Analyses of the test techniques and applications of maglev flight tunnels
-
摘要: 随着高速、超高速轨道交通的快速发展,需要发展新型的风洞设备,实现风洞性能和试验能力的突破。磁浮飞行风洞是利用真空管道列车概念结合动模型试验技术提出的一种新概念风洞设备,可以构建出更加接近真实状态的测试环境。本文从磁浮飞行风洞基本概念、国内外研究现状及发展趋势、试验技术、应用需求等几个方面开展论述。首先论述了国内外传统风洞和动模型设备的现状及发展趋势,指出了发展磁浮飞行风洞的必要性;其次,重点对磁浮飞行风洞需要发展的试验技术进行了分析;最后,对磁浮飞行风洞在超高速轨道交通及其他领域的应用需求进行了展望。Abstract: With the rapid development of high-speed and ultra-high-speed rail transportation, it is necessary to develop new wind tunnel equipment to achieve breakthroughs in the performance and test capabilities of wind tunnels. The maglev flight tunnel, which is a new concept combining vacuum pipeline train and the dynamic model test technology, can construct a test environment closer to the real state. This paper discusses basic concepts of the maglev flight tunnel, the research status and the development trend, as well as test techniques and application requirements. Firstly, the current status and development trend of traditional wind tunnels and dynamic model equipment are introduced, and the necessity of developing maglev flight tunnels is pointed out. Secondly, test techniques need to be developed in maglev flight tunnels are analyzed. Finally, perspectives on the application requirements of maglev flying wind tunnels in the field of ultra-high-speed rail transit and other fields are proposed.
-
表 1 国外部分引导性动模型风洞及试验平台参数
Table 1. Parameters of foreign moving-model wind tunnels
所属机构 布置方式 尺寸/m 弹射方式 模型缩比 最高速度 /(km·h–1) 伯明翰大学铁路研究与教育中心 双向复线布置 全长150
测试段50橡筋弹射 1∶25 270 日本Kobayasi物理研究所 单向轨道布置 全长61
测试段35
加速段10压缩空气炮弹射 1∶30 500 德国宇航中心哥根廷隧道试验平台 单向轨道布置 全长60
隧道段8液压驱动弹射 1∶25 360 韩国建筑技术研究院 单向轨道布置 全长39
测试段33电动机带传动弹射 1∶20 10.8 表 2 国内部分引导性动模型风洞及试验平台参数
Table 2. Parameters of domestic moving-model wind tunnels
所属机构 布置方式 尺寸/m 弹射方式 模型缩比 最高速度 /(km·h–1) 西南交通大学试验中心 环形单轨道布置 全长20
直径6.5压缩空气 1∶80 360 中国科学院力学研究所 单向轨道布置 全长180
测试段50压缩空气 1∶8 400 中南大学高速列车研究中心 双向复线布置 全长164
测试段60
加速段52橡筋弹射 1∶20 500 -
[1] 中国中车集团有限公司. 中国中车研制的时速600km高速磁浮试验样车成功试跑[J]. 电世界, 2020, 61(8): 56. [2] 刘政崇. 风洞结构设计[M]. 北京: 中国宇航出版社, 2005. [3] 中国人民解放军总装备部军事训练教材编辑工作委员会. 低速风洞试验[M]. 北京: 国防工业出版社, 2002. [4] 董金刚, 金佳林, 李广良, 等. 旋转导弹风洞动态测力试验技术研究[J]. 实验流体力学, 2020, 34(4): 81-86. doi: 10.11729/syltlx20190119DONG J G, JIN J L, LI G L, et al. Research on test technology of dynamic force measurement of rotating missile in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 81-86. (in Chinese) doi: 10.11729/syltlx20190119 [5] 杨小川, 王运涛, 洪俊武, 等. 跨声速风洞高速段一体化数值模拟研究[J]. 航空工程进展, 2020, 11(1): 92-102.YANG X C, WANG Y T, HONG J W, et al. Integrated numerical simulation research of high-speed section in transonic wind tunnel[J]. Advances in Aeronautical Science and Engineering, 2020, 11(1): 92-102. (in Chinese) [6] 陈吉明, 雷鹏飞, 廖达雄, 等. 0.6m连续式跨声速风洞轴流压缩机布局方案研究[J]. 实验流体力学, 2020, 34(4): 68-73. doi: 10.11729/syltlx20190034CHEN J M, LEI P F, LIAO D X, et al. Research on the layout scheme for the axial compressor in the 0.6m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 68-73. (in Chinese) doi: 10.11729/syltlx20190034 [7] 刘加利, 张继业, 张卫华. 