留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁浮飞行风洞试验技术及应用需求分析

倪章松 张军 符澄 王邦毅 李宇

倪章松, 张军, 符澄, 等. 磁浮飞行风洞试验技术及应用需求分析[J]. 空气动力学学报, 2021, 39(5): 95−110 doi: 10.7638/kqdlxxb-2021.0206
引用本文: 倪章松, 张军, 符澄, 等. 磁浮飞行风洞试验技术及应用需求分析[J]. 空气动力学学报, 2021, 39(5): 95−110 doi: 10.7638/kqdlxxb-2021.0206
NI Z S, ZHANG J, FU C, et al. Analyses of the test techniques and applications of maglev flight tunnels[J]. Acta Aerodynamica Sinica, 2021, 39(5): 95−110 doi: 10.7638/kqdlxxb-2021.0206
Citation: NI Z S, ZHANG J, FU C, et al. Analyses of the test techniques and applications of maglev flight tunnels[J]. Acta Aerodynamica Sinica, 2021, 39(5): 95−110 doi: 10.7638/kqdlxxb-2021.0206

磁浮飞行风洞试验技术及应用需求分析

doi: 10.7638/kqdlxxb-2021.0206
基金项目: 国家重点研发计划(2020YFA0710901)
详细信息
    作者简介:

    倪章松(1973-),男,安徽太湖人,正高级工程师,研究方向:低速实验流体力学,结冰空气动力学. E-mail:nzscczx@163.com

    通讯作者:

    张军*,副研究员,研究方向:飞行器、地面高速交通气动噪声产生机理与控制方法. E-mail:jzhang@nudt.edu.cn

  • 中图分类号: TB79

Analyses of the test techniques and applications of maglev flight tunnels

  • 摘要: 随着高速、超高速轨道交通的快速发展,需要发展新型的风洞设备,实现风洞性能和试验能力的突破。磁浮飞行风洞是利用真空管道列车概念结合动模型试验技术提出的一种新概念风洞设备,可以构建出更加接近真实状态的测试环境。本文从磁浮飞行风洞基本概念、国内外研究现状及发展趋势、试验技术、应用需求等几个方面开展论述。首先论述了国内外传统风洞和动模型设备的现状及发展趋势,指出了发展磁浮飞行风洞的必要性;其次,重点对磁浮飞行风洞需要发展的试验技术进行了分析;最后,对磁浮飞行风洞在超高速轨道交通及其他领域的应用需求进行了展望。
  • 图  1  600 km/h高速磁浮下线[1]

    Figure  1.  A 600 km/h high-speed maglev train[1]

    图  2  美国霍洛曼空军基地火箭橇滑轨[19]

    Figure  2.  The rocket sled at Holloman Air Force Base [19]

    图  3  德国宇航中心TSG平台隧道试验[30]

    Figure  3.  TSG platform at the German Aerospace Center[30]

    图  4  气动活塞牵引加速方法[32]

    Figure  4.  An accelerator using air piston[32]

    图  5  中南大学列车动模型试验装置[33]

    Figure  5.  Train-model test device at Central South University[33]

    图  6  美国HiLiFT高升力飞行风洞概念图[36]

    Figure  6.  A conceptual sketch of HiLiFT [36]

    图  7  Hyperloop全尺寸真空管道[37]

    Figure  7.  A full-size vacuum pipe of Hyperloop[37]

    图  8  高温超导磁悬浮试验平台[41]

    Figure  8.  A high temperature superconducting maglev test platform [41]

    图  9  F-P光纤应变计原理图[48]

    Figure  9.  A sketch of the F-P optical fiber strain gauge[48]

    图  10  光束干涉现象[49]

    Figure  10.  A sketch of the optical fiber interference phenomenon[49]

    图  11  基于F-P应变计的光纤天平[49]

    Figure  11.  An optical fiber balance based on F-P strain gauge[49]

    图  12  PIV测量原理图[54]

    Figure  12.  A sketch of the PIV measurement[54]

    图  13  MEMS传感器[56]

    Figure  13.  A MEMS sensor[56]

    图  14  半球油膜法流显图[59]

    Figure  14.  A flow field displayed by the hemispherical oil film method[59]

