988, 25(5): 420-427. DOI: 10.2514/3.45598
|
[11] |
MARTIN R M, HARDIN J C. Spectral characteristics of rotor blade/vortex interaction noise[J]. Journal of Aircraft, 1988, 25(1): 62-68. DOI: 10.2514/3.45542
|
[12] |
HANSON D B. Noise of counter-rotation propellers[J]. Journal of Aircraft, 1985, 22(7): 609-617. DOI: 10.2514/3.45173
|
[13] |
PARRY A, CRIGHTON D. Prediction of counter-rotation propeller noise[C]//12th Aeroacoustic Conference, San Antonio, TX. Reston, Virginia: AIAA, 1989. doi: 10.2514/6.1989-1141
|
[14] |
TINNEY C E, SIROHI J. Multirotor drone noise at static thrust[J]. AIAA Journal, 2018, 56(7): 2816-2826. DOI: 10.2514/1.j056827
|
[15] |
LEE H, LEE D J. Rotor interactional effects on aerodynamic and noise characteristics of a small multirotor unmanned aerial vehicle[J]. Physics of Fluids, 2020, 32(4): 047107. DOI: 10.1063/5.0003992
|
[16] |
CASALINO D, GRANDE E, ROMANI G, et al. Definition of a benchmark for low Reynolds number propeller aeroacoustics[J]. Aerospace Science and Technology, 2021, 113: 106707. DOI: 10.1016/j.ast.2021.106707
|
[17] |
GOJON R, JARDIN T, PARISOT-DUPUIS H. Experimental investigation of low Reynolds number rotor noise[J]. The Journal of the Acoustical Society of America, 2021, 149(6): 3813-3829. DOI: 10.1121/10.0005068
|
[18] |
LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1): 10-25. DOI: 10.2514/1.9084
|
[19] |
LYU Z J, MARTINS J R R A. Aerodynamic design optimization studies of a blended-wing-body aircraft[J]. Journal of Aircraft, 2014, 51(5): 1604-1617. DOI: 10.2514/1.C032491
|
[20] |
BROWN M, VOS R. Conceptual design and evaluation of blended-wing body aircraft[C]//2018 AIAA Aerospace Sciences Meeting, Session: Blended/Hybrid Wing Body Design. Kissimmee, Florida. Reston, Virginia: AIAA, 2018. AIAA 2018-0522. doi: 10.2514/6.2018-0522
|
[21] |
WANG G, ZHANG M H, TAO Y J, et al. Research on analytical scaling method and scale effects for subscale flight test of blended wing body civil aircraft[J]. Aerospace Science and Technology, 2020, 106: 106114. DOI: 10.1016/j.ast.2020.106114
|
[22] |
SEARS W R. Some aspects of non-stationary airfoil theory and its practical application[J]. Journal of the Aeronautical Sciences, 1941, 8(3): 104-108. DOI: 10.2514/8.10655
|
[23] |
BLAKE W K. Mechanics of flow-induced sound and vibration, Volume 2: Complex flow-structure interactions[M]. Academic Press, 1986.
|
[24] |
KIRSCHNER I N, CORRICEAU P J, MUENCH J D, et al. Validation of propeller turbulence ingestion acoustic radiation model using wind tunnel measurements[J]. ASME-Flow Noise Model, Measure, Control, 1991, 168: 175. https://apps.dtic.mil/dtic/tr/fulltext/u2/a245326.pdf
|
[25] |
JIANG C W, CHANG M, LIU Y. The effect of turbulence ingestion on propeller broadband thrust[C]//Naval Hydrodynamics, 19th Symposium, Seoul, Korea. Washington, DC, USA: National Academy Press, 1994: Session XIII: 751.