真空管道高速列车气动特性分析[J]. 机械工程学报, 2013, 49(22): 137-143. doi: 10.3901/JME.2013.22.137LIU J L, ZHANG J Y, ZHANG W H. Analysis of aerodynamic characteristics of high-speed trains in the evacuated tube[J]. Journal of Mechanical Engineering, 2013, 49(22): 137-143. (in Chinese) doi: 10.3901/JME.2013.22.137 [8] 倪章松, 贺德馨. 等效动压洞壁干扰修正方法的研究与应用[J]. 空气动力学学报, 2000, 18(1): 86-91. doi: 10.3969/j.issn.0258-1825.2000.01.014NI Z S, HE D X. Research and application on wall interference correction method of equivalent kinetic pressure[J]. Acta Aerodynamica Sinica, 2000, 18(1): 86-91. (in Chinese) doi: 10.3969/j.issn.0258-1825.2000.01.014 [9] 陈大伟, 郭迪龙. 低真空管道磁浮列车气动特性[J]. 力学研究, 2019, 8 (2): 109-117. doi: 10.12677/IJM.2019.82013CHEN D W, GUO D L. Aerodynamic characteristics of maglev train on low vacuum tube[J]. Inernational Journal of Mechanical Research, 2019, 8 (2): 109-117 (in Chinese). doi: 10.12677/IJM.2019.82013 [10] 中国空气动力研究与发展中心. 磁浮飞行风洞建设项目建议书[R]. 2019. [11] 周勇为, 常熹钰, 易仕和. 低湍流度磁悬浮风洞的气动和结构设计[J]. 流体力学实验与测量, 2001, 15(4): 1-6.ZHOU Y W, CHANG X Y, YI S H. The aerodynamic and structural design of low turbulence intensity of MSWT[J]. Experiments and Measurements in Fluid Mechanics, 2001, 15(4): 1-6. (in Chinese) [12] 邹思敏, 何旭辉, 王汉封, 等. 横风作用下高速列车-桥梁系统气动特性风洞试验[J]. 交通运输工程学报, 2020, 20(1): 132-139.ZOU S M, HE X H, WANG H F, et al. Wind tunnel experiment on aerodynamic characteristics of high-speed train-bridge system under crosswind [J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 132-139. (in Chinese) [13] 战培国. 未来的新型无风低速风洞[J]. 流体力学实验与测量, 2000, 14(4): 50. [14] 伍荣林, 王振羽. 风洞设计原理[M]. 北京: 北京航空学院出版社, 1985. [15] 中国人民解放军总装备部军事训练教材工作委员会. 高低速风洞气动与结构设计[M]. 国防工业出版社, 2003. [16] 李金河, 庞勇, 赵继波. 火箭橇试验加载技术研究[J]. 弹箭与制导学报, 2010, 30(5): 137-139, 146. doi: 10.3969/j.issn.1673-9728.2010.05.038LI J H, PANG Y, ZHAO J B. The study on load technique for rocket sled experiment[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30(5): 137-139, 146. (in Chinese) doi: 10.3969/j.issn.1673-9728.2010.05.038 [17] LOFTHOUSE A, HUGHSON M, PALAZOTTO A. Computational aerodynamic analysis of the flow field about a hypervelocity test sled[C]//Proc of the 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virginia: AIAA, 2003. doi: 10.2514/6.2003-981 [18] 韩永, 郑伟, 汤国建. 火箭橇试验技术发展综述[C]// 中国航空学会飞行力学学术交流会. 中国航空学会, 2006. [19] 周真学, 周绍慧, 编译. 国外火箭滑车图册[M]. 北京: 国防工业出版社, 1979. [20] HEGEDUS M, MENDENHALL M, PERKINS S, et al. Engineering analysis for rocket sled aerodynamics[C]//Proc of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virginia: AIAA, 2006. doi: 10.2514/6.2006-664 [21] NAKATA D, YASUDA K, HORIO S, et al. A fundamental study on the hybrid rocket clustering for the rocket sled propulsion system[C]//Proc of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT. Reston, Virginia: AIAA, 2016. doi: 10.2514/6.2016-4868 [22] 夏有财, 徐进新, 耿强. 火箭橇试验系统研究现状与趋势[C]//中国航天第三专业信息网第四十届技术交流会暨第四届空天动力联合会议论文集. 昆明, 2019: 92-96. [23] 赵继波, 赵峰, 谭多望, 等. 