留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞行器操纵面嗡鸣风洞试验技术综述

闫昱 路波 杨兴华 郭洪涛 余立

闫昱, 路波, 杨兴华, 等. 飞行器操纵面嗡鸣风洞试验技术综述[J]. 空气动力学学报, 2022, 40(3): 1−9 doi: 10.7638/kqdlxxb-2021.0303
引用本文: 闫昱, 路波, 杨兴华, 等. 飞行器操纵面嗡鸣风洞试验技术综述[J]. 空气动力学学报, 2022, 40(3): 1−9 doi: 10.7638/kqdlxxb-2021.0303
YAN Y, LU B, YANG X H, et al. Review on buzz wind tunnel test technology for aircraft control surfaces[J]. Acta Aerodynamica Sinica, 2022, 40(3): 1−9 doi: 10.7638/kqdlxxb-2021.0303
Citation: YAN Y, LU B, YANG X H, et al. Review on buzz wind tunnel test technology for aircraft control surfaces[J]. Acta Aerodynamica Sinica, 2022, 40(3): 1−9 doi: 10.7638/kqdlxxb-2021.0303

飞行器操纵面嗡鸣风洞试验技术综述

doi: 10.7638/kqdlxxb-2021.0303
详细信息
    作者简介:

    闫昱(1985-),河南新郑人,硕士,副研究员,研究方向:气动弹性风洞试验技术. E-mail:aeroelastics@126.com

    通讯作者:

    余立*(1975-),安徽肥东人,硕士,研究员,研究方向:空气动力学. E-mail:yuli@cardc.cn

  • 中图分类号: V211.71;V216.2+4

Review on buzz wind tunnel test technology for aircraft control surfaces

  • 摘要: 操纵面嗡鸣是飞行器跨声速飞行时发生的气动弹性动不稳定现象。嗡鸣的发生,轻则降低飞行器操纵面效率,重则导致灾难性的飞行事故,是除颤振外飞行器设计部门重点关注的气动弹性难题。操纵面嗡鸣涉及激波与边界层的相互作用,目前尚没有准确预测嗡鸣的计算方法,通常采用风洞试验来获取相关数据。操纵面嗡鸣风洞试验可以利用风洞再现嗡鸣现象,研究嗡鸣特性,是飞行器研制阶段检验操纵面防嗡鸣设计最行之有效的手段。本文回顾了国内外操纵面嗡鸣风洞试验研究现状,梳理了操纵面嗡鸣的发生机理、触发条件及分型依据,对操纵面嗡鸣试验风洞选取、模型设计、试验方法提供了建议,对颤振试验中可能出现的嗡鸣问题提供了判别方法,对后续的工作进行了展望。
  • 图  1  嗡鸣导致某飞机方向舵损毁[7]

    Figure  1.  Buzz caused damage to the rudder[7]

    图  2  P80飞机副翼嗡鸣风洞试验[12]

    Figure  2.  Buzz wind tunnel test of the P80 aileron[12]

    图  3  NASP机翼嗡鸣风洞试验[13]

    Figure  3.  Buzz wind tunnel test of the NASP wing[13]

    图  4  F/A-22垂尾嗡鸣风洞试验[8]

    Figure  4.  Buzz wind tunnel test of the F/A-22 rudder[8]

    图  5  超声速客机副翼嗡鸣试验[14]

    Figure  5.  Buzz wind tunnel test of the SST aileron[14]

    图  6  操纵面嗡鸣分类[17]

    Figure  6.  Classification of the control surface buzz[17]

    图  7  FL-26风洞速压范围[33]

    Figure  7.  Dynamic pressure range of the FL-26 wind tunnel[33]

    图  8  操纵面嗡鸣试验模型设计流程

    Figure  8.  Flow chart of the model design of the buzz wind tunnel test

    图  9  某飞机平尾颤振模型[35]

    Figure  9.  Flutter model of the horizontal tail of an aircraft[35]

    图  10  PSP技术应用于抖振试验[41]

    Figure  10.  Application of the PSP technique in the buffeting test[41]

  • [1] 张伟伟, 高传强, 叶正寅. 复杂跨声速气动弹性现象及其机理分析[J]. 科学通报, 2018, 63(12): 1095-1110. doi: 10.1360/N972018-00151