|
[26] |
MARTINEZ R. Asymptotic theory of broadband rotor thrust, part I: manipulations of flow probabilities for a high number of blades[J]. Journal of Applied Mechanics, 1996, 63(1): 136-142. DOI: 10.1115/1.2787188
|
[27] |
MARTINEZ R. Asymptotic theory of broadband rotor thrust, part II: analysis of the right frequency shift of the maximum response[J]. Journal of Applied Mechanics, 1996, 63(1): 143-148. DOI: 10.1115/1.2787189
|
[28] |
MARTINEZ R. Broadband sources of structure-borne noise for propulsors in "haystacked" turbulence[J]. Computers & Structures, 1997, 65(3): 475-490. DOI: 10.1016/S0045-7949(96)00261-1
|
[29] |
MINNITI R J, BLAKE W K, MUELLER T J. Inferring propeller inflow and radiation from near-field response, part 1: analytic development[J]. AIAA Journal, 2001, 39(6): 1030-1036. DOI: 10.2514/2.1443
|
[30] |
MINNITI R J, BLAKE W K, MUELLER T J. Inferring propeller inflow and radiation from near-field response, part 2: empirical application[J]. AIAA Journal, 2001, 39(6): 1037-1046. DOI: 10.2514/2.1444
|
[31] |
WOJNO J P, MUELLER T J, BLAKE W K. Turbulence ingestion noise, part 1: experimental characterization of grid-generated turbulence[J]. AIAA Journal, 2002, 40(1): 16-25. DOI: 10.2514/2.1636
|
[32] |
WOJNO J P, MUELLER T J, BLAKE W K. Turbulence ingestion noise, part 2: rotor aeroacoustic response to grid-generated turbulence[J]. AIAA Journal, 2002, 40(1): 26-32. DOI: 10.2514/2.1637
|
[33] |
CATLETT M, ANDERSON J, STEWART D. Aeroacoustic response of propellers to sheared turbulent inflow[C]//18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), Colorado Springs, CO. Reston, Virginia: AIAA, 2012. doi: 10.2514/6.2012-2137
|
[34] |
ANDERSON J M, CATLETT M R, STEWART D O. Modeling rotor unsteady forces and sound due to homogeneous turbulence ingestion[J]. AIAA Journal, 2014, 53(1): 81-92. DOI: 10.2514/1.J052874
|
[35] |
熊紫英, 孙红星, 朱锡清. 入射湍流与螺旋桨相互作用的低频宽带噪声预报研究[J]. 中国造船, 2014, 55(3): 1-11. doi: 10.3969/j.issn.1000-4882.2014.03.001XIONG Z Y, SUN H X, ZHU X Q. Prediction of low-frequency broadband noise induced by the interaction between injected turbulence and propeller[J]. Shipbuilding of China, 2014, 55(3): 1-11. (in Chinese) doi: 10.3969/j.issn.1000-4882.2014.03.001
|
[36] |
YAO H Y, CAO L L, WU D Z, et al. Generation and distribution of turbulence-induced forces on a propeller[J]. Ocean Engineering, 2020, 206: 107255. DOI: 10.1016/j.oceaneng.2020.107255
|
[37] |
JIANG J W, QI J T, CAI H P, et al. Prediction and optimisation of low-frequency discrete- and broadband-spectrum marine propeller forces[J]. Applied Ocean Research, 2020, 98: 102114. DOI: 10.1016/j.apor.2020.102114
|
[38] |
Sevik M. Hydroacoustic considerations in marine propulsor design[C]//21st Symposium on Naval Hydrodynamics, Trondheim, Norway. 1996.
