留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CKDO一方程模型计算高超声速横流转捩

王浩 徐晶磊

王浩, 徐晶磊. CKDO一方程模型计算高超声速横流转捩[J]. 空气动力学学报, 2023, 41(2): 75−82 doi: 10.7638/kqdlxxb-2021.0296
引用本文: 王浩, 徐晶磊. CKDO一方程模型计算高超声速横流转捩[J]. 空气动力学学报, 2023, 41(2): 75−82 doi: 10.7638/kqdlxxb-2021.0296
WANG H, XU J L. CKDO one-equation RANS simulation on transition of hypersonic cross flow[J]. Acta Aerodynamica Sinica, 2023, 41(2): 75−82 doi: 10.7638/kqdlxxb-2021.0296
Citation: WANG H, XU J L. CKDO one-equation RANS simulation on transition of hypersonic cross flow[J]. Acta Aerodynamica Sinica, 2023, 41(2): 75−82 doi: 10.7638/kqdlxxb-2021.0296

CKDO一方程模型计算高超声速横流转捩

doi: 10.7638/kqdlxxb-2021.0296
基金项目: 国家数值风洞工程 (NNW2019ZT3-A14)
详细信息
    作者简介:

    王浩(1995-),男,安徽人,博士研究生,研究方向:湍流模型,流转捩. E-mail:zy1704317@buaa.edu.cn

    通讯作者:

    徐晶磊*,副研究员,研究方向:湍流模型,转捩模型,气动热,涡流减阻. E-mail:xujl@buaa.edu.cn

  • 中图分类号: O357.4+1

CKDO one-equation RANS simulation on transition of hypersonic cross flow

  • 摘要: 高超声速横流转捩集湍流-激波作用、可压缩、横流、转捩等难题于一身,基于雷诺平均N-S方程(RANS)的转捩建模是一项挑战。本文采用CKDO-tran计算高超声速横流转捩的经典标模—HIFiRE-5,分可压缩性效应、雷诺数效应和迎角效应进行评估,发现:不考虑可压缩效应的KDO-tran模型无法给出准确的预测,而不引入特定转捩机理,CKDO-tran仍然可以预测一系列雷诺数工况的高超声速横流转捩。迎角0°时,CKDO-tran可以较好地预测出双肺叶转捩图像,迎角为4°时,CKDO-tran产生的转捩线提前,但给出了与实验相似的转捩图像,具有进一步开发的潜力。对4°工况进行来流湍流度敏感性的研究发现,随着来流湍流度减小,CKDO-tran产生的转捩线逐渐后移,并且转捩图像与实验的相似性逐渐减弱直至消失。 通过对迎角效应进行的分析,推测出来流-激波相互作用的建模是消除迎角效应的关键。
  • 图  1  平板表面摩阻分布

    Figure  1.  Skin friction distribution on the flat plate

    图  2  HIFiRE-5模型三维示意图

    Figure  2.  3D model of HIFiRE-5

    图  3  HIFiRE-5结构网格示意图

    Figure  3.  Structured mesh of HIFiRE-5

    图  4  Case3转捩图像

    Figure  4.  Transition pattern of Case3

    图  5  Case1转捩图像

    Figure  5.  Transition pattern of Case1

    图  6  Case2转捩图像

    Figure  6.  Transition pattern of Case2

    图  7  Case4转捩图像

    Figure  7.  Transition pattern of Case4

    图  8  湍流度对转捩的影响

    Figure  8.  Effect of turbulence intensity on transition

    表  1  HIFiRE-5模型实验工况

    Table  1.   Experimental setup of HIFiRE-5

    CaseRe/106$\alpha$/(°)Tu
    16.102.4%
    28.102.1%
    310.201.8%
    48.141.8%
    58.141.2%
    68.140.9%
    下载: 导出CSV
  • [1] 李锋, 解少飞, 毕志献, 等. 高超声速飞行器中若干气动难题的实验研究[J]. 现代防御技术, 2014, 42(5): 1-7. doi: 10.3969/j.issn.1009-086x.2014.05.001

    LI F, XIE S F, BI Z S X, et al. Experimental study of several on aerodynamic problems on hypersonic vehicles[J]. Modern Defense Technology, 2014, 42(5): 1-7. (in Chinese) doi: 10.3969/j.issn.1009-086x.2014.05.001
    [2] 向星皓, 张毅锋, 陈坚强, 等. 横流转捩模型研究进展[J]. 空气动力学学报, 2018, 36(2): 254-264. doi: CNKI:SUN:KQDX.0.2018-02-010

    XIANG X H, ZHANG Y F, CHEN J Q, et al. Progress in transition models for cross-flow instabilities[J]. Acta Aerodynamica Sinica, 2018, 36(2): 254-264. (in Chinese) doi: 10.7638/kqdlxxb-2018.0041
    [3] SUZEN Y B, HUANG P G. Modeling of flow transition using an intermittency transport equation[J]. Journal of Fluids Engineering, 2000, 122(2): 273-284. DOI: 10.1115/1.483255
    [4] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables—part I: model formulation[J]. Journal of Turbomachinery, 2006, 128(3): 413. DOI: 10.1115/1.2184352
    [5] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894-2906. DOI: 10.2514/1.42362
    [6] 符松, 王亮. 基于雷诺平均方法的高超音速边界层转捩模拟[J]. 中国科学 (G辑: 物理学 力学 天文学), 2009, 39(4): 617-626. doi: CNKI:SUN:JGXK.0.2009-04-019