    图  15  纹影法原理图[66]

    Figure  15.  A sketch of the schlieren method[66]

    图  16  纹影法测量图[67]

    Figure  16.  Flow visualizations by the schlieren method[67]

    图  17  NASA 太空发射系统载人飞船瞬态压敏漆测试图[69]

    Figure  17.  A SLS crew vehicle painted with uPSP[69]

    图  18  高速列车车内外气动噪声测试[71]

    Figure  18.  Noise measurements inside and outside a high-speed train [71]

    图  19  CRH-0503标准动车组420 km会车试验[81]

    Figure  19.  A passing test of CRH-0503 standard EMU with a relative velocity 840 km/h[81]

    图  20  地面效应中的气动干扰示意[84]

    Figure  20.  A sketch of aerodynamic interference induced by the ground effect[84]

    图  21  美国NFAC风洞开展的全尺寸火星降落伞风洞试验[88]

    Figure  21.  A full-scale Mars parachute test in the NFAC (National Full-Scale Aerodynamics Complex) wind tunnel[88]

    表  1  国外部分引导性动模型风洞及试验平台参数

    Table  1.   Parameters of foreign moving-model wind tunnels

    所属机构布置方式尺寸/m弹射方式模型缩比最高速度 /(km·h–1)
    伯明翰大学铁路研究与教育中心双向复线布置全长150
    测试段50
    橡筋弹射1∶25270
    日本Kobayasi物理研究所单向轨道布置全长61
    测试段35
    加速段10
    压缩空气炮弹射1∶30500
    德国宇航中心哥根廷隧道试验平台单向轨道布置全长60
    隧道段8
    液压驱动弹射1∶25360
    韩国建筑技术研究院单向轨道布置全长39
    测试段33
    电动机带传动弹射1∶2010.8
    下载: 导出CSV

    表  2  国内部分引导性动模型风洞及试验平台参数

    Table  2.   Parameters of domestic moving-model wind tunnels

    所属机构布置方式尺寸/m弹射方式模型缩比最高速度 /(km·h–1)
    西南交通大学试验中心环形单轨道布置全长20
    直径6.5
    压缩空气1∶80360
    中国科学院力学研究所单向轨道布置全长180
    测试段50
    压缩空气1∶8400
    中南大学高速列车研究中心双向复线布置全长164
    测试段60
    加速段52
    橡筋弹射1∶20500
    下载: 导出CSV
  • [1] 中国中车集团有限公司. 中国中车研制的时速600km高速磁浮试验样车成功试跑[J]. 电世界, 2020, 61(8): 56.
    [2] 刘政崇. 风洞结构设计[M]. 北京: 中国宇航出版社, 2005.
    [3] 中国人民解放军总装备部军事训练教材编辑工作委员会. 低速风洞试验[M]. 北京: 国防工业出版社, 2002.
    [4] 董金刚, 金佳林, 李广良, 等. 旋转导弹风洞动态测力试验技术研究[J]. 实验流体力学, 2020, 34(4): 81-86. doi: 10.11729/syltlx20190119

    DONG J G, JIN J L, LI G L, et al. Research on test technology of dynamic force measurement of rotating missile in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 81-86. (in Chinese) doi: 10.11729/syltlx20190119
    [5] 杨小川, 王运涛, 洪俊武, 等. 跨声速风洞高速段一体化数值模拟研究[J]. 航空工程进展, 2020, 11(1): 92-102.

    YANG X C, WANG Y T, HONG J W, et al. Integrated numerical simulation research of high-speed section in transonic wind tunnel[J]. Advances in Aeronautical Science and Engineering, 2020, 11(1): 92-102. (in Chinese)
    [6] 陈吉明, 雷鹏飞, 廖达雄, 等. 0.6m连续式跨声速风洞轴流压缩机布局方案研究[J]. 实验流体力学, 2020, 34(4): 68-73. doi: 10.11729/syltlx20190034

    CHEN J M, LEI P F, LIAO D X, et al. Research on the layout scheme for the axial compressor in the 0.6m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 68-73. (in Chinese) doi: 10.11729/syltlx20190034
    [7] 刘加利, 张继业, 张卫华. 真空管道高速列车气动特性分析[J]. 机械工程学报, 2013, 49(22): 137-143. doi: 10.3901/JME.2013.22.137