火箭橇加载试验技术研究[C]//第四届全国爆炸力学实验技术学术会议论文集. 武夷山, 2006: 390-395. [24] 吴国强. 中国襄北火箭滑轨试验场[J]. 国际航空, 1996(1): 49-50.WU G Q. The rocket track test site in China[J]. International Aviation, 1996(1): 49-50. (in Chinese) [25] 韩振江, 张建平. 051基地火箭滑车轨道设计要点分析[J]. 中国铁路, 2004, (11): 31-32. doi: 10.3969/j.issn.1001-683X.2004.11.007 [26] STERLING M, BAKER C J, JORDAN S C, et al. A study of the slipstreams of high-speed passenger trains and freight trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222(2): 177-193. DOI: 10.1243/09544097jrrt133 [27] BAKER C, JORDAN S, GILBERT T, et al. Transient aerodynamic pressures and forces on trackside and overhead structures due to passing trains. Part 1: Model-scale experiments; Part 2: Standards applications[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228(1): 37-70. DOI: 10.1177/0954409712464859 [28] DOI T, OGAWA T, MASUBUCHI T, et al. Development of an experimental facility for measuring pressure waves generated by high-speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(1): 55-61. DOI: 10.1016/j.jweia.2009.09.002 [29] HEINE D, EHRENFRIED K, HEINE G, et al. Experimental and theoretical study of the pressure wave generation in railway tunnels with vented tunnel portals[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 176: 290-300. DOI: 10.1016/j.jweia.2018.03.020 [30] BELL J R, BURTON D, THOMPSON M C, et al. Moving model analysis of the slipstream and wake of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 136: 127-137. DOI: 10.1016/j.jweia.2014.09.007 [31] 王英学, 骆建军, 李伦贵, 等. 高速列车模型试验装置及相似特征分析[J]. 西南交通大学学报, 2004, 39(1): 20-24. doi: 10.3969/j.issn.0258-2724.2004.01.005WANG Y X, LUO J J, LI L G, et al. Model experiment system for high-speed trains and analysis of its similarity[J]. Journal of Southwest Jiaotong University, 2004, 39(1): 20-24. (in Chinese) doi: 10.3969/j.issn.0258-2724.2004.01.005 [32] 单希壮, 陈巍. 高速列车动模型试验装置的新型加速方法研究[J]. 大连交通大学学报, 2009, 30(4): 1-6. doi: 10.3969/j.issn.1673-9590.2009.04.001SHAN X Z, CHEN W. A new accelerating method of moving model experimental system for high-speed train[J]. Journal of Dalian Jiaotong University, 2009, 30(4): 1-6. (in Chinese) doi: 10.3969/j.issn.1673-9590.2009.04.001 [33] 李素康, 潘迪夫. 列车动模型试验弹射系统的控制[J]. 中国铁路, 2005(8): 52-53, 62. doi: 10.3969/j.issn.1001-683X.2005.08.016 [34] YANG M Z, DU J T, LI Z W, et al. Moving model test of high-speed train aerodynamic drag based on stagnation pressure measurements[J]. PLoS One, 2017, 12(1): e0169471. DOI: 10.1371/journal.pone.0169471 [35] MENG S, ZHOU D, WANG Z. Moving model analysis on the transient pressure and slipstream caused by a metro train passing through a tunnel[J]. PLoS One, 2019, 14(9): e0222151. DOI: 10.1371/journal.pone.0222151 [36] 战培国, 杨炯. 国外风洞试验的新机制、新概念、新技术[J]. 流体力学实验与测量, 2004, 18(4): 1-6.ZHAN P G, YANG J. New systems, concepts and techniques in the area of foreign wind tunnel test[J]. Experiments and Measurements in Fluid Mechanics, 2004, 18(4): 1-6. (in Chinese) [37] 苏靖棋. 