CKDO one-equation RANS simulation on transition of hypersonic cross flow
-
摘要: 高超声速横流转捩集湍流-激波作用、可压缩、横流、转捩等难题于一身,基于雷诺平均N-S方程(RANS)的转捩建模是一项挑战。本文采用CKDO-tran计算高超声速横流转捩的经典标模—HIFiRE-5,分可压缩性效应、雷诺数效应和迎角效应进行评估,发现:不考虑可压缩效应的KDO-tran模型无法给出准确的预测,而不引入特定转捩机理,CKDO-tran仍然可以预测一系列雷诺数工况的高超声速横流转捩。迎角0°时,CKDO-tran可以较好地预测出双肺叶转捩图像,迎角为4°时,CKDO-tran产生的转捩线提前,但给出了与实验相似的转捩图像,具有进一步开发的潜力。对4°工况进行来流湍流度敏感性的研究发现,随着来流湍流度减小,CKDO-tran产生的转捩线逐渐后移,并且转捩图像与实验的相似性逐渐减弱直至消失。 通过对迎角效应进行的分析,推测出来流-激波相互作用的建模是消除迎角效应的关键。Abstract: Hypersonic cross-flow transition problem contains turbulence-shock effects, compressibility, cross-flow, transition, and many other phenomenons. This work employs the CKDO-tran model to simulate HIFiRE-5 which is a canonical model for hypersonic cross-flow transition. The compressibility effect, Reynolds number effectand attack angle effectare studied. It is found that the KDO-tran model without considering the compressibility effect cannot give an accurate prediction on transition, while it can predict the hypersonic cross-flow transition at different Reynolds number conditions, without introducing a specific transition mechanism. When the angle of attack is 0°, CKDO-tran can better predict the transition image of the two lobes; when the angle of attack is 4°, the transition line yielded by CKDO-tran starts too early, but the transition pattern is similar to the measurements. Therefore, CKDO-tran model is promising and deserves further development. The sensitivity study of inflow turbulence intensity shows that, along with the decrement of inflow turbulence intensity, the predicted transition pattern gradually deviates from the true pattern for the 4° attack angle case. Finally, the attack angle effect is analyzed, and it is speculated that accurate modeling of the freestream turbulence-shock interaction is the key to eliminate the attack angle effect.
-
Key words:
- transition model /
- turbulence model /
- cross-flow transition /
- hypersonic /
- compressibility effect
-
表 1 HIFiRE-5模型实验工况
Table 1. Experimental setup of HIFiRE-5
Case Re/106 $\alpha$/(°) Tu 1 6.1 0 2.4% 2 8.1 0 2.1% 3 10.2 0 1.8% 4 8.1 4 1.8% 5 8.1 4 1.2% 6 8.1 4 0.9% -
[1] 李锋, 解少飞, 毕志献, 等. 高超声速飞行器中若干气动难题的实验研究[J]. 现代防御技术, 2014, 42(5): 1-7. doi: 10.3969/j.issn.1009-086x.2014.05.001LI F, XIE S F, BI Z S X, et al. Experimental study of several on aerodynamic problems on hypersonic vehicles[J]. Modern Defense Technology, 2014, 42(5): 1-7. (in Chinese) doi: 10.3969/j.issn.1009-086x.2014.05.001 [2] 向星皓, 张毅锋, 陈坚强, 等. 横流转捩模型研究进展[J]. 空气动力学学报, 2018, 36(2): 254-264. doi: CNKI:SUN:KQDX.0.2018-02-010XIANG X H, ZHANG Y F, CHEN J Q, et al. Progress in transition models for cross-flow instabilities[J]. Acta Aerodynamica Sinica, 2018, 36(2): 254-264. (in Chinese) doi: 10.7638/kqdlxxb-2018.0041 [3] SUZEN Y B, HUANG P G. Modeling of flow transition using an intermittency transport equation[J]. Journal of Fluids Engineering, 2000, 122(2): 273-284. DOI: 10.1115/1.483255 [4] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables—part I: model formulation[J]. Journal of Turbomachinery, 2006, 128(3): 413. DOI: 10.1115/1.2184352 [5] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894-2906. DOI: 10.2514/1.42362 [6] 符松, 王亮. 基于雷诺平均方法的高超音速边界层转捩模拟[J]. 中国科学 (G辑: 物理学 力学 天文学), 2009, 39(4): 617-626. doi: CNKI:SUN:JGXK.0.2009-04-019FU S, WANG L. Wang Liang. Simulation of hypersonic boundary layer transition based on Reynolds average method [J]. Science in China (Series G: Physics, Mechanics & Astronomy), 2009, 39(4): 617-626. (in Chinese) [7] 张毅锋, 何琨, 张益荣, 等. Menter转捩模型在高超声速流动模拟中的改进及验证[J]. 