    ZHANG W W, GAO C Q, YE Z Y. The complex transonic aeroelastic phenomena and it's mechanisms[J]. Chinese Science Bulletin, 2018, 63(12): 1095-1110. (in Chinese) doi: 10.1360/N972018-00151
    [2] 王发祥. 高速风洞试验[M]. 北京: 国防工业出版社, 2003: 437.
    [3] STEGER J L, BAILEY H E. Calculation of transonic aileron buzz[J]. AIAA Journal, 1980, 18(3): 249-255. DOI: 10.2514/3.50756
    [4] BENDIKSEN O. Nonclassical aileron buzz in transonic flow[C]//34th AIAA, ASME, ASCE, AHS, and ASC, Structures, Structural Dynamics and Materials Conference. AIAA and ASME, Adaptive Structures Forum. La Jolla, CA, 1993: 19-22. AIAA-93-1479. doi: 10.2514/6.1993-1479
    [5] FUGLSANG D, BRASE L, AGRAWAL S. A numerical study of control surface buzz using computational fluid dynamic methods[C]//10th Applied Aerodynamics Conference, Palo Alto, CA, USA. Reston, Virigina: AIAA, 1992. AIAA-92-2654. doi: 10.2514/6.1992-2654
    [6] HUTTSELL L, SCHUSTER D, VOLK J, et al. Evaluation of computational aeroelasticity codes for loads and flutter[C]//39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. Reston, Virigina: AIAA, 2001. AIAA-01-0569. doi: 10.2514/6.2001-569
    [7] 史爱明, 杨永年, 叶正寅. 跨音速单自由度非线性颤振: 嗡鸣的数值分析[J]. 西北工业大学学报, 2004, 22(4): 525-528.

    SHI A M, YANG Y N, YE Z Y. Investigation of control surface buzz in transonic flow[J]. Journal of Northwestern Polytechnical University, 2004, 22(4): 525-528. (in Chinese)
    [8] ANDERSON W, MORTARA S. F-22 aeroelastic design and test validation[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii. Reston, Virigina: AIAA, 2007. AIAA 2007-1764. doi: 10.2514/6.2007-1764
    [9] 邓俊艳, 周伟, 易军, 等. 操纵面嗡鸣工程判别及预防[C]//第十六届全国空气弹性学术交流会会议, 2019: 624-625.
    [10] 杨超, 主编. 飞行器气动弹性原理[M]. 北京: 北京航空航天大学出版社, 2011: 123.
    [11] 李周复, 主编. 风洞特种试验技术[M]. 北京: 航空工业出版社, 2010: 201-207.
    [12] ERICKSON A L, STEPHENSON J D. A suggested me-thod of analyzing for transonic flutter of control surfaces based on available experimental evidence [R]. NACA-RM-A7F30, 1947. https://ntrs.nasa.gov/api/citations/19930085716/downloads/19930085716.pdf
    [13] PARKER E, SPAIN C, SOISTMANN D. Aileron buzz investigated on several generic NASP wing configurations[C]//32nd Structures, Structural Dynamics, and Materials Conference, Baltimore, MD, USA. Reston, Virigina: AIAA, 1991. AIAA-91-0936-CP. doi: 10.2514/6.1991-936
    [14] SAITON K, TAMAYAMA M, KIKUCHI T, et al. An aileron flutter experiment and analysis using Semi-Span model for the small supersonic experimental aircraft[C]//Japan Society of Aeronautical Space Sciences, 2012, 60: 108-113. https://www.jstage.jst.go.jp/article/jjsass/60/2/60_2_108/_pdf/-char/en doi: 10.2322/jjsass.60.108
    [15] PHILLIPS W H, ADAMS J J. Low-speed tests of a model simulating the phenomenon of control-surface buzz[R]. NACA-RM-L50F19, 1950. https://ntrs.nasa.gov/api/citations/19930087842/downloads/19930087842.pdf
    [16] HENNING A B. Results of a rocket-model investiga-tion of control-surface buzz and flutter on a 4-percent-thick unswept wing and on 6-, 9-, and 12-percent-thick swept wings at transonic speeds[C]. NACA-RM-L53I29, 1953. https://ntrs.nasa.gov/api/citations/19930089146/downloads/19930089146.pdf
    [17] LAMBOURNE N C. Control-surface buzz[R]. ARC/R&M-3364, 1963. https://naca.central.cranfield.ac.uk/bitstream/handle/1826.2/3947/arc-rm-3364.pdf?sequence = 1&isAllowed = y
    [18] NAKAMURA Y. Some contributions on a control-surface buzz at high subsonic speeds[J]. Journal of Aircraft, 1968, 5(2): 118-125. DOI: 10.2514/3.43918
    [19] 代捷, 刘千刚. 跨声速操纵面嗡鸣的数值研究[J]. 空气动力学学报, 1997, 15(3): 366-371.

