留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水平轴风力机主动尾流控制综述

宗豪华 孙恩博

宗豪华, 孙恩博. 水平轴风力机主动尾流控制综述[J]. 空气动力学学报, 2022, 40(4): 51−68 doi: 10.7638/kqdlxxb-2021.0249
引用本文: 宗豪华, 孙恩博. 水平轴风力机主动尾流控制综述[J]. 空气动力学学报, 2022, 40(4): 51−68 doi: 10.7638/kqdlxxb-2021.0249
ZONG H H, SUN E B. Reivew of active wake control for horizontal-axis wind turbines[J]. Acta Aerodynamica Sinica, 2022, 40(4): 51−68 doi: 10.7638/kqdlxxb-2021.0249
Citation: ZONG H H, SUN E B. Reivew of active wake control for horizontal-axis wind turbines[J]. Acta Aerodynamica Sinica, 2022, 40(4): 51−68 doi: 10.7638/kqdlxxb-2021.0249

水平轴风力机主动尾流控制综述

doi: 10.7638/kqdlxxb-2021.0249
基金项目: 国家自然科学基金青年科学基金项目(12002384)
详细信息
    作者简介:

    宗豪华*(1992-),男,河南汝州人,讲师,研究方向:等离子体流动控制,风力机主动尾流控制. E-mail:haohua_zong@163.com

  • 中图分类号: TM315

Reivew of active wake control for horizontal-axis wind turbines

  • 摘要: 对于大型风电场而言,由尾流干扰引起的产能损失最高可达30%~40%。主动尾流控制(AWC)技术通过上游风力机的偏航来诱导尾流侧向偏转,以减弱对后排风力机的尾流干扰、增加风电场的总产能,应用前景极其广阔。本文从无偏航风力机尾流模型、偏航风力机尾流模型、多风力机尾流叠加方法和风电场产能优化四个角度,综述了AWC技术在过去近20年的研究进展,并对该技术走向工程应用中所亟需解决的问题进行了展望。整体来看,该项技术已经基本成熟。研究人员从最初的理论、仿真和风洞实验研究,走向了实际风电场的效果验证。在理论预测层面,高斯尾流亏损模型、基于旋涡诱导横向速度的一次和二次尾流偏转模型、具备动量守恒特性的尾流叠加方法正在成为风电场产能预测的标配。实际工程应用层面,风力机间距、排数、湍流度、大气边界层热稳定性、风向和风速变化均会影响AWC所带来的产能收益;典型条件下,应用AWC技术后,全尾流干扰风向上的风电场产能可提高约5%~15%,各个风向平均后的年均收益约为1%~3%。
  • 图  1  全球风能累计总装机容量(左)和年增长率(右)的变化趋势[4]

    Figure  1.  Annual variations of the global cumulative wind power installed capacity (left) and its growth rate (right)[4]

    图  2  2019年各风能大国装机容量占世界总装机容量比重[4]

    Figure  2.  Top eight wind power countries and their corresponding percentages[4]

    图  3  Horns Rev一期风电场总体布局 (θ代表风向)[2]

    Figure  3.  The planform of Horns Rev-1 Wind Farm (θ denotes the wind direction)[2]

    图  4  Horns Rev一期风电场内部的风力机尾流干扰现象[10]

    Figure  4.  Full wake interaction of wind turbines in Horns Rev-1 wind farm visualized by clouds and fog[10]

    图  5  用于风电场产能优化的主动偏航控制技术原理示意图

    Figure  5.  A sketch of the active yaw control technique for wind farm power optimization

    图  6  主动偏航技术研究理论框架

    Figure  6.  Theoretical framework for active yaw control research

    图  7  风力机的上游诱导区、近场尾流区、远场尾流区示意图[2]

    Figure  7.  Sketch of the induction region, near-wake, and far-wake in wind turbine flow[2]

    图  8  大气边界层中典型风力机尾流流场的LES结果[44]

    Figure  8.  LES results of the wind turbine wake flow in an atmospheric boundary layer[44]

    图  9  Jensen尾流模型示意图

    Figure  9.  Sketch of the Jensen’s wake model

    图  10  EPFL高斯尾流模型示意图

    Figure  10.  Sketch of EPFL’s Gaussian wake model

    图  11  不同解析模型所预测的尾流速度亏损剖面[39]