    LIU J L, ZHANG J Y, ZHANG W H. Analysis of aerodynamic characteristics of high-speed trains in the evacuated tube[J]. Journal of Mechanical Engineering, 2013, 49(22): 137-143. (in Chinese) doi: 10.3901/JME.2013.22.137
    [8] 倪章松, 贺德馨. 等效动压洞壁干扰修正方法的研究与应用[J]. 空气动力学学报, 2000, 18(1): 86-91. doi: 10.3969/j.issn.0258-1825.2000.01.014

    NI Z S, HE D X. Research and application on wall interference correction method of equivalent kinetic pressure[J]. Acta Aerodynamica Sinica, 2000, 18(1): 86-91. (in Chinese) doi: 10.3969/j.issn.0258-1825.2000.01.014
    [9] 陈大伟, 郭迪龙. 低真空管道磁浮列车气动特性[J]. 力学研究, 2019, 8 (2): 109-117. doi: 10.12677/IJM.2019.82013

    CHEN D W, GUO D L. Aerodynamic characteristics of maglev train on low vacuum tube[J]. Inernational Journal of Mechanical Research, 2019, 8 (2): 109-117 (in Chinese). doi: 10.12677/IJM.2019.82013
    [10] 中国空气动力研究与发展中心. 磁浮飞行风洞建设项目建议书[R]. 2019.
    [11] 周勇为, 常熹钰, 易仕和. 低湍流度磁悬浮风洞的气动和结构设计[J]. 流体力学实验与测量, 2001, 15(4): 1-6.

    ZHOU Y W, CHANG X Y, YI S H. The aerodynamic and structural design of low turbulence intensity of MSWT[J]. Experiments and Measurements in Fluid Mechanics, 2001, 15(4): 1-6. (in Chinese)
    [12] 邹思敏, 何旭辉, 王汉封, 等. 横风作用下高速列车-桥梁系统气动特性风洞试验[J]. 交通运输工程学报, 2020, 20(1): 132-139.

    ZOU S M, HE X H, WANG H F, et al. Wind tunnel experiment on aerodynamic characteristics of high-speed train-bridge system under crosswind [J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 132-139. (in Chinese)
    [13] 战培国. 未来的新型无风低速风洞[J]. 流体力学实验与测量, 2000, 14(4): 50.
    [14] 伍荣林, 王振羽. 风洞设计原理[M]. 北京: 北京航空学院出版社, 1985.
    [15] 中国人民解放军总装备部军事训练教材工作委员会. 高低速风洞气动与结构设计[M]. 国防工业出版社, 2003.
    [16] 李金河, 庞勇, 赵继波. 火箭橇试验加载技术研究[J]. 弹箭与制导学报, 2010, 30(5): 137-139, 146. doi: 10.3969/j.issn.1673-9728.2010.05.038

    LI J H, PANG Y, ZHAO J B. The study on load technique for rocket sled experiment[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30(5): 137-139, 146. (in Chinese) doi: 10.3969/j.issn.1673-9728.2010.05.038
    [17] LOFTHOUSE A, HUGHSON M, PALAZOTTO A. Computational aerodynamic analysis of the flow field about a hypervelocity test sled[C]//Proc of the 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virginia: AIAA, 2003. doi: 10.2514/6.2003-981
    [18] 韩永, 郑伟, 汤国建. 火箭橇试验技术发展综述[C]// 中国航空学会飞行力学学术交流会. 中国航空学会, 2006.
    [19] 周真学, 周绍慧, 编译. 国外火箭滑车图册[M]. 北京: 国防工业出版社, 1979.
    [20] HEGEDUS M, MENDENHALL M, PERKINS S, et al. Engineering analysis for rocket sled aerodynamics[C]//Proc of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virginia: AIAA, 2006. doi: 10.2514/6.2006-664
    [21] NAKATA D, YASUDA K, HORIO S, et al. A fundamental study on the hybrid rocket clustering for the rocket sled propulsion system[C]//Proc of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT. Reston, Virginia: AIAA, 2016. doi: 10.2514/6.2016-4868
    [22] 夏有财, 徐进新, 耿强. 火箭橇试验系统研究现状与趋势[C]//中国航天第三专业信息网第四十届技术交流会暨第四届空天动力联合会议论文集. 昆明, 2019: 92-96.
    [23] 赵继波, 赵峰, 谭多望, 等. 火箭橇加载试验技术研究[C]//第四届全国爆炸力学实验技术学术会议论文集. 武夷山, 2006: 390-395.
    [24] 吴国强. 中国襄北火箭滑轨试验场[J]. 国际航空, 1996(1): 49-50.