超级高铁(Hyperloop)理念分析[J]. 现代城市轨道交通, 2021(4): 134-137.SU J Q. Analysis on the concept of Hyperloop[J]. Modern Urban Transit, 2021(4): 134-137. (in Chinese) [38] 陈晓东, 杨文将, 刘宇, 等. 磁悬浮助推发射气动力分析及风洞试验[J]. 航空动力学报, 2007, 22(9): 1560-1564. doi: 10.3969/j.issn.1000-8055.2007.09.027CHEN X D, YANG W J, LIU Y, et al. Aerodynamic analysis and wind tunnel testing on maglev launch assist[J]. Journal of Aerospace Power, 2007, 22(9): 1560-1564. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.09.027 [39] 杨文将, 刘宇, 杨博. 航天发射用磁悬浮助推发射系统概念研究[J]. 北京航空航天大学学报, 2005, 31(1): 105-110. doi: 10.3969/j.issn.1001-5965.2005.01.025YANG W J, LIU Y, YANG B. Conceptual study of magnetic launch assist system for space launch[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(1): 105-110. (in Chinese) doi: 10.3969/j.issn.1001-5965.2005.01.025 [40] DENG Z G, ZHANG W H, ZHENG J, et al. A high-temperature superconducting maglev ring test line developed in Chengdu, China[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(6): 1-8. DOI: 10.1109/TASC.2016.2555921 [41] ZHOU D J, CUI C Y, ZHAO L F, et al. Running stability of a prototype vehicle in a side-suspended HTS maglev circular test track system[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(1): 1-7. DOI: 10.1109/TASC.2016.2635801 [42] ZHOU D J, CUI C Y, ZHAO L F, et al. Static and dynamic stability of the guidance force in a side-suspended HTS maglev system[J]. Superconductor Science and Technology, 2017, 30(2): 025019. DOI: 10.1088/1361-6668/30/2/025019 [43] 唐志共, 许晓斌, 杨彦广, 等. 高超声速风洞气动力试验技术进展[J]. 航空学报, 2015, 36(1): 86-97.TANG Z G, XU X B, YANG Y G, et al. Research progress on hypersonic wind tunnel aerodynamic testing techniques[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 86-97. (in Chinese) [44] 高超, 倪章松, 薛明, 郑博睿. 基于新型丝状电极等离子体激励器的前体涡控制(英文)[J]. 空气动力学学报, 2021, 39(2): 39-52.GAO C, NI Z S, XUE M, et al. Forebody vortex control with a wire-based DBD plasma actuator[J]. Acta Aerodynamica Sinica, 2021, 39(2): 39-52. [45] 雷强, 高杨, 王雄. MEMS壁面剪切应力传感器研究进展[J]. 2016, 42(7): 1-8.LEI Q, GAO Y, WANG X. The development progress of MEMS wall shear stress sensors[J]. China Measurement & Test, 2016, 42(7): 1-8. (in Chinese) [46] 贺德馨. 风洞天平[M]. 北京: 国防工业出版社, 2001.HE D X. Wind tunnel balance[M]. Beijing: National Defense Industry Press, 2001. (in Chinese) [47] 战培国. 2020版AIAA风洞天平校准标准浅析[J]. 标准科学, 2020(8): 99-102. doi: 10.3969/j.issn.1674-5698.2020.08.018ZHAN P G. Analysis on the 2020 edition of AIAA balance calibration standard[J]. Standard Science, 2020(8): 99-102. (in Chinese) doi: 10.3969/j.issn.1674-5698.2020.08.018 [48] 解真东. 光纤珐珀传感器在空气/水动力学方面的应用研究[D]. 成都: 电子科技大学, 2019.XIE Z D. Application of fiber-optic fabry-perot sensor inaerodynamics/ hydrodynamic tests[D]. Chengdu: University of Electronic Science and Technology of China, 2019. (in Chinese) [49] 闵夫. 光纤Fabry-Perot应变计在风洞天平上的应用研究[D]. 