    Figure  11.  Wake velocity deficit profiles predicted by different analytical models[39]

    图  12  采用体视粒子图像测速仪(SPIV)测量得到的偏航风力机尾流演化(β = 30°)[53]

    Figure  12.  Streamwise evolution of the wake velocity profiles behind a yawed wind turbine (β = 30°)[53]

    图  13  非偏航与偏航风力机尾流中心轨迹对比[54]

    Figure  13.  Comparison of the wake center trajectories between yawed and non-yawed wind turbines[54]

    图  14  偏航风力机尾流速度亏损剖面与偏航多孔阻力圆盘尾流速度亏损剖面对比[53,55]

    Figure  14.  Comparison of the wake deficit velocity profiles pertaining to a yawed wind turbine and a porous drag disk [53,55]

    图  15  偏航风力机尾流中流向涡的演化过程[53]

    Figure  15.  Spatial evolution of streamwise vortices behind a yawed wind turbine[53]

    图  16  Jiménez尾流偏转模型推导示意图

    Figure  16.  Sketch of Jiménez wake deflection model

    图  17  Bastankhah尾流偏转模型推导示意图[54]

    Figure  17.  Sketch of Bastankhah wake deflection model[54]

    图  18  不同尾流偏转模型预测结果对比[53]

    Figure  18.  Comparison of the wake deflections predicated by different analytical models[53]

    图  19  风电场内多风力机尾流干扰

    Figure  19.  Multiple wind turbine wake interactions in a wind farm

    图  20  尾流速度亏损叠加示意图[68]

    Figure  20.  Sketch of wake deficit superposition[68]

    图  21  基于不同尾流速度亏损叠加方法获得的速度云图[68]

    Figure  21.  Wake velocity contours obtained with different wake deficit superposition methods[68]

    图  22  不同尾流叠加方法预测的Horns Rev风电场各排风力机产能[68]

    Figure  22.  Normalized power production of different wind turbine rows in Horns Rev wind farm predicted by the five wake superposition methods[68]

    图  23  上游风力机偏航所诱导的“二次尾流偏转效应”[56,68,70]

    Figure  23.  The secondary wake steering effect induced by an upstream yawed wind turbine[56,68,70]

    图  24  最大净能量收益所对应的偏航角序列[18]

    Figure  24.  Optimal yaw angle distribution pertaining to the maximum power gain[18]

    图  25  风力机排数对风电场产能的影响 [18]

    Figure  25.  Impact of turbine row number on the wind farm power production [18]

    图  26  加拿大Alberta风电场[17]

    Figure  26.  Alberta wind farm in Canada[17]

    图  27  基于GCH模型对圆形风电场优化后的流场结果[73]

    Figure  27.  Flow field of a circular wind farm after being optimized by GCH model[73]

    图  28  Horns-Rev风电场在θ = 274°时的最佳偏航角和功率分布[18]

    Figure  28.  Optimal yaw angle and power distributions in Horns-Rev wind farm at a wind direction of θ = 274°[18]

    表  1  非偏航风力机尾流扩张模型对比

    Table  1.   Comparisons of wake expansion models for non-yawed wind turbines

    AttributesJensen
    Model[41]
    Frandsen
    Model[42]
    EPFL
    Model[39]
    Year of proposal198320062014
    Wake width expressionLinearNonlinearLinear
    Wake velocity profileSquareSquareGaussian
    Momentum conservationNoNoYes
    下载: 导出CSV

    表  2  偏航风力机尾流偏转模型对比

    Table  2.   Comparison of wake deflection models for yawed wind turbines

    AttributesJiménez Model[58]Bastankhah Model[54]Shapiro Model[59]
    Year of proposal201020162018
    Near-wake applicabilityNoYesYes
    ExpressionSimpleComplexSimple
    AccuracyLowHighHigh
    下载: 导出CSV