    WU G Q. The rocket track test site in China[J]. International Aviation, 1996(1): 49-50. (in Chinese)
    [25] 韩振江, 张建平. 051基地火箭滑车轨道设计要点分析[J]. 中国铁路, 2004, (11): 31-32. doi: 10.3969/j.issn.1001-683X.2004.11.007
    [26] STERLING M, BAKER C J, JORDAN S C, et al. A study of the slipstreams of high-speed passenger trains and freight trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222(2): 177-193. DOI: 10.1243/09544097jrrt133
    [27] BAKER C, JORDAN S, GILBERT T, et al. Transient aerodynamic pressures and forces on trackside and overhead structures due to passing trains. Part 1: Model-scale experiments; Part 2: Standards applications[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228(1): 37-70. DOI: 10.1177/0954409712464859
    [28] DOI T, OGAWA T, MASUBUCHI T, et al. Development of an experimental facility for measuring pressure waves generated by high-speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(1): 55-61. DOI: 10.1016/j.jweia.2009.09.002
    [29] HEINE D, EHRENFRIED K, HEINE G, et al. Experimental and theoretical study of the pressure wave generation in railway tunnels with vented tunnel portals[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 176: 290-300. DOI: 10.1016/j.jweia.2018.03.020
    [30] BELL J R, BURTON D, THOMPSON M C, et al. Moving model analysis of the slipstream and wake of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 136: 127-137. DOI: 10.1016/j.jweia.2014.09.007
    [31] 王英学, 骆建军, 李伦贵, 等. 高速列车模型试验装置及相似特征分析[J]. 西南交通大学学报, 2004, 39(1): 20-24. doi: 10.3969/j.issn.0258-2724.2004.01.005

    WANG Y X, LUO J J, LI L G, et al. Model experiment system for high-speed trains and analysis of its similarity[J]. Journal of Southwest Jiaotong University, 2004, 39(1): 20-24. (in Chinese) doi: 10.3969/j.issn.0258-2724.2004.01.005
    [32] 单希壮, 陈巍. 高速列车动模型试验装置的新型加速方法研究[J]. 大连交通大学学报, 2009, 30(4): 1-6. doi: 10.3969/j.issn.1673-9590.2009.04.001

    SHAN X Z, CHEN W. A new accelerating method of moving model experimental system for high-speed train[J]. Journal of Dalian Jiaotong University, 2009, 30(4): 1-6. (in Chinese) doi: 10.3969/j.issn.1673-9590.2009.04.001
    [33] 李素康, 潘迪夫. 列车动模型试验弹射系统的控制[J]. 中国铁路, 2005(8): 52-53, 62. doi: 10.3969/j.issn.1001-683X.2005.08.016
    [34] YANG M Z, DU J T, LI Z W, et al. Moving model test of high-speed train aerodynamic drag based on stagnation pressure measurements[J]. PLoS One, 2017, 12(1): e0169471. DOI: 10.1371/journal.pone.0169471
    [35] MENG S, ZHOU D, WANG Z. Moving model analysis on the transient pressure and slipstream caused by a metro train passing through a tunnel[J]. PLoS One, 2019, 14(9): e0222151. DOI: 10.1371/journal.pone.0222151
    [36] 战培国, 杨炯. 国外风洞试验的新机制、新概念、新技术[J]. 流体力学实验与测量, 2004, 18(4): 1-6.

    ZHAN P G, YANG J. New systems, concepts and techniques in the area of foreign wind tunnel test[J]. Experiments and Measurements in Fluid Mechanics, 2004, 18(4): 1-6. (in Chinese)
    [37] 苏靖棋. 超级高铁(Hyperloop)理念分析[J]. 现代城市轨道交通, 2021(4): 134-137.