    DAI J, LIU Q G. Calculation of transonic control surface buzz[J]. Acta Aerodynamica Sinica, 1997, 15(3): 366-371. (in Chinese)
    [20] 刘千刚, 代捷, 白俊强. 跨音速操纵面嗡鸣Hopf分叉分析及结构参数对嗡鸣特性影响的研究[J]. 航空学报, 1999, 20(6): 527-532.

    LIU Q G, DAI J, BAI J Q. Hopf bifurcation analysis of transonic control surface buzz and investigation of the influence of structural parameters on buzz characteristics[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(6): 527-532. (in Chinese)
    [21] YANG G W, OBAYASHI S, NAKAMICHI J. Aileron buzz simulation using an implicit multiblock aeroelastic solver[J]. Journal of Aircraft, 2003, 40(3): 580-589. DOI: 10.2514/2.3134
    [22] 史爱明, 杨永年, 叶正寅. 跨音速三维操纵面嗡鸣数值方法研究[J]. 西北工业大学学报, 2006, 24(5): 537-540.

    SHI A M, YANG Y N, YE Z Y. Relatively accurate calculation of 3-D control surface buzz in transonic flow[J]. Journal of Northwestern Polytechnical University, 2006, 24(5): 537-540 (in Chinese).
    [23] 张伟伟, 叶正寅, 史爱明, 等. 基于Euler方程的B型和C型嗡鸣特性数值研究[J]. 振动工程学报, 2005, 18(4): 458-464.

    ZHANG W W, YE Z Y, SHI A M, et al. Numerical analysis for B-type buzz and C-type buzz basing on Euler codes[J]. Journal of Vibration Engineering, 2005, 18(4): 458-464. (in Chinese)
    [24] 许军, 马晓平. 飞翼无人机嗡鸣气动弹性响应分析[J]. 西北工业大学学报, 2015, 33(4): 588-595.

    XU J, MA X P. Buzz aeroelastic responses analysis for a flying wing UAV[J]. Journal of Northwestern Polytechnical University, 2015, 33(4): 588-595. (in Chinese)
    [25] XU J, MA X P. Transonic rudder buzz investigated on a tailless flying wing UAV[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2015, 32(1): 61-69. doi: 10.16356/j.1005-1120.2015.01.061
    [26] 许军, 马晓平. 考虑气动结构耦合的飞翼无人机嗡鸣振动[J]. 空军工程大学学报(自然科学版), 2016, 17(3): 6-10. doi: 10.3969/j.issn.1009-3516.2016.03.002

    XU J, MA X P. Research on flying wing UAV buzz vibration considering the aerodynamic structural coupling effects[J]. Journal of Air Force Engineering University (Natural Science Edition), 2016, 17(3): 6-10. (in Chinese) doi: 10.3969/j.issn.1009-3516.2016.03.002
    [27] 贺顺. 机翼跨音速非线性颤振研究[D]. 西安: 西北工业大学, 2017: 27-49.

    HE S. Study on wing nonlinear flutter in transonic flow[D]. Xi'an: Northwestern Polytechnical University, 2017: 27-49 (in Chinese).
    [28] HE S, YANG Z C, GU Y S. Limit cycle oscillation behavior of transonic control surface buzz considering free-play nonlinearity[J]. Journal of Fluids and Structures, 2016, 61: 431-449. DOI: 10.1016/j.jfluidstructs.2015.11.014
    [29] GAO C Q, ZHANG W W, YE Z Y. A new viewpoint on the mechanism of transonic single-degree-of-freedom flutter[J]. Aerospace Science and Technology, 2016, 52: 144-156. DOI: 10.1016/j.ast.2016.02.029
    [30] 高传强, 张伟伟. 跨声速嗡鸣诱发机理及其失稳参数研究[J]. 空气动力学学报, 2019, 37(1): 99-106. doi: 10.7638/kqdlxxb-2018.0204