    表  3  尾流速度亏损叠加方法小结

    Table  3.   A list of wake deficit superposition methods

    MethodAuthors (Year)Mathematical expression
    ALissaman (1979)[64]$\bar U = {U_\infty } - \displaystyle\sum\limits_i {({U_\infty } - \bar u_{}^i)}$
    BKatic et al. (1987)[65]$\bar U = {U_\infty } - \sqrt {\displaystyle\sum\limits_i { { {({U_\infty } - \bar u_{}^i)}^2} } }$
    CNiayifar et al. (2016)[66]$\bar U = {U_\infty } - \displaystyle\sum\limits_i {(u_h^i - \bar u_{}^i)}$
    DVoutsinas et al. (1990)[67]$\bar U = {U_\infty } - \sqrt {\displaystyle\sum\limits_i { { {(u_h^i - \bar u_{}^i)}^2} } }$
    EZong et al. (2020)[68]$\bar U = {U_\infty } - \displaystyle\sum\limits_i {\dfrac{ {u_c^i(x)} }{ { {U_c}(x)} }({U_\infty } - \bar u_{}^i)}$
    下载: 导出CSV
  • [1] IEA. Global Energy Review 2021. Internatioanl Energy Agency 2021. Internatioanl Energy Agency 2021[EB/OL]. https://www.iea.org/reports/global-energy-review-2021
    [2] PORTÉ-AGEL F, BASTANKHAH M, SHAMSODDIN S. Wind-turbine and wind-farm flows: a review[J]. Boundary-Layer Meteorology, 2020, 174(1): 1-59. DOI: 10.1007/s10546-019-00473-0
    [3] RITCHIE H, ROSER M. Energy[EB/OL]. Published online at OurWorldInData. org. , 2021. https://ourworldindata.org/energy
    [4] JAGANMOHAN M. Installed wind power capacity worldwide 2001-2020[EB/OL]. Published online at www. statista. com, 2021. https://www.statista.com/statistics/268363/installed-wind-power-capacity-worldwide/
    [5] 黎作武, 贺德馨. 风能工程中流体力学问题的研究现状与进展[J]. 力学进展, 2013, 43(5): 472-525.