    SU J Q. Analysis on the concept of Hyperloop[J]. Modern Urban Transit, 2021(4): 134-137. (in Chinese)
    [38] 陈晓东, 杨文将, 刘宇, 等. 磁悬浮助推发射气动力分析及风洞试验[J]. 航空动力学报, 2007, 22(9): 1560-1564. doi: 10.3969/j.issn.1000-8055.2007.09.027

    CHEN X D, YANG W J, LIU Y, et al. Aerodynamic analysis and wind tunnel testing on maglev launch assist[J]. Journal of Aerospace Power, 2007, 22(9): 1560-1564. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.09.027
    [39] 杨文将, 刘宇, 杨博. 航天发射用磁悬浮助推发射系统概念研究[J]. 北京航空航天大学学报, 2005, 31(1): 105-110. doi: 10.3969/j.issn.1001-5965.2005.01.025

    YANG W J, LIU Y, YANG B. Conceptual study of magnetic launch assist system for space launch[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(1): 105-110. (in Chinese) doi: 10.3969/j.issn.1001-5965.2005.01.025
    [40] DENG Z G, ZHANG W H, ZHENG J, et al. A high-temperature superconducting maglev ring test line developed in Chengdu, China[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(6): 1-8. DOI: 10.1109/TASC.2016.2555921
    [41] ZHOU D J, CUI C Y, ZHAO L F, et al. Running stability of a prototype vehicle in a side-suspended HTS maglev circular test track system[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(1): 1-7. DOI: 10.1109/TASC.2016.2635801
    [42] ZHOU D J, CUI C Y, ZHAO L F, et al. Static and dynamic stability of the guidance force in a side-suspended HTS maglev system[J]. Superconductor Science and Technology, 2017, 30(2): 025019. DOI: 10.1088/1361-6668/30/2/025019
    [43] 唐志共, 许晓斌, 杨彦广, 等. 高超声速风洞气动力试验技术进展[J]. 航空学报, 2015, 36(1): 86-97.

    TANG Z G, XU X B, YANG Y G, et al. Research progress on hypersonic wind tunnel aerodynamic testing techniques[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 86-97. (in Chinese)
    [44] 高超, 倪章松, 薛明, 郑博睿. 基于新型丝状电极等离子体激励器的前体涡控制(英文)[J]. 空气动力学学报, 2021, 39(2): 39-52.

    GAO C, NI Z S, XUE M, et al. Forebody vortex control with a wire-based DBD plasma actuator[J]. Acta Aerodynamica Sinica, 2021, 39(2): 39-52.
    [45] 雷强, 高杨, 王雄. MEMS壁面剪切应力传感器研究进展[J]. 2016, 42(7): 1-8.

    LEI Q, GAO Y, WANG X. The development progress of MEMS wall shear stress sensors[J]. China Measurement & Test, 2016, 42(7): 1-8. (in Chinese)
    [46] 贺德馨. 风洞天平[M]. 北京: 国防工业出版社, 2001.

    HE D X. Wind tunnel balance[M]. Beijing: National Defense Industry Press, 2001. (in Chinese)
    [47] 战培国. 2020版AIAA风洞天平校准标准浅析[J]. 标准科学, 2020(8): 99-102. doi: 10.3969/j.issn.1674-5698.2020.08.018

    ZHAN P G. Analysis on the 2020 edition of AIAA balance calibration standard[J]. Standard Science, 2020(8): 99-102. (in Chinese) doi: 10.3969/j.issn.1674-5698.2020.08.018
    [48] 解真东. 光纤珐珀传感器在空气/水动力学方面的应用研究[D]. 成都: 电子科技大学, 2019.

    XIE Z D. Application of fiber-optic fabry-perot sensor inaerodynamics/ hydrodynamic tests[D]. Chengdu: University of Electronic Science and Technology of China, 2019. (in Chinese)
    [49] 闵夫. 光纤Fabry-Perot应变计在风洞天平上的应用研究[D]. 绵阳: 中国空气动力研究与发展中心, 2015.