|
[39] |
PAUL B S, UHLMAN J S. Development and validation of turbulence ingestion prediction capability of TONBROD[C]//ASME 2012 Noise Control and Acoustics Division Conference at InterNoise 2012, New York City, New York, USA. 2013: 7-13. doi: 10.1115/NCAD2012-0109
|
[40] |
TIAN J, YAO D, WU Y D, et al. Experimental study on rotating instability mode characteristics of axial compressor tip flow[J]. Experiments in Fluids, 2018, 59(4): 63. DOI: 10.1007/s00348-018-2517-0
|
[41] |
PEAKE N, PARRY A B. Modern challenges facing turbomachinery aeroacoustics[J]. Annual Review of Fluid Mechanics, 2012, 44(1): 227-248. DOI: 10.1146/annurev-fluid-120710-101231
|
[42] |
GOURDAIN N. Prediction of the unsteady turbulent flow in an axial compressor stage. Part 1: Comparison of unsteady RANS and LES with experiments[J]. Computers & Fluids, 2015, 106: 119-129. DOI: 10.1016/j.compfluid.2014.09.052
|
[43] |
CASALINO D, HAZIR A, MANN A. Turbofan broadband noise prediction using the lattice Boltzmann method[J]. AIAA Journal, 2017, 56(2): 609-628. DOI: 10.2514/1.J055674
|
[44] |
ROMANI G, YE Q Q, AVALLONE F, et al. Numerical analysis of fan noise for the NOVA boundary-layer ingestion configuration[J]. Aerospace Science and Technology, 2020, 96: 105532. DOI: 10.1016/j.ast.2019.105532
|
[45] |
LIU X, JIANG H B, HUANG X, et al. Theoretical model of scattering from flow ducts with semi-infinite axial liner splices[J]. Journal of Fluid Mechanics, 2016, 786: 62-83. DOI: 10.1017/jfm.2015.633
|
[46] |
TONG F, QIAO W Y, XU K B, et al. On the study of wavy leading-edge vanes to achieve low fan interaction noise[J]. Journal of Sound and Vibration, 2018, 419: 200-226. DOI: 10.1016/j.jsv.2018.01.017
|
[47] |
POLACSEK C, CADER A, BUSZYK M, et al. Aeroacoustic design and broadband noise predictions of a fan stage with serrated outlet guide vanes[J]. Physics of Fluids, 2020, 32(10): 107107. DOI: 10.1063/5.0020190
|
[48] |
GIACCHÉ D, XU L P, COUPLAND J. Optimization of bypass outlet guide vane for low interaction noise[J]. AIAA Journal, 2014, 52(6): 1145-1158. DOI: 10.2514/1.J052003
|
[49] |
ZHANG W G, WANG X Y, JING X D, et al. Three-dimensional analysis of vane sweep effects on fan interaction noise[J]. Journal of Sound and Vibration, 2017, 391: 73-94. DOI: 10.1016/j.jsv.2016.12.014
|
[50] |
GUNN E J, HALL C A. Nonaxisymmetric stator design for boundary layer ingesting fans[J]. Journal of Turbomachinery, 2019, 141(7): 071010. DOI: 10.1115/1.4043343
|
[51] |
ZDRAVKOVICH M M. Flow around circular cylinders, Volume 1: Fundamentals[M]. Oxford Science Publications, 1997.
|
[52] |
ALEXANDER W N, MOLINARO N J, HICKLING C, et al. Phased array measurements of a rotor ingesting a turbulent shear flow[C]//22nd AIAA/CEAS Aeroacoustics Conference, Lyon, France. Reston, Virginia: AIAA, 2016. doi: 10.2514/6.2016-2994
|
[53] |
GONZALEZ-MARTINO I, ROMANI G, WANG J Y, et al. Rotor noise generation in a turbulent wake using lattice-boltzmann methods[C]//2018 AIAA/CEAS Aeroacoustics Conference, Atlanta, Georgia. Reston, Virginia: AIAA, 2018. doi: 10.2514/6.2018-3447
|
[54] |
WANG J Y, WANG K, WANG M. Computational prediction and analysis of rotor noise generation in a turbulent wake[J]. Journal of Fluid Mechanics, 2021, 908: A19. DOI: 10.1017/jfm.2020.783
|
[55] |
BERLAND J, LAFON P, CROUZET F, et al. A parametric study of the noise radiated by the flow around multiple bodies: direct noise computation of the influence of the separating distance in rod-airfoil flow configurations[C]//17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference), Portland, Oregon. Reston, Virginia: AIAA, 2011. doi: 10.2514/6.2011-2819