    FU S, WANG L. Wang Liang. Simulation of hypersonic boundary layer transition based on Reynolds average method [J]. Science in China (Series G: Physics, Mechanics & Astronomy), 2009, 39(4): 617-626. (in Chinese)
    [7] 张毅锋, 何琨, 张益荣, 等. Menter转捩模型在高超声速流动模拟中的改进及验证[J]. 宇航学报, 2016, 37(4): 397-402. doi: 10.3873/j.issn.1000-1328.2016.04.004

    ZHANG Y F, HE K, ZHANG Y R, et al. Improvement and validation of menter's transition model for hypersonic flow simulation[J]. Journal of Astronautics, 2016, 37(4): 397-402. (in Chinese) doi: 10.3873/j.issn.1000-1328.2016.04.004
    [8] ZHANG Y F, ZHANG Y R, CHEN J Q, et al. Numerical simulations of hypersonic boundary layer transition based on the flow solver chant 2.0[C]// 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China. Reston, Virginia: AIAA, 2017 doi: 10.2514/6.2017-2409
    [9] 向星皓, 张毅锋, 袁先旭, 等. C-γ-Reθ高超声速三维边界层转捩预测模型[J]. 航空学报, 2021, 42(9): 196-204. doi: 10.7527/S1000-6893.2021.25711

    XIANG X H, ZHANG Y F, YUAN X X, et al. C-γ-Reθ model for hypersonic three-dimensional boundary layer transition prediction[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 196-204. (in Chinese) doi: 10.7527/S1000-6893.2021.25711
    [10] 白俊强, 张扬, 徐晶磊, 等. 新型单方程湍流模型构造及其应用[J]. 航空学报, 2014, 35(7): 1804-1814. doi: 10.7527/S1000-6893.2013.0502

    BAI J Q, ZHANG Y, XU J L, et al. Construction and its application of a new one-equation turbulence model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1804-1814. (in Chinese) doi: 10.7527/S1000-6893.2013.0502
    [11] XU J L, ZHANG Y, BAI J Q. One-equation turbulence model based on extended bradshaw assumption[J]. AIAA Journal, 2015, 53(6): 1433-1441. DOI: 10.2514/1.J053039
    [12] 徐晶磊, 周禹, 乔磊, 等. 基于湍动能输运的一方程转捩模型[J]. 推进技术, 2019, 40(4): 741-749. doi: 10.13675/j.cnki.tjjs.180196

    XU J L, ZHOU Y, QIAO L, et al. One-equation transition model based on turbulent kinetic energy transport[J]. Journal of Propulsion Technology, 2019, 40(4): 741-749. (in Chinese) doi: 10.13675/j.cnki.tjjs.180196
    [13] XU J L, XU D, ZHANG Y, et al. Capturing transition with flow-structure-adaptive KDO RANS model[J]. Aerospace Science and Technology, 2019, 85: 150-157. DOI: 10.1016/j.ast.2018.12.009
    [14] Wilcox D C. Turbulence modeling for CFD[M]. La Canada, CA: DCW industries, 1998.
    [15] JIANG L, CHOUDHARI M, CHANG C L, et al. Numerical simulations of laminar-turbulent transition in supersonic boundary layer[C]// 36th AIAA Fluid Dynamics Conference and Exhibit, San Francisco, California. Reston, Virginia: AIAA, 2006 doi: 10.2514/6.2006-3224
    [16] 徐家宽. 基于 RANS 方程的多速域边界层转捩模式构造方法及应用研究[D]. 西安: 西北工业大学, 2017.
    [17] JULIANO T, SCHNEIDER S. Instability and transition on the HIFiRE-5 in a Mach 6 quiet tunnel[C]// 40th Fluid Dynamics Conference and Exhibit, Chicago, Illinois. Reston, Virginia: AIAA, 2010 doi: 10.2514/6.2010-5004
    [18] JULIANO T J, ADAMCZAK D, KIMMEL R L. HIFiRE-5 flight test heating analysis[C]// 52nd Aerospace Sciences Meeting, National Harbor, Maryland. Reston, Virginia: AIAA, 2014. doi: 10.2514/6.2014-0076
    [19] JULIANO T J, BORG M P, SCHNEIDER S P. Quiet tunnel measurements of HIFiRE-5 boundary-layer transition[J]. AIAA Journal, 2015, 53(4): 832-846. DOI: 10.2514/1.J053189
    [20] JULIANO T J, PAQUIN L, BORG M P. Measurement of HIFiRE-5 boundary-layer transition in a Mach-6 quiet tunnel with infrared thermography[C]// 54th AIAA Aerospace Sciences Meeting, San Diego, California, USA. Reston, Virginia: AIAA, 2016 doi: 10.2514/6.2016-0595
    [21] SINHA K, BALASRIDHAR S J. Conservative formulation of the k-ϵ turbulence model for shock-turbulence interaction[J]. AIAA Journal, 2013, 51(8): 1872-1882. DOI: 10.2514/1.J052289
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  81
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29
  • 录用日期:  2021-11-25
  • 修回日期:  2021-11-01
  • 网络出版日期:  2022-01-10
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回