宇航学报, 2016, 37(4): 397-402. doi: 10.3873/j.issn.1000-1328.2016.04.004ZHANG Y F, HE K, ZHANG Y R, et al. Improvement and validation of menter's transition model for hypersonic flow simulation[J]. Journal of Astronautics, 2016, 37(4): 397-402. (in Chinese) doi: 10.3873/j.issn.1000-1328.2016.04.004 [8] ZHANG Y F, ZHANG Y R, CHEN J Q, et al. Numerical simulations of hypersonic boundary layer transition based on the flow solver chant 2.0[C]// 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China. Reston, Virginia: AIAA, 2017 doi: 10.2514/6.2017-2409 [9] 向星皓, 张毅锋, 袁先旭, 等. C-γ-Reθ高超声速三维边界层转捩预测模型[J]. 航空学报, 2021, 42(9): 196-204. doi: 10.7527/S1000-6893.2021.25711XIANG X H, ZHANG Y F, YUAN X X, et al. C-γ-Reθ model for hypersonic three-dimensional boundary layer transition prediction[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 196-204. (in Chinese) doi: 10.7527/S1000-6893.2021.25711 [10] 白俊强, 张扬, 徐晶磊, 等. 新型单方程湍流模型构造及其应用[J]. 航空学报, 2014, 35(7): 1804-1814. doi: 10.7527/S1000-6893.2013.0502BAI J Q, ZHANG Y, XU J L, et al. Construction and its application of a new one-equation turbulence model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1804-1814. (in Chinese) doi: 10.7527/S1000-6893.2013.0502 [11] XU J L, ZHANG Y, BAI J Q. One-equation turbulence model based on extended bradshaw assumption[J]. AIAA Journal, 2015, 53(6): 1433-1441. DOI: 10.2514/1.J053039 [12] 徐晶磊, 周禹, 乔磊, 等. 基于湍动能输运的一方程转捩模型[J]. 推进技术, 2019, 40(4): 741-749. doi: 10.13675/j.cnki.tjjs.180196XU J L, ZHOU Y, QIAO L, et al. One-equation transition model based on turbulent kinetic energy transport[J]. Journal of Propulsion Technology, 2019, 40(4): 741-749. (in Chinese) doi: 10.13675/j.cnki.tjjs.180196 [13] XU J L, XU D, ZHANG Y, et al. Capturing transition with flow-structure-adaptive KDO RANS model[J]. Aerospace Science and Technology, 2019, 85: 150-157. DOI: 10.1016/j.ast.2018.12.009 [14] Wilcox D C. Turbulence modeling for CFD[M]. La Canada, CA: DCW industries, 1998. [15] JIANG L, CHOUDHARI M, CHANG C L, et al. Numerical simulations of laminar-turbulent transition in supersonic boundary layer[C]// 36th AIAA Fluid Dynamics Conference and Exhibit, San Francisco, California. Reston, Virginia: AIAA, 2006 doi: 10.2514/6.2006-3224 [16] 徐家宽. 基于 RANS 方程的多速域边界层转捩模式构造方法及应用研究[D]. 西安: 西北工业大学, 2017. [17] JULIANO T, SCHNEIDER S. Instability and transition on the HIFiRE-5 in a Mach 6 quiet tunnel[C]// 40th Fluid Dynamics Conference and Exhibit, Chicago, Illinois. Reston, Virginia: AIAA, 2010 doi: 10.2514/6.2010-5004 [18] JULIANO T J, ADAMCZAK D, KIMMEL R L. HIFiRE-5 flight test heating analysis[C]// 52nd Aerospace Sciences Meeting, National Harbor, Maryland. Reston, Virginia: AIAA, 2014. doi: 10.2514/6.2014-0076 [19] JULIANO T J, BORG M P, SCHNEIDER S P. Quiet tunnel measurements of HIFiRE-5 boundary-layer transition[J]. AIAA Journal, 2015, 53(4): 832-846. DOI: 10.2514/1.J053189 [20] JULIANO T J, PAQUIN L, BORG M P. Measurement of HIFiRE-5 boundary-layer transition in a Mach-6 quiet tunnel with infrared thermography[C]// 54th AIAA Aerospace Sciences Meeting, San Diego, California, USA. Reston, Virginia: AIAA, 2016 doi: 10.2514/6.2016-0595 [21] SINHA K, BALASRIDHAR S J. Conservative formulation of the k-ϵ turbulence model for shock-turbulence interaction[J]. AIAA Journal, 2013, 51(8): 1872-1882. DOI: 10.2514/1.J052289 -