|
[56] |
JIANG Y, MAO M L, DENG X G, et al. Numerical investigation on body-wake flow interaction over rod–airfoil configuration[J]. Journal of Fluid Mechanics, 2015, 779: 1-35. DOI: 10.1017/jfm.2015.419
|
[57] |
LEFEBVRE J N, JONES A R. Influence of wake interference and freestream turbulence on airfoil performance in the cylinder-airfoil configuration[C]//AIAA Scitech 2020 Forum, Orlando, FL. Reston, Virginia: AIAA, 2020. doi: 10.2514/6.2020-1054
|
[58] |
PLAS A P. Performance of a boundary layer ingesting(BLI) propulsion system[C]//45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2007. AIAA 2007-450. http://silentaircraft.org/object/download/1922/doc/AIAA-2007-450-464.pdf doi: 10.2514/6.2007-450
|
[59] |
CLARK I A, THOMAS R H, GUO Y P. Aircraft system noise of the NASA D8 subsonic transport concept[J]. Journal of Aircraft, 2021: 1-15. DOI: 10.2514/1.C036259
|
[60] |
MORTON M, DEVENPORT W, ALEXANDER W, et al. Rotor inflow noise caused by a boundary layer: inflow measurements and noise predictions[C]//18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), Colorado Springs, CO. Reston, Virginia: AIAA, 2012. doi: 10.2514/6.2012-2120
|
[61] |
GLEGG S A L, DEVENPORT W, ALEXANDER N. Broadband rotor noise predictions using a time domain approach[J]. Journal of Sound and Vibration, 2015, 335: 115-124. DOI: 10.1016/j.jsv.2014.09.007
|
[62] |
ALEXANDER W N, DEVENPORT W J, GLEGG S A L. Noise from a rotor ingesting a thick boundary layer and relation to measurements of ingested turbulence[J]. Journal of Sound and Vibration, 2017, 409: 227-240. DOI: 10.1016/j.jsv.2017.07.056
|
[63] |
MURRAY H H IV, DEVENPORT W J, ALEXANDER W N, et al. Aeroacoustics of a rotor ingesting a planar boundary layer at high thrust[J]. Journal of Fluid Mechanics, 2018, 850: 212-245. DOI: 10.1017/jfm.2018.438
|
[64] |
GONZALEZ-MARTINO I, CASALINO D. Noise from a rotor ingesting a turbulent boundary layer using very-large eddy simulations[C]//25th AIAA/CEAS Aeroacoustics Conference, Delft, The Netherlands. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-2585
|
[65] |
GLEGG S A, HICKLING C, AGASTYA BALANTRAPU N, et al. Beamforming of broadband rotor noise[C]//AIAA Aviation 2021 Forum, Virtual Event. Reston, Virginia: AIAA, 2021. doi: 10.2514/6.2021-2189
|
[66] |
ZHOU D, WANG K, WANG M. Computation of rotor noise generation in a thick axisymmetric turbulent boundary layer[C]// AIAA AVIATION 2021 FORUM, VIRTUAL EVENT. Reston, Virginia: AIAA, 2021. doi: 10.2514/6.2021-2186
|
[67] |
LANGSTON L S. Open rotor engines—still an open question?[J]. Mechanical Engineering, 2018, 140(12): S46-S48. DOI: 10.1115/1.2018-DEC-9
|
[68] |
VAN ZANTE D E. Progress in open rotor research: a U. S. perspective[C]//ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Volume: 1, Montreal, Quebec, Canada. 2015. GT2015-42203. https://ntrs.nasa.gov/api/citations/20150022391/downloads/20150022391.pdf doi: 10.1115/GT2015-42203
|
[69] |
FALISSARD F, CHELIUS A, BOISARD R, et al. Influence of blade deformations on open-rotor low-speed and high-speed aerodynamics and aeroacoustics[C]//23rd AIAA/CEAS Aeroacoustics Conference, Denver, Colorado. Reston, Virginia: AIAA, 2017. doi: 10.2514/6.2017-3869
|
[70] |
DÜRRWÄCHTER L, KEßLER M, KRÄMER E. Numerical assessment of open-rotor noise shielding with a coupled approach[J]. AIAA Journal, 2019, 57(5): 1930-1940. DOI: 10.2514/1.J057531