    MIN F. Application investigation of fiber optic fabry-perot strain gage on wind tunnel balance[D]. Mianyang: China Aerodynamics Research and Development Center, 2015 (in Chinese).
    [50] 赵莉, 邹满玲, 田静琳, 等. 国外低温内式应变天平技术研究进展[J]. 实验流体力学, 2016, 30(6): 1-9.

    ZHAO L, ZOU M L, TIAN J L, et al. Advances of research on internal cryogenic strain gauge balance abroad[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 1-9. (in Chinese)
    [51] 田正波, 王超. 杆式应变天平弧形断开槽结构特性研究[J]. 机械工程师, 2019(3): 87-89.

    TIAN Z B, WANG C. Research on structural characteristics of strain gauge balance with curved groove[J]. Mechanical Engineer, 2019(3): 87-89. (in Chinese)
    [52] 倪章松. 低速空气动力试验指挥教程[M]. 国防工业出版社, 2017.

    NI Z S. Low speed aerodynamic test command course [M]. National Defense Industry Press, 2017 (in Chinese) .
    [53] 左金, 陈植, 林俊, 等. PIV技术在超声速气流低热固相反应合成系统流场测量中的应用[J]. 山东化工, 2020, 49(18): 25-27, 30. doi: 10.3969/j.issn.1008-021X.2020.18.011

    ZUO J, CHEN Z, LIN J, et al. Applications of the PIV technology in measurement of the flow field of a solid phase room-temperature synthesis system based on supersonic gas-flow[J]. Shandong Chemical Industry, 2020, 49(18): 25-27, 30. (in Chinese) doi: 10.3969/j.issn.1008-021X.2020.18.011
    [54] 刘洪, 陈方, 励孝杰, 等. 高速复杂流动PIV技术研究实践与挑战[J]. 实验流体力学, 2016, 30(1): 28-42.

    LIU H, CHEN F, LI X J, et al. Practices and challenges on PIV technology in high speed complex flows[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1): 28-42. (in Chinese)
    [55] 陈建, 施圣贤, 刘应征. 复杂固体边界流场的三维 PIV 测试技术: 任意三维边界识别算法[J]. 实验流体力学, 2015, 29(2): 55-61, 67.

    CHEN J, SHI S X, LIU Y Z. Three-dimensional PIV measurement technique for complex solid boundary: arbitrary three-dimensional boundary recognition algorithm[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(2): 55-61, 67. (in Chinese)
    [56] 田于逵, 张璇, 沈雪, 等. 水下平板壁面剪应力MEMS测量研究进展[J]. 实验流体力学, 2017, 31(3): 82-87.

    TIAN Y K, ZHANG X, SHEN X, et al. Research on underwater flat plate wall shear stress measurement with MEMS sensors array[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(3): 82-87. (in Chinese)
    [57] 蔡广平. 流动显示在飞行试验中的应用[C]//全国流动显示学术交流会. 中国空气动力学会, 2006.
    [58] 邹镇, 尹东, 刘绪鹏, 等. 油流法流场显示技术研究及应用[J]. 计测技术, 2017, 37(z1): 350-352.
    [59] GORDEYEV S, VOROBIEV A, JUMPER E J, et al. Studies of flow topology around hemisphere at transonic speeds using time-resolved oil flow visualization[C]//Proc of the 54th AIAA Aerospace Sciences Meeting, San Diego, California, USA. Reston, Virginia: AIAA, 2016. doi: 10.2514/6.2016-1459
    [60] 李强, 江涛, 陈苏宇, 等. 激波风洞边界层转捩测量技术及应用[J]. 航空学报, 2019, 40(8): 122740.

    LI Q, JIANG T, CHEN S Y, et al. Measurement technique and application of boundary layer transition in shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122740. (in Chinese)
    [61] 钟海, 王猛, 王启. 边界层转捩红外探测试飞技术研究[J]. 红外技术, 2019, 41(8): 712-718.

    ZHONG H, WANG M, WANG Q. IR technique investigation of boundary layer transition measurement in flight tests[J]. Infrared Technology, 2019, 41(8): 712-718. (in Chinese)
    [62] 焦予秦, 赵越, 肖春生. 基于温敏光纤的边界层转捩测量技术研究[J]. 应用力学学报, 2019, 36(6): 1253-1259, 1515.