    GAO C Q, ZHANG W W. Study on the mechansim and instability parameters of transonic buzz[J]. Acta Aerodynamica Sinica, 2019, 37(1): 99-106. (in Chinese) doi: 10.7638/kqdlxxb-2018.0204
    [31] 申超峰. 某飞机方向舵振动试验报告[R]. 绵阳: 中国空气动力研究与发展中心, 1974.
    [32] 陈忠实. 某飞机方向舵嗡鸣试验报告[R]. 绵阳: 中国空气动力研究与发展中心, 1977.
    [33] 寇西平. 大展弦比机翼高速静气动弹性模型设计研究[D]. 绵阳: 中国空气动力研究与发展中心, 2013: 44.

    KOU X P. Research on high speed static aeroelastic model design of high-aspect-ratio wing[D]. Mianyang: CARDC, 2013: 44 (in Chinese).
    [34] 罗务揆, 谭申刚, 谢怀强, 等. 确定颤振模型设计参数的方法研究[J]. 航空学报, 2013, 34(10): 2383-2390. doi: 10.7527/S1000-6893.2013.0076

    LUO W K, TAN S G, XIE H Q, et al. Research on methods used to determine flutter model design factors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2383-2390. (in Chinese) doi: 10.7527/S1000-6893.2013.0076
    [35] 钱卫, 张桂江, 刘钟坤. 飞机全动平尾颤振特性风洞试验[J]. 航空学报, 2015, 36(4): 1093-1102. doi: 10.7527/S1000-6893.2014.0250

    QIAN W, ZHANG G J, LIU Z K. Flutter characteristics for aircraft all-movable horizontal tail through wind tunnel test[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1093-1102. (in Chinese) doi: 10.7527/S1000-6893.2014.0250
    [36] 孙亚军, 梁技, 杨飞, 等. 超临界机翼跨音速颤振风洞试验研究[J]. 振动与冲击, 2014, 33(4): 190-194. doi: 10.3969/j.issn.1000-3835.2014.04.034

    SUN Y J, LIANG J, YANG F, et al. Transonic flutter wind tunnel tests for an aircraft with a supercritical wing[J]. Journal of Vibration and Shock, 2014, 33(4): 190-194. (in Chinese) doi: 10.3969/j.issn.1000-3835.2014.04.034
    [37] 冉玉国, 李秋彦, 杨兴华. 静不安定飞机缩比模型跨声速颤振试验技术[J]. 四川理工学院学报(自然科学版), 2017, 30(1): 49-54. doi: 10.11863/j.suse.2017.01.09

    RAN Y G, LI Q Y, YANG X H. Review of transonic flutter test techniques for statically unstable aircraft scaled model[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2017, 30(1): 49-54. (in Chinese) doi: 10.11863/j.suse.2017.01.09
    [38] RIVERA J A, FLORANCE J R. Contributions of transonic dynamic tunnel testing to airplane flutter clearance[R]. AIAA 2000-1768, 2000. https://ntrs.nasa.gov/api/citations/20000037720/downloads/20000037720.pdf
    [39] 杨祖清, 主编. 流动显示技术[M]. 北京: 国防工业出版社, 2002: 101-131.
    [40] 高丽敏, 吴亚楠, 胡小全, 等. 基于光强的快速响应PSP动态测量技术及其应用[J]. 航空学报, 2014, 35(3): 607-623. doi: 10.7527/S1000-6893.2013.0532

    GAO L M, WU Y N, HU X Q, et al. Intensity-based fast response PSP technique and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 607-623. (in Chinese) doi: 10.7527/S1000-6893.2013.0532
    [41] MERIENNE M C, LE SANT Y, LEBRUN F, et al. Transonic buffeting investigation using unsteady pressure-sensitive paint in a large wind tunnel[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas. Reston, Virginia: AIAA, 2013. doi: 10.2514/6.2013-1136
  • 加载中
图(10)
计量
  • 文章访问数:  419
  • HTML全文浏览量:  118
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-28
  • 修回日期:  2021-12-29
  • 录用日期:  2022-01-05
  • 网络出版日期:  2022-02-15
  • 刊出日期:  2022-07-07

目录

    /

    返回文章
    返回