    LI Z W, HE D X. Reviews of fluid dynamics researches in wind energy engineering[J]. Advances in Mechanics, 2013, 43(5): 472-525. (in Chinese)
    [6] STEVENS R J A M, MENEVEAU C. Flow structure and turbulence in wind farms[J]. Annual Review of Fluid Mechanics, 2017, 49(1): 311-339. DOI: 10.1146/annurev-fluid-010816-060206
    [7] BARTHELMIE R J, HANSEN K, FRANDSEN S T, et al. Modelling and measuring flow and wind turbine wakes in large wind farms offshore[J]. Wind Energy, 2009, 12(5): 431-444. DOI: 10.1002/we.348
    [8] BARTHELMIE R J, PRYOR S C, FRANDSEN S T, et al. Quantifying the impact of wind turbine wakes on power output at offshore wind farms[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(8): 1302-1317. DOI: 10.1175/2010jtecha1398.1
    [9] BARTHELMIE R J, JENSEN L E. Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm[J]. Wind Energy, 2010, 13(6): 573-586. DOI: 10.1002/we.408
    [10] HASAGER C, RASMUSSEN L, PEÑA A, et al. Wind farm wake: the horns rev photo case[J]. Energies, 2013, 6(2): 696-716. DOI: 10.3390/en6020696
    [11] MEDICI D. Experimental studies of wind turbine wakes: power optimisation and meandering[D]. KTH, 2005.
    [12] ADARAMOLA M S, KROGSTAD P Å. Experimental investigation of wake effects on wind turbine performance[J]. Renewable Energy, 2011, 36(8): 2078-2086. DOI: 10.1016/j.renene.2011.01.024
    [13] WAGENAAR J W, MACHIELSE L A H, SCHEPERS J G. Controlling wind in ECN’s scaled wind farm[C]// EWEA 2012. https://www.researchgate.net/publication/264851319_Controlling_Wind_in_ECN's_Scaled_Wind_Farm
    [14] DAR Z, KAR K, SAHNI O, et al. Windfarm power optimization using yaw angle control[J]. IEEE Transactions on Sustainable Energy, 2017, 8(1): 104-116. DOI: 10.1109/TSTE.2016.2585883
    [15] WANG J, BOTTASSO C L, CAMPAGNOLO F. Wake redirection: comparison of analytical, numerical and experimental models[C]//Journal of Physics: Conference Series. IOP Publishing, 2016, 753(3): 032064. https://re.public.polimi.it/retrieve/handle/11311/1007400/163974/WANGJ01-16.pdf doi: 10.1088/1742-6596/753/3/032064
    [16] CAMPAGNOLO F, PETROVIĆ V, BOTTASSO C L, et al. Wind tunnel testing of wake control strategies[C]//2016 American Control Conference (ACC), Boston, MA, USA. IEEE, 2016: 513-518. doi: 10.1109/ACC.2016.7524965
    [17] HOWLAND M F, LELE S K, DABIRI J O. Wind farm power optimization through wake steering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(29): 14495-14500. https://www.pnas.org/content/pnas/116/29/14495.full.pdf doi: 10.1073/pnas.1903680116
    [18] BASTANKHAH M, PORTÉ-AGEL F. Wind farm power optimization via yaw angle control: a wind tunnel study[J]. Journal of Renewable and Sustainable Energy, 2019, 11(2): 023301. DOI: 10.1063/1.5077038
    [19] ZONG H H, PORTÉ-AGEL F. Experimental investigation and analytical modelling of active yaw control for wind farm power optimization[J]. Renewable Energy, 2021, 170: 1228-1244. DOI: 10.1016/j.renene.2021.02.059
    [20] NASH R, NOURI R, VASEL-BE-HAGH A. Wind turbine wake control strategies: a review and concept proposal[J]. Energy Conversion and Management, 2021, 245: 114581. DOI: 10.1016/j.enconman.2021.114581
    [21] NANOS E M, BOTTASSO C L, MANOLAS D I, et al. Vertical wake deflection for floating wind turbines by differential ballast control[J]. Wind Energy Science Discussions, 2021(Accepted). https://www.researchgate.net/publication/354010920_Vertical_wake_deflection_for_floating_wind_turbines_by_differential_ballast_control doi: 10.5194/wes-2021-79
    [22] NANOS E M, LETIZIA S, CLEMENTE D J B, et al. Vertical wake deflection for offshore floating wind turbines by differential ballast control[J]. Journal of Physics: Conference Series, 2020, 1618: 022047. DOI: 10.1088/1742-6596/1618/2/022047
    [23] KIMURA K, TANABE Y, MATSUO Y, et al. Forced wake meandering for rapid recovery of velocity deficits in a wind turbine wake[C]//AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: AIAA, 2019: 2083. doi: 10.2514/6.2019-2083