    JIAO Y Q, ZHAO Y, XIAO C S. Investigation on technique of boundary-layer transition measurement based on temperature-sensitive optical fiber[J]. Chinese Journal of Applied Mechanics, 2019, 36(6): 1253-1259, 1515. (in Chinese)
    [63] 张扣立, 常雨, 孔荣宗, 等. 温敏漆技术及其在边界层转捩测量中的应用[J]. 宇航学报, 2013, 34(6): 860-865. doi: 10.3873/j.issn.1000-1328.2013.06.017

    ZHANG K L, CHANG Y, KONG R Z, et al. Temperature sensitive paint technique and its application in measurement of boundary layer transition[J]. Journal of Astronautics, 2013, 34(6): 860-865. (in Chinese) doi: 10.3873/j.issn.1000-1328.2013.06.017
    [64] 杨京龙, 何枫, 谢峻石, 等. 纹影流动显示技术在超声速射流数值模拟验证中的应用[J]. 流体力学实验与测量, 2003, 17(3): 39-44.

    YANG J L, HE F, XIE J S, et al. Application of schlieren photograph visualization for validating the numerical simulation method of supersonic jet flow[J]. Experiments and Measurements in Fluid Mechanics, 2003, 17(3): 39-44. (in Chinese)
    [65] 宋鹤鹏, 陈曦, 刘鹏, 等. 背景纹影技术初探[J]. 科技与创新, 2020(10): 121-122, 124.
    [66] 谢凯. 单孔射流附壁流场特性的高速纹影研究[D]. 杭州: 浙江理工大学, 2015.

    XIE K. Research on the flow field characteristics of single hole jet flow of attaching to flat with high speed sehlieren method[D]. Hangzhou: Zhejiang Sci-Tech University, 2015. (in Chinese)
    [67] 刘愿, 钱战森, 向先宏. 外并联式TBCC进气道模态转换风洞试验及模型典型影响因素分析[J]. 实验流体力学, 2019, 33(5): 18-27.

    LIU Y, QIAN Z S, XIANG X H. An analysis on typical influencing factors of wind tunnel experimental model of over-under TBCC inlet mode transition[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 18-27. (in Chinese)
    [68] 战培国. 动态压敏漆技术研究综述[J]. 飞航导弹, 2015(7): 55-59.
    [69] ROOZEBOOM N, POWELL J, BAERNY J, et al. Development of unsteady pressure-sensitive paint application on NASA space launch system[C]//Proc of the AIAA Aviation 2019 Forum, Dallas, Texas. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-3502
    [70] 陈正武, 王勋年, 李征初, 等. 基于声学风洞的麦克风阵列测试技术应用研究[J]. 实验流体力学, 2012, 26(3): 84-90. doi: 10.3969/j.issn.1672-9897.2012.03.016

    CHEN Z W, WANG X N, LI Z C, et al. Application investigation of microphone array measuring and testing technique in anechoic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3): 84-90. (in Chinese) doi: 10.3969/j.issn.1672-9897.2012.03.016
    [71] 柳明, 张捷, 高阳, 等. 隧道内高速列车车内噪声特性及声源识别试验分析[J]. 机械工程学报, 2020, 56(8): 207-215. doi: 10.3901/JME.2020.08.207

    LIU M, ZHANG J, GAO Y, et al. Experimental analysis on characteristics and source identification of interior noise of a high-speed train running in a tunnel[J]. Journal of Mechanical Engineering, 2020, 56(8): 207-215. (in Chinese) doi: 10.3901/JME.2020.08.207
    [72] 倪章松. 空气动力试验指挥概论[M]. 北京: 国防工业出版社, 2018.

    NI Z S. Introduction to Aerodynamic Test Command [M]. Beijing: National Defense Industry Press, 2018. (in Chinese)
    [73] 田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6(1): 1-9. doi: 10.3321/j.issn:1671-1637.2006.01.001

    TIAN H Q. Study evolvement of train aerodynamics in China[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 1-9. (in Chinese) doi: 10.3321/j.issn:1671-1637.2006.01.001
    [74] 夏超, 单希壮, 杨志刚, 等. 风洞地面效应对高速列车空气动力学特性的影响[J]. 铁道学报, 2015, 37(4): 8-16.