|
[71] |
SMITH D A, FILIPPONE A, BOJDO N. Noise reduction of a Counter Rotating Open Rotor through a locked blade row[J]. Aerospace Science and Technology, 2020, 98: 105637. DOI: 10.1016/j.ast.2019.105637
|
[72] |
ZAMPONI R, CHIARIOTTI P, BATTISTA G, et al. 3D Generalized Inverse Beamforming in wind tunnel aeroacoustic testing: application to a Counter Rotating Open Rotor aircraft model[J]. Applied Acoustics, 2020, 163: 107229. DOI: 10.1016/j.apacoust.2020.107229
|
[73] |
TOKAJI K, SOÓS B, HORVÁTH C. Beamforming method for extracting the broadband noise sources of counter-rotating open rotors[J]. AIAA Journal, 2020, 58(7): 3028-3039. DOI: 10.2514/1.J058934
|
[74] |
TORMEN D, GIANNATTASIO P, ZANON A, et al. Semi-analytical tip vortex model for fast prediction of contrarotating open rotor noise[J]. AIAA Journal, 2021, 59(5): 1629-1644. DOI: 10.2514/1.J059314
|
[75] |
BRADLEY M K, DRONEY C K. Subsonic ultra green aircraft research: phase I final report[R]. NASA/CR-2011-216847, 2011. https://ntrs.nasa.gov/api/citations/20110011321/downloads/20110011321.pdf
|
[76] |
FELDER J L. NASA N3-X with turboelectric distributed propulsion[C]//Disruptive Green Propulsion Technologies Conference, 2014. GRC-E-DAA-TN19290.https://ntrs.nasa.gov/api/citations/20150002081/downloads/20150002081.pdf
|
[77] |
WELSTEAD J, FELDER J, GUYNN M, et al. Overview of the NASA STARC-ABL (rev. B) advanced concept[C]//Boeing NASA Electric Aircraft Workshop, 2017. NF1676L-26767. https://ntrs.nasa.gov/api/citations/20170005612/downloads/20170005612.pdf
|
[78] |
FRIEDRICH C, ROBERTSON P A. Hybrid-electric propulsion for aircraft[J]. Journal of Aircraft, 2015, 52(1): 176-189. DOI: 10.2514/1.c032660
|
[79] |
FINGER D F, BRAUN C, BIL C. Comparative assessment of parallel-hybrid-electric propulsion systems for four different aircraft[J]. Journal of Aircraft, 2020, 57(5): 843-853. DOI: 10.2514/1.C035897
|
[80] |
SZIROCZAK D, JANKOVICS I, GAL I, et al. Conceptual design of small aircraft with hybrid-electric propulsion systems[J]. Energy, 2020, 204: 117937. DOI: 10.1016/j.energy.2020.117937
|
[81] |
ZAWODNY N S, BOYD JR D D, BURLEY C L. Acoustic characterization and prediction of representative, small-scale rotary-wing unmanned aircraft system components[C]//American Helicopter Society (AHS) Annual Forum, West Palm Beach, FL, 2016. https://core.ac.uk/reader/83530863
|
[82] |
CHEN W Q, PENG B, LIEM R P, et al. Experimental study of airfoil-rotor interaction noise by wavelet beamforming[J]. The Journal of the Acoustical Society of America, 2020, 147(5): 3248-3259. DOI: 10.1121/10.0001209
|
[83] |
CHEN W Q, YANG Z D, PENG B, et al. On trailing edge noise from propellers with interactions to shear layers[J]. Journal of Sound and Vibration, 2021, 495: 115901. DOI: 10.1016/j.jsv.2020.115901
|
[84] |
WU J F, JIANG H B, MA Z K, et al. Numerical investigation of airfoil-rotor interaction at low Reynolds number[J]. Physics of Fluids, 2022, 34(2): 025118. doi: 10.1063/5.0082706
|
[85] |
JIANG H B, ZHONG S Y, WU H, et al. Radiation modes of propeller tonal noise[J]. Journal of Vibration and Acoustics, 2022, 144(2): 021009. DOI: 10.1115/1.4051864
|
[86] |
MELIUS M S, MULLENERS K, CAL R B. The role of surface vorticity during unsteady separation[J]. Physics of Fluids, 2018, 30(4): 045108. DOI: 10.1063/1.5006527
|
[87] |