    [24] WANG J, FOLEY S, NANOS E M, et al. Numerical and experimental study of wake redirection techniques in a boundary layer wind tunnel[J]. Journal of Physics: Conference Series, 2017, 854: 012048. DOI: 10.1088/1742-6596/854/1/012048
    [25] FLEMING P A, GEBRAAD P M O, LEE S, et al. Evaluating techniques for redirecting turbine wakes using SOWFA[J]. Renewable Energy, 2014, 70: 211-218. DOI: 10.1016/j.renene.2014.02.015
    [26] FLEMING P, GEBRAAD P M O, LEE S, et al. Simulation comparison of wake mitigation control strategies for a two-turbine case[J]. Wind Energy, 2015, 18(12): 2135-2143. DOI: 10.1002/we.1810
    [27] FLEMING P, ANNONI J, SHAH J J, et al. Field test of wake steering at an offshore wind farm[J]. Wind Energy Science, 2017, 2(1): 229-239. DOI: 10.5194/wes-2-229-2017
    [28] FLEMING P A, NING A, GEBRAAD P M O, et al. Wind plant system engineering through optimization of layout and yaw control[J]. Wind Energy, 2016, 19(2): 329-344.https://onlinelibrary.wiley.com/doi/am-pdf/ 10.1002/we.1836 DOI: 10.1002/we.1836
    [29] BENSASON D, SIMLEY E, ROBERTS O, et al. Evaluation of the potential for wake steering for US land-based wind power plants[J]. Journal of Renewable and Sustainable Energy, 2021, 13(3): 033303. DOI: 10.1063/5.0039325
    [30] SONG D R, YANG J, FAN X Y, et al. Maximum power extraction for wind turbines through a novel yaw control solution using predicted wind directions[J]. Energy Conversion and Management, 2018, 157: 587-599. DOI: 10.1016/j.enconman.2017.12.019
    [31] SØRENSEN J N. Aerodynamic aspects of wind energy conversion[J]. Annual Review of Fluid Mechanics, 2011, 43(1): 427-448. DOI: 10.1146/annurev-fluid-122109-160801
    [32] VERMEER L J, SØRENSEN J N, CRESPO A. Wind turbine wake aerodynamics[J]. Progress in Aerospace Sciences, 2003, 39(6-7): 467-510. DOI: 10.1016/S0376-0421(03)00078-2
    [33] MEDICI D, IVANELL S, DAHLBERG J Å, et al. The upstream flow of a wind turbine: blockage effect[J]. Wind Energy, 2011, 14(5): 691-697. DOI: 10.1002/we.451
    [34] BASTANKHAH M, PORTÉ-AGEL F. Wind tunnel study of the wind turbine interaction with a boundary-layer flow: Upwind region, turbine performance, and wake region[J]. Physics of Fluids, 2017, 29(6): 065105. DOI: 10.1063/1.4984078
    [35] DASARI T, WU Y, LIU Y, et al. Near-wake behaviour of a utility-scale wind turbine[J]. Journal of Fluid Mechanics, 2019, 859: 204-246. DOI: 10.1017/jfm.2018.779
    [36] HONG J R, TOLOUI M, CHAMORRO L P, et al. Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine[J]. Nature Communications, 2014, 5: 4216. DOI: 10.1038/ncomms5216
    [37] CHAMORRO L P, PORTÉ-AGEL F. Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: a wind-tunnel study[J]. Boundary-Layer Meteorology, 2010, 136(3): 515-533. DOI: 10.1007/s10546-010-9512-1
    [38] POPE S B. Turbulent flows[J]. Measurement Science and Technology, 2001, 12(11). DOI: 10.1088/0957-0233/12/11/705
    [39] BASTANKHAH M, PORTÉ-AGEL F. A new analytical model for wind-turbine wakes[J]. Renewable Energy, 2014, 70: 116-123. DOI: 10.1016/j.renene.2014.01.002
    [40] AINSLIE J F. Calculating the flowfield in the wake of wind turbines[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 27(1-3): 213-224. DOI: 10.1016/0167-6105(88)90037-2
    [41] FANG J N, PORTÉ-AGEL F. Large-eddy simulation of very-large-scale motions in the neutrally stratified atmospheric boundary layer[J]. Boundary-Layer Meteorology, 2015, 155(3): 397-416. DOI: 10.1007/s10546-015-0006-z
    [42] LARSEN T J, MADSEN H A, LARSEN G C, et al. Validation of the dynamic wake meander model for loads and power production in the Egmond aan Zee wind farm[J]. Wind Energy, 2013, 16(4): 605-624. DOI: 10.1002/we.1563
    [43] ESPAÑA G, AUBRUN S, LOYER S, et al. Wind tunnel study of the wake meandering downstream of a modelled wind turbine as an effect of large scale turbulent eddies[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 101: 24-33. DOI: 10.1016/j.jweia.2011.10.011