    YANG G W, WEI Y J, ZHAO G L
    [75] 李田, 戴志远, 刘加利, 等. 中国高速列车气动减阻优化综述[J]. 交通运输工程学报, 2021, 21(1): 59-80.

    LI T, DAI Z Y, LIU J L, et al. Review on aerodynamic drag reduction optimization of high-speed trains in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 59-80. (in Chinese)
    [76] 朱海燕, 曾庆涛, 王宇豪, 等. 高速列车动力学性能研究进展[J]. 交通运输工程学报, 2021, 21(3): 57-92.

    ZHU H Y, ZENG Q T, WANG Y H, et al. Research progress on dynamics performance of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 57-92. (in Chinese)
    [77] 田红旗. 中国高速轨道交通空气动力学研究进展及发展思考[J]. 中国工程科学, 2015, 17(4): 30-41. doi: 10.3969/j.issn.1009-1742.2015.04.004

    TIAN H Q. Development of research on aerodynamics of high-speed rails in China[J]. Engineering Sciences, 2015, 17(4): 30-41. (in Chinese) doi: 10.3969/j.issn.1009-1742.2015.04.004
    [78] LI W H, LIU T H, ZHANG J, et al. Aerodynamic study of two opposing moving trains in a tunnel based on different nose contours[J]. Journal of Applied Fluid Mechanics, 2017, 10(5): 1375-1386. DOI: 10.18869/acadpub.jafm.73.242.27738
    [79] CHU C R, CHIEN S Y, WANG C Y, et al. Numerical simulation of two trains intersecting in a tunnel[J]. Tunnelling and Underground Space Technology, 2014, 42: 161-174. DOI: 10.1016/j.tust.2014.02.013
    [80] CHOI J K, KIM K H. Effects of nose shape and tunnel cross-sectional area on aerodynamic drag of train traveling in tunnels[J]. Tunnelling and Underground Space Technology, 2014, 41: 62-73. DOI: 10.1016/j.tust.2013.11.012
    [81] 杨国伟, 魏宇杰, 赵桂林, 等. 高速列车的关键力学问题[J]. 力学进展, 2015, 45(0): 217-460.

    YANG G W, WEI Y J, ZHAO G L, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45(0): 217-460. (in Chinese)
    [82] 易仕和, 陈植, 朱杨柱, 等. (高)超声速流动试验技术及研究进展[J]. 航空学报, 2015, 36(1): 98-119.

    YI S H, CHEN Z, ZHU Y Z, et al. Progress on experimental techniques and studies of hypersonic/supersonic flows[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 98-119. (in Chinese)
    [83] 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311-337. doi: 10.7638/kqdlxxb-2017.0030

    CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-337. (in Chinese) doi: 10.7638/kqdlxxb-2017.0030
    [84] 寻奕源, 屈秋林, 刘沛清. 翼型亚/跨/超声速地面效应数值研究[C]//第十一届全国流体力学学术会议论文集. 深圳, 2020: 639.
    [85] 徐悦, 韩忠华, 尤延铖, 等. 新一代绿色超声速民机的发展现状与挑战[J]. 科学通报, 2020, 65(Z1): 127-133.

    XU Y, HAN Z H, YOU Y C, et al. Progress and challenges of next generation green supersonic civil aircraft[J]. Chinese Science Bulletin, 2020, 65(Z1): 127-133. (in Chinese)
    [86] PARK M A, AFTOSMIS M J, CAMPBELL R L, et al. Summary of the 2008 NASA fundamental aeronautics program sonic boom prediction workshop[J]. Journal of Aircraft, 2014, 51(3): 987-1001. DOI: 10.2514/1.c032589
    [87] 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8): 2507-2528.

    ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2507-2528. (in Chinese)
    [88] NASA/JPL-Caltech/Ames. Wind tunnel testing perseverance's parachute [DB/OL]. 2020-05-18.https://images.nasa.gov/details-PIA23916.
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  820
  • HTML全文浏览量:  203
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-15
  • 修回日期:  2021-10-14
  • 录用日期:  2021-10-20
  • 网络出版日期:  2021-10-25
  • 刊出日期:  2021-11-05

目录

    /

    返回文章
    返回