JIAO L R, CHEN Y J, WEN X, et al. Resolving vortex-induced pressure fluctuations on a cylinder in rotor wake using fast-responding pressure-sensitive paint[J]. Physics of Fluids, 2019, 31(5): 055106. DOI: 10.1063/1.5092944
|
[88] |
FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society A, Mathematical and Physical Engineering Sciences, 1969, 264(1151): 321-342. DOI: 10.1098/rsta.1969.0031
|
[89] |
GARTRELL C. A view of future technology needs for space transportation[C]//20th Joint Propulsion Conference, Cincinnati, OH. Reston, Virginia: AIAA, 1984. doi: 10.2514/6.1984-1283
|
[90] |
VERMA A, JANG H, MAHESH K. The effect of an upstream hull on a propeller in reverse rotation[J]. Journal of Fluid Mechanics, 2012, 704: 61-88. DOI: 10.1017/jfm.2012.214
|
[91] |
JANG H, MAHESH K. Large eddy simulation of flow around a reverse rotating propeller[J]. Journal of Fluid Mechanics, 2013, 729: 151-179. DOI: 10.1017/jfm.2013.292
|
[92] |
KUMAR P, MAHESH K. Large eddy simulation of propeller wake instabilities[J]. Journal of Fluid Mechanics, 2017, 814: 361-396. DOI: 10.1017/jfm.2017.20
|
[93] |
DI MASCIO A, MUSCARI R, DUBBIOSO G. On the wake dynamics of a propeller operating in drift[J]. Journal of Fluid Mechanics, 2014, 754: 263-307. DOI: 10.1017/jfm.2014.390
|
[94] |
MUSCARI R, DUBBIOSO G, DI MASCIO A. Analysis of the flow field around a rudder in the wake of a simplified marine propeller[J]. Journal of Fluid Mechanics, 2017, 814: 547-569. DOI: 10.1017/jfm.2017.43
|
[95] |
MAGIONESI F, DUBBIOSO G, MUSCARI R, et al. Modal analysis of the wake past a marine propeller[J]. Journal of Fluid Mechanics, 2018, 855: 469-502. DOI: 10.1017/jfm.2018.631
|
[96] |
CHASE N, CARRICA P M. Submarine propeller computations and application to self-propulsion of DARPA Suboff[J]. Ocean Engineering, 2013, 60: 68-80. DOI: 10.1016/j.oceaneng.2012.12.029
|
[97] |
ÖZDEN M C, GÜRKAN A Y, ÖZDEN Y A, et al. Underwater radiated noise prediction for a submarine propeller in different flow conditions[J]. Ocean Engineering, 2016, 126: 488-500. DOI: 10.1016/j.oceaneng.2016.06.012
|
[98] |
SEZEN S, DOGRUL A, DELEN C, et al. Investigation of self-propulsion of DARPA Suboff by RANS method[J]. Ocean Engineering, 2018, 150: 258-271. DOI: 10.1016/j.oceaneng.2017.12.051
|
[99] |
GONG J, GUO C, ZHAO D, et al. A comparative DES study of wake vortex evolution for ducted and non-ducted propellers[J]. Ocean engineering, 2018, 160: 78-93. DOI: 10.1016/j.oceaneng.2018.04.054.
|
[100] |
GONG J, DING J, WANG L. Propeller–duct interaction on the wake dynamics of a ducted propeller[J]. Physics of Fluids, 2021, 33(7): 074102. DOI: 10.1063/5.0056383.
|
[101] |
STARK C, SHI W, ATLAR M. A numerical investigation into the influence of bio-inspired leading-edge tubercles on the hydrodynamic performance of a benchmark ducted propeller[J]. Ocean Engineering, 2021, 237: 109593. DOI: 10.1016/j.oceaneng.2021.109593
|
[102] |
SUN Y, LIU W, LI T Y. Numerical investigation on noise reduction mechanism of serrated trailing edge installed on a pump-jet duct[J]. Ocean Engineering, 2019, 191: 106489. DOI: 10.1016/j.oceaneng.2019.106489
|
[103] |
QIN D H, HUANG Q G, SHI Y J, et al. Comparison of hydrodynamic performance and wake vortices of two typical types of pumpjet propulsor[J]. Ocean Engineering, 2021, 224: 108700. DOI: 10.1016/j.oceaneng.2021.108700
|
[104] |
QIN D H, HUANG Q G, PAN G, et al. Numerical simulation of vortex instabilities in the wake of a preswirl pumpjet propulsor[J]. Physics of Fluids, 2021, 33(5): 055119. DOI: 10.1063/5.0039935
|