    [44] WU Y T, PORTÉ-AGEL F. Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations[J]. Boundary-Layer Meteorology, 2011, 138(3): 345-366. DOI: 10.1007/s10546-010-9569-x
    [45] JENSEN N O. A note on wind turbine interaction[R]. Riso-M-2411. Risoe National Laboratory, Roskilde, Denmark, 1983: 16. https://backend.orbit.dtu.dk/ws/portalfiles/portal/55857682/ris_m_2411.pdf
    [46] FRANDSEN S, BARTHELMIE R, PRYOR S, et al. Analytical modelling of wind speed deficit in large offshore wind farms[J]. Wind Energy, 2006, 9(1‐2): 39-53.https://onlinelibrary.wiley.com/doi/epdf/ 10.1002/we.189 DOI: 10.1002/we.189
    [47] HANSEN M. Aerodynamics of wind turbines[M]. Routledge, 2015. DOI: 10.4324/9781315769981
    [48] SHAMSODDIN S, PORTÉ-AGEL F. A model for the effect of pressure gradient on turbulent axisymmetric wakes[J]. Journal of Fluid Mechanics, 2018, 837: R3. DOI: 10.1017/jfm.2017.864
    [49] ABKAR M, SØRENSEN J, PORTÉ-AGEL F. An analytical model for the effect of vertical wind veer on wind turbine wakes[J]. Energies, 2018, 11(7): 1838. DOI: 10.3390/en11071838
    [50] BODINI N, ZARDI D, LUNDQUIST J K. Three-dimensional structure of wind turbine wakes as measured by scanning lidar[J]. Atmospheric Measurement Techniques, 2017, 10(8): 2881-2896. DOI: 10.5194/amt-10-2881-2017
    [51] ARCHER C L, VASEL-BE-HAGH A, YAN C, et al. Review and evaluation of wake loss models for wind energy applications[J]. Applied Energy, 2018, 226: 1187-1207. DOI: 10.1016/j.apenergy.2018.05.085
    [52] FLEMING P A, SCHOLBROCK A K, JEHU A, et al. Field-test results using a nacelle-mounted lidar for improving wind turbine power capture by reducing yaw misalignment[J]. Journal of Physics: Conference Series, 2014, 524: 012002. DOI: 10.1088/1742-6596/524/1/012002
    [53] ZONG H H, PORTÉ-AGEL F. A point vortex transportation model for yawed wind turbine wakes[J]. Journal of Fluid Mechanics, 2020, 890: A8. DOI: 10.1017/jfm.2020.123
    [54] BASTANKHAH M, PORTÉ-AGEL F. Experimental and theoretical study of wind turbine wakes in yawed conditions[J]. Journal of Fluid Mechanics, 2016, 806: 506-541. DOI: 10.1017/jfm.2016.595
    [55] HOWLAND M F, BOSSUYT J, MARTÍNEZ-TOSSAS L A, et al. Wake structure in actuator disk models of wind turbines in yaw under uniform inflow conditions[J]. Journal of Renewable and Sustainable Energy, 2016, 8(4): 043301. DOI: 10.1063/1.4955091
    [56] MARTÍNEZ-TOSSAS L A, ANNONI J, FLEMING P A, et al. The aerodynamics of the curled wake: a simplified model in view of flow control[J]. Wind Energy Science, 2019, 4(1): 127-138. DOI: 10.5194/wes-4-127-2019
    [57] MARTÍNEZ-TOSSAS L A, KING J, QUON E, et al. The curled wake model: a three-dimensional and extremely fast steady-state wake solver for wind plant flows[J]. Wind Energy Science, 2021, 6(2): 555-570. DOI: 10.5194/wes-6-555-2021
    [58] JIMÉNEZ Á, CRESPO A, MIGOYA E. Application of a LES technique to characterize the wake deflection of a wind turbine in yaw[J]. Wind Energy, 2010, 13(6): 559-572. DOI: 10.1002/we.380
    [59] SHAPIRO C R, GAYME D F, MENEVEAU C. Modelling yawed wind turbine wakes: a lifting line approach[J]. Journal of Fluid Mechanics, 2018, 841: R1. DOI: 10.1017/jfm.2018.75
    [60] QIAN G W, ISHIHARA T. A new analytical wake model for yawed wind turbines[J]. Energies, 2018, 11(3): 665. DOI: 10.3390/en11030665
    [61] BRUGGER P, DEBNATH M, SCHOLBROCK A, et al. Lidar measurements of yawed-wind-turbine wakes: characterization and validation of analytical models[J]. Wind Energy Science, 2020, 5(4): 1253-1272. DOI: 10.5194/wes-5-1253-2020
    [62] BRANLARD E, GAUNAA M. Cylindrical vortex wake model: skewed cylinder, application to yawed or tilted rotors[J]. Wind Energy, 2016, 19(2): 345-358. DOI: 10.1002/we.1838[LinkOut]
    [63] VOLLMER L, STEINFELD G, HEINEMANN D, et al. Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study[J]. Wind Energy Science, 2016, 1(2): 129-141. DOI: 10.5194/wes-1-129-2016