绵阳: 中国空气动力研究与发展中心, 2015.MIN F. Application investigation of fiber optic fabry-perot strain gage on wind tunnel balance[D]. Mianyang: China Aerodynamics Research and Development Center, 2015 (in Chinese). [50] 赵莉, 邹满玲, 田静琳, 等. 国外低温内式应变天平技术研究进展[J]. 实验流体力学, 2016, 30(6): 1-9.ZHAO L, ZOU M L, TIAN J L, et al. Advances of research on internal cryogenic strain gauge balance abroad[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 1-9. (in Chinese) [51] 田正波, 王超. 杆式应变天平弧形断开槽结构特性研究[J]. 机械工程师, 2019(3): 87-89.TIAN Z B, WANG C. Research on structural characteristics of strain gauge balance with curved groove[J]. Mechanical Engineer, 2019(3): 87-89. (in Chinese) [52] 倪章松. 低速空气动力试验指挥教程[M]. 国防工业出版社, 2017.NI Z S. Low speed aerodynamic test command course [M]. National Defense Industry Press, 2017 (in Chinese) . [53] 左金, 陈植, 林俊, 等. PIV技术在超声速气流低热固相反应合成系统流场测量中的应用[J]. 山东化工, 2020, 49(18): 25-27, 30. doi: 10.3969/j.issn.1008-021X.2020.18.011ZUO J, CHEN Z, LIN J, et al. Applications of the PIV technology in measurement of the flow field of a solid phase room-temperature synthesis system based on supersonic gas-flow[J]. Shandong Chemical Industry, 2020, 49(18): 25-27, 30. (in Chinese) doi: 10.3969/j.issn.1008-021X.2020.18.011 [54] 刘洪, 陈方, 励孝杰, 等. 高速复杂流动PIV技术研究实践与挑战[J]. 实验流体力学, 2016, 30(1): 28-42.LIU H, CHEN F, LI X J, et al. Practices and challenges on PIV technology in high speed complex flows[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1): 28-42. (in Chinese) [55] 陈建, 施圣贤, 刘应征. 复杂固体边界流场的三维 PIV 测试技术: 任意三维边界识别算法[J]. 实验流体力学, 2015, 29(2): 55-61, 67.CHEN J, SHI S X, LIU Y Z. Three-dimensional PIV measurement technique for complex solid boundary: arbitrary three-dimensional boundary recognition algorithm[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(2): 55-61, 67. (in Chinese) [56] 田于逵, 张璇, 沈雪, 等. 水下平板壁面剪应力MEMS测量研究进展[J]. 实验流体力学, 2017, 31(3): 82-87.TIAN Y K, ZHANG X, SHEN X, et al. Research on underwater flat plate wall shear stress measurement with MEMS sensors array[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 82-87. (in Chinese) [57] 蔡广平. 流动显示在飞行试验中的应用[C]//全国流动显示学术交流会. 中国空气动力学会, 2006. [58] 邹镇, 尹东, 刘绪鹏, 等. 油流法流场显示技术研究及应用[J]. 计测技术, 2017, 37(z1): 350-352. [59] GORDEYEV S, VOROBIEV A, JUMPER E J, et al. Studies of flow topology around hemisphere at transonic speeds using time-resolved oil flow visualization[C]//Proc of the 54th AIAA Aerospace Sciences Meeting, San Diego, California, USA. Reston, Virginia: AIAA, 2016. doi: 10.2514/6.2016-1459 [60] 李强, 江涛, 陈苏宇, 等. 激波风洞边界层转捩测量技术及应用[J]. 航空学报, 2019, 40(8): 122740.LI Q, JIANG T, CHEN S Y, et al. Measurement technique and application of boundary layer transition in shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122740. (in Chinese) [61] 钟海, 王猛, 王启. 边界层转捩红外探测试飞技术研究[J]. 红外技术, 2019, 41(8): 712-718.ZHONG H, WANG M, WANG Q. IR technique investigation of boundary layer transition measurement in flight tests[J]. Infrared Technology, 2019, 41(8): 712-718. (in Chinese) [62] 焦予秦, 赵越, 肖春生. 基于温敏光纤的边界层转捩测量技术研究[J]. 