    [64] LISSAMAN P B S. Energy effectiveness of arbitrary arrays of wind turbines[J]. Journal of Energy, 1979, 3(6): 323-328. DOI: 10.2514/3.62441
    [65] KATIC I, HØJSTRUP J, JENSEN N O. A simple model for cluster efficiency[C]//European wind energy association conference and exhibition. 1986, 1: 407-410. https://backend.orbit.dtu.dk/ws/portalfiles/portal/106427419/A_Simple_Model_for_Cluster_Efficiency_EWEC_86_.pdf
    [66] NIAYIFAR A, PORTÉ-AGEL F. Analytical modeling of wind farms: a new approach for power prediction[J]. Energies, 2016, 9(9): 741. DOI: 10.3390/en9090741
    [67] VOUTSINAS S, RADOS K, ZERVOS A. On the analysis of wake effects in wind parks[J]. Wind Engineering, 1990, 14(4): 204-219. https://www.jstor.org/stable/43749429
    [68] ZONG H H, PORTÉ-AGEL F. A momentum-conserving wake superposition method for wind farm power prediction[J]. Journal of Fluid Mechanics, 2020, 889: A8. DOI: 10.1017/jfm.2020.77
    [69] BASTANKHAH M, PORTÉ-AGEL F. A new miniature wind turbine for wind tunnel experiments. part I: design and performance[J]. Energies, 2017, 10(7): 908. DOI: 10.3390/en10070908
    [70] FLEMING P, ANNONI J, CHURCHFIELD M, et al. A simulation study demonstrating the importance of large-scale trailing vortices in wake steering[J]. Wind Energy Science, 2018, 3(1): 243-255. DOI: 10.5194/wes-3-243-2018
    [71] FLEMING P, KING J, DYKES K, et al. Initial results from a field campaign of wake steering applied at a commercial wind farm – Part 1[J]. Wind Energy Science, 2019, 4(2): 273-285. DOI: 10.5194/wes-4-273-2019
    [72] FLEMING P, KING J, SIMLEY E, et al. Continued results from a field campaign of wake steering applied at a commercial wind farm – Part 2[J]. Wind Energy Science, 2020, 5(3): 945-958. DOI: 10.5194/wes-5-945-2020
    [73] KING J, FLEMING P, KING R, et al. Control-oriented model for secondary effects of wake steering[J]. Wind Energy Science, 2021, 6(3): 701-714. DOI: 10.5194/wes-6-701-2021
    [74] KNUDSEN T, BAK T, SVENSTRUP M. Survey of wind farm control—power and fatigue optimization[J]. Wind Energy, 2015, 18(8): 1333-1351. DOI: 10.1002/we.1760
    [75] PARK J, LAW K H. A data-driven, cooperative wind farm control to maximize the total power production[J]. Applied Energy, 2016, 165: 151-165. DOI: 10.1016/j.apenergy.2015.11.064
    [76] KIRCHNER-BOSSI N, PORTÉ-AGEL F. Wind farm area shape optimization using newly developed multi-objective evolutionary algorithms[J]. Energies, 2021, 14(14): 4185. DOI: 10.3390/en14144185
    [77] GEBRAAD P M O, VAN WINGERDEN J W. Maximum power‐point tracking control for wind farms[J]. Wind Energy, 2015, 18(3): 429-447. DOI: 10.1002/we.1706
    [78] GEBRAAD P, THOMAS J J, NING A, et al. Maximization of the annual energy production of wind power plants by optimization of layout and yaw-based wake control[J]. Wind Energy, 2017, 20(1): 97-107. DOI: 10.1002/we.1993
    [79] BROGNA R, FENG J, SØRENSEN J N, et al. A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain[J]. Applied Energy, 2020, 259: 114189. DOI: 10.1016/j.apenergy.2019.114189
    [80] KIRCHNER-BOSSI N, PORTÉ-AGEL F. Realistic wind farm layout optimization through genetic algorithms using a Gaussian wake model[J]. Energies, 2018, 11(12): 3268. DOI: 10.3390/en11123268
    [81] STANFEL P, JOHNSON K, BAY C J, et al. Proof-of-concept of a reinforcement learning framework for wind farm energy capture maximization in time-varying wind[J]. Journal of Renewable and Sustainable Energy, 2021, 13(4): 043305. DOI: 10.1063/5.0043091
    [82] SONG D R, FAN X Y, YANG J, et al. Power extraction efficiency optimization of horizontal-axis wind turbines through optimizing control parameters of yaw control systems using an intelligent method[J]. Applied Energy, 2018, 224: 267-279. DOI: 10.1016/j.apenergy.2018.04.114
    [83] BERNARDONI F, CIRI U, ROTEA M A, et al. Identification of wind turbine clusters for effective real time yaw control optimization[J]. Journal of Renewable and Sustainable Energy, 2021, 13(4): 043301. DOI: 10.1063/5.0036640
    [84] OZBAY A, TIAN W, YANG Z F, et al. Interference of wind turbines with different yaw angles of the upstream wind turbine[C]//42nd AIAA Fluid Dynamics Conference and Exhibit, New Orleans, Louisiana. Reston, Virginia: AIAA, 2012. doi: 10.2514/6.2012-2719
    [85] HANSEN K S, BARTHELMIE R J, JENSEN L E, et al. The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm[J]. Wind Energy, 2012, 15(1): 183-196. DOI: 10.1002/we.512
    [86] CAMPAGNOLO F, PETROVIĆ V, SCHREIBER J, et al. Wind tunnel testing of a closed-loop wake deflection controller for wind farm power maximization[J]. Journal of Physics: Conference Series, 2016, 753: 032006. https://iopscience.iop.org/article/ 10.1088/1742-6596/753/3/032006/pdf doi: 10.1088/1742-6596/753/3/032006
    [87] LIN M, PORTÉ-AGEL F. Power maximization and fatigue-load mitigation in a wind-turbine array by active yaw control: an LES study[J]. Journal of Physics: Conference Series, 2020, 1618: 042036. DOI: 10.1088/1742-6596/1618/4/042036
    [88] FLEMING P, ANNONI J, SCHOLBROCK A, et al. Full-scale field test of wake steering[J]. Journal of Physics: Conference Series, 2017, 854: 012013. DOI: 10.1088/1742-6596/854/1/012013
    [89] GEBRAAD P M O, TEEUWISSE F W, VAN WINGERDEN J W, et al. Wind plant power optimization through yaw control using a parametric model for wake effects—a CFD simulation study[J]. Wind Energy, 2016, 19(1): 95-114. DOI: 10.1002/we.1822
    [90] ROTT A, DOEKEMEIJER B, SEIFERT J K, et al. Robust active wake control in consideration of wind direction variability and uncertainty[J]. Wind Energy Science, 2018, 3(2): 869-882. DOI: 10.5194/wes-3-869-2018
    [91] MENDEZ REYES H, KANEV S, DOEKEMEIJER B, et al. Validation of a lookup-table approach to modeling turbine fatigue loads in wind farms under active wake control[J]. Wind Energy Science, 2019, 4(4): 549-561. DOI: 10.5194/wes-4-549-2019
    [92] KANEV S. Dynamic wake steering and its impact on wind farm power production and yaw actuator duty[J]. Renewable Energy, 2020, 146: 9-15. DOI: 10.1016/j.renene.2019.06.122
    [93] KANEV S K, SAVENIJE F J, ENGELS W P. Active wake control: an approach to optimize the lifetime operation of wind farms[J]. Wind Energy, 2018, 21(7): 488-501. DOI: 10.1002/we.2173
    [94] PARK J, KWON S, LAW K H. Wind farm power maximization based on a cooperative static game approach[C]//Proceedings of the SPIE, 2013, 8688. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid = 418924BF2676423839D98C004A37CDB7?doi = 10.1.1.300.3939&rep = rep1&type = pdf doi: 10.1117/12.2009618
    [95] PARK J, LAW K H. Cooperative wind turbine control for maximizing wind farm power using sequential convex programming[J]. Energy Conversion and Management, 2015, 101: 295-316. DOI: 10.1016/j.enconman.2015.05.031
    [96] PARK J, LAW K H. Bayesian ascent: a data-driven optimization scheme for real-time control with application to wind farm power maximization[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5): 1655-1668. DOI: 10.1109/TCST.2015.2508007
    [97] BAY C J, KING J, FLEMING P, et al. Unlocking the full potential of wake steering: implementation and assessment of a controls-oriented model[J]. Wind Energy Science Discussions, 2019: 1-20. DOI: 10.5194/wes-2019-19
    [98] 王浩, 柯世堂, 王同光. 台风过境全过程大型风力机风荷载特性[J]. 空气动力学学报, 2020, 38(5): 915-923. doi: 10.7638/kqdlxxb-2019.0108

    WANG H, KE S, WANG T. Wind loads characteristic of large wind turbine considering typhoon transit process[J]. ACTA AERODYNAMICA SINICA, 2020, 38(5): 915-923. doi: 10.7638/kqdlxxb-2019.0108
  • 加载中
图(28) / 表(3)
计量
  • 文章访问数:  660
  • HTML全文浏览量:  327
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-13
  • 修回日期:  2021-10-06
  • 录用日期:  2021-11-22
  • 网络出版日期:  2021-12-05
  • 刊出日期:  2022-08-10

目录

    /

    返回文章
    返回