应用力学学报, 2019, 36(6): 1253-1259, 1515.JIAO Y Q, ZHAO Y, XIAO C S. Investigation on technique of boundary-layer transition measurement based on temperature-sensitive optical fiber[J]. Chinese Journal of Applied Mechanics, 2019, 36(6): 1253-1259, 1515. (in Chinese) [63] 张扣立, 常雨, 孔荣宗, 等. 温敏漆技术及其在边界层转捩测量中的应用[J]. 宇航学报, 2013, 34(6): 860-865. doi: 10.3873/j.issn.1000-1328.2013.06.017ZHANG K L, CHANG Y, KONG R Z, et al. Temperature sensitive paint technique and its application in measurement of boundary layer transition[J]. Journal of Astronautics, 2013, 34(6): 860-865. (in Chinese) doi: 10.3873/j.issn.1000-1328.2013.06.017 [64] 杨京龙, 何枫, 谢峻石, 等. 纹影流动显示技术在超声速射流数值模拟验证中的应用[J]. 流体力学实验与测量, 2003, 17(3): 39-44.YANG J L, HE F, XIE J S, et al. Application of schlieren photograph visualization for validating the numerical simulation method of supersonic jet flow[J]. Experiments and Measurements in Fluid Mechanics, 2003, 17(3): 39-44. (in Chinese) [65] 宋鹤鹏, 陈曦, 刘鹏, 等. 背景纹影技术初探[J]. 科技与创新, 2020(10): 121-122, 124. [66] 谢凯. 单孔射流附壁流场特性的高速纹影研究[D]. 杭州: 浙江理工大学, 2015.XIE K. Research on the flow field characteristics of single hole jet flow of attaching to flat with high speed sehlieren method[D]. Hangzhou: Zhejiang Sci-Tech University, 2015. (in Chinese) [67] 刘愿, 钱战森, 向先宏. 外并联式TBCC进气道模态转换风洞试验及模型典型影响因素分析[J]. 实验流体力学, 2019, 33(5): 18-27.LIU Y, QIAN Z S, XIANG X H. An analysis on typical influencing factors of wind tunnel experimental model of over-under TBCC inlet mode transition[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 18-27. (in Chinese) [68] 战培国. 动态压敏漆技术研究综述[J]. 飞航导弹, 2015(7): 55-59. [69] ROOZEBOOM N, POWELL J, BAERNY J, et al. Development of unsteady pressure-sensitive paint application on NASA space launch system[C]//Proc of the AIAA Aviation 2019 Forum, Dallas, Texas. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-3502 [70] 陈正武, 王勋年, 李征初, 等. 基于声学风洞的麦克风阵列测试技术应用研究[J]. 实验流体力学, 2012, 26(3): 84-90. doi: 10.3969/j.issn.1672-9897.2012.03.016CHEN Z W, WANG X N, LI Z C, et al. Application investigation of microphone array measuring and testing technique in anechoic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3): 84-90. (in Chinese) doi: 10.3969/j.issn.1672-9897.2012.03.016 [71] 柳明, 张捷, 高阳, 等. 隧道内高速列车车内噪声特性及声源识别试验分析[J]. 机械工程学报, 2020, 56(8): 207-215. doi: 10.3901/JME.2020.08.207LIU M, ZHANG J, GAO Y, et al. Experimental analysis on characteristics and source identification of interior noise of a high-speed train running in a tunnel[J]. Journal of Mechanical Engineering, 2020, 56(8): 207-215. (in Chinese) doi: 10.3901/JME.2020.08.207 [72] 倪章松. 空气动力试验指挥概论[M]. 北京: 国防工业出版社, 2018.NI Z S. Introduction to Aerodynamic Test Command [M]. Beijing: National Defense Industry Press, 2018. (in Chinese) [73] 田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6(1): 1-9. doi: 10.3321/j.issn:1671-1637.2006.01.001TIAN H Q. Study evolvement of train aerodynamics in China[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 1-9. (in Chinese) doi: 10.3321/j.issn:1671-1637.2006.01.001 [74] 夏超, 单希壮, 杨志刚, 等. 风洞地面效应对高速列车空气动力学特性的影响[J]. 铁道学报, 2015, 37(4): 8-16.YANG G W, WEI Y J, ZHAO G L [75] 李田, 戴志远, 刘加利, 等. 中国高速列车气动减阻优化综述[J]. 交通运输工程学报, 2021, 21(1): 59-80.LI T, DAI Z Y, LIU J L, et al. Review on aerodynamic drag reduction optimization of high-speed trains in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 59-80. (in Chinese) [76] 朱海燕, 曾庆涛, 王宇豪, 等. 高速列车动力学性能研究进展[J]. 交通运输工程学报, 2021, 21(3): 57-92.ZHU H Y, ZENG Q T, WANG Y H, et al. Research progress on dynamics performance of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 57-92. (in Chinese) [77] 田红旗. 中国高速轨道交通空气动力学研究进展及发展思考[J]. 中国工程科学, 2015, 17(4): 30-41. doi: 10.3969/j.issn.1009-1742.2015.04.004TIAN H Q. Development of research on aerodynamics of high-speed rails in China[J]. Engineering Sciences, 2015, 17(4): 30-41. (in Chinese) doi: 10.3969/j.issn.1009-1742.2015.04.004 [78] LI W H, LIU T H, ZHANG J, et al. Aerodynamic study of two opposing moving trains in a tunnel based on different nose contours[J]. Journal of Applied Fluid Mechanics, 2017, 10(5): 1375-1386. DOI: 10.18869/acadpub.jafm.73.242.27738 [79] CHU C R, CHIEN S Y, WANG C Y, et al. Numerical simulation of two trains intersecting in a tunnel[J]. Tunnelling and Underground Space Technology, 2014, 42: 161-174. DOI: 10.1016/j.tust.2014.02.013 [80] CHOI J K, KIM K H. Effects of nose shape and tunnel cross-sectional area on aerodynamic drag of train traveling in tunnels[J]. Tunnelling and Underground Space Technology, 2014, 41: 62-73. DOI: 10.1016/j.tust.2013.11.012 [81] 杨国伟, 魏宇杰, 赵桂林, 等. 高速列车的关键力学问题[J]. 力学进展, 2015, 45(0): 217-460.YANG G W, WEI Y J, ZHAO G L, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45(0): 217-460. (in Chinese) [82] 易仕和, 陈植, 朱杨柱, 等. (高)超声速流动试验技术及研究进展[J]. 航空学报, 2015, 36(1): 98-119.YI S H, CHEN Z, ZHU Y Z, et al. Progress on experimental techniques and studies of hypersonic/supersonic flows[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 98-119. (in Chinese) [83] 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311-337. doi: 10.7638/kqdlxxb-2017.0030CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-337. (in Chinese) doi: 10.7638/kqdlxxb-2017.0030 [84] 寻奕源, 屈秋林, 刘沛清. 翼型亚/跨/超声速地面效应数值研究[C]//第十一届全国流体力学学术会议论文集. 深圳, 2020: 639. [85] 徐悦, 韩忠华, 尤延铖, 等. 新一代绿色超声速民机的发展现状与挑战[J]. 科学通报, 2020, 65(Z1): 127-133.XU Y, HAN Z H, YOU Y C, et al. Progress and challenges of next generation green supersonic civil aircraft[J]. Chinese Science Bulletin, 2020, 65(Z1): 127-133. (in Chinese) [86] PARK M A, AFTOSMIS M J, CAMPBELL R L, et al. Summary of the 2008 NASA fundamental aeronautics program sonic boom prediction workshop[J]. Journal of Aircraft, 2014, 51(3): 987-1001. DOI: 10.2514/1.c032589 [87] 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8): 2507-2528.ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2507-2528. (in Chinese) [88] NASA/JPL-Caltech/Ames. Wind tunnel testing perseverance's parachute [DB/OL]. 2020-05-18.https://images.nasa.gov/details-PIA23916. -