Development and application of aerodynamic research technologies for fighters at high angle of attack
-
摘要: 飞机布局的大迎角气动特性是决定飞行包线左边界的主要因素之一。 飞行包线左边界区域的扩展增强了飞机的大迎角机动性和敏捷性,但是同时也极大地挑战着飞机的安全。几十年来,随着大迎角飞行研究技术的发展,战斗机飞行不断突破失速迎角附近及以上区域,将飞行左边界左移,扩大了飞行包线,减少了飞行限制,挖掘了战斗机的作战潜能。本文对战斗机大迎角飞行相关的气动特性研究技术,包括流动机理研究、数值计算方法研究、风洞气动试验、气动建模与数据库构建、气动与控制综合验证等关键技术的发展与应用进行了阐述。基于这些技术的发展,结合工程实践经验,提出了战斗机大迎角气动特性研究的整体思路和方法,包括大迎角气动力预先设计、气动力获取、气动力表达、气动力综合分析和气动-运动-控制一体化验证五个部分,以供相关装备研制参考。
-
关键词:
- 大迎角 /
- 非线性非定常气动力 /
- 风洞试验 /
- 气动力模型 /
- 气动-运动-控制综合试验
Abstract: Left boundary of the flight envelope is mainly determined by high angle of attack aerodynamic characteristics of the aircraft layout. The expansion of the left boundary of flight envelope enhances the aircraft's mobility and agility, but it also greatly challenges flight safety. Over the past decades, with the development of flight research technologies for high angle of attack , fighters continuously broke through the flight regime near and above the stalling angle of attack, which pushed left boundary more, expanded flight envelope, reduced flight restrictions, and squeezed more flight potential. This paper elaborates the development and application of key technologies related to high angle of attack aerodynamics including researches on the flow mechanism, numerical computations, wind tunnel tests, aerodynamic modeling and database construction, and integrated verification of aerodynamics and control laws. Along with the author's engineering practice, a systematic and close-loop aerodynamic design and analysis method for flighters at high angle of attack is proposed, consisting of five major parts including pre-design, data-acquisition, aerodynamic force expression, integrated analysis, and integrated aerodynamics/motion/control test, which would be used as reference for related equipment development. -
表 1 不同数值方法的特点
Table 1. Characteristics of different numerical methods
计算方法 思路 置信度 效率 应用 雷诺平均(RANS) 将湍流全部简化
为工程模型较低,可定性反映规律,
但定量上与风洞试验有差异较高,分析周期
在天的量级工程上作为风洞试验的补充,给出全机气动力的总量/
分量和空间流场信息,用于全机的比对研究、机理分析等大涡模拟(LES) 将某一小尺度以下的
湍流简化为工程模型较高,定量可与
风洞试验吻合最差,分析周期
在年的量级仅用于学术研究,对于翼型、锥、柱等简单外形,
给出动态气动力及脉动精细频谱分离涡模拟(DES) 用大涡模拟计算分离流,
其余用雷诺平均较高,定量可与
风洞试验吻合较差,分析周期
在月的量级多用于学术研究,未来可能用于工程计算,
作为RANS的补充,用于全机气动机理分析表 2 大迎角飞行综合验证技术的特点
Table 2. Characteristics of aerodynamics/dynamics/control synthesis tests
综合验证试验技术 直接观测的物理量 试验环境 支撑形式 验证内容 机动历程模拟试验 迎角/侧滑角、全量气动力、
机构角速率等风洞 有支撑,模型相对支撑不能运动;
模型运动由机构运动实现直接验证大迎角气动数据库 风洞尾旋试验 俯仰角、偏航角、滚转角、
角速率、过载等风洞 无支撑 验证尾旋模态、尾旋平衡状态参数
及尾旋改出操纵方法风洞虚拟飞行试验 俯仰角、偏航角、滚转角、
角速率/角加速率等风洞 有支撑,模型相对支撑可以进行
三轴自由转动;模型运动由模型在
风洞中产生的气动力驱动验证大迎角偏离特性、
三轴自由振荡特性等水平风洞自由飞试验 迎角/侧滑角、俯仰角、
偏航角、滚转角、角速率/
角加速率、过载等风洞 无支撑 中小迎角平衡特性、操纵响应特性、控制律;
大迎角偏离趋势(需结合推力矢量)缩比模型大气飞行试验 迎角/侧滑角、俯仰角、
偏航角、滚转角、角速率/
角加速率、过载等大气环境 无支撑 低速全迎角包线飞行特性,包括平衡特性、
偏离特性、尾旋进入/平衡/改出过程、过失速飞行,
直接验证控制律/间接验证气动数据库全尺寸飞机飞行试验 迎角/侧滑角、俯仰角、
偏航角、滚转角、角速率/
角加速率、过载等大气环境 无支撑 全速域全包线飞行性能和全系统性能验证;
验证控制律/气动数据库 -
[1] HERBST W B. Dynamics of air combat[J]. Journal of Aircraft, 1983, 20(7): 594-598. DOI: 10.2514/3.44916 [2] 方宝瑞. 飞机气动布局设计[M]. 北京: 航空工业出版社, 1997. [3] 史忠科. 高性能飞机发展对控制理论的挑战[J]. 航空学报, 2015, 36(8): 2717-2734.SHI Z K. Challenge of control theory in the presence of high performance aircraft development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2717-2734. (in Chinese) [4] WILLIAMS B, LANDMAN D, FLORY I, et al. The effect of systematic error in forced oscillation testing[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee. Reston, Virigina: AIAA, 2012. AIAA-2012-0768. doi: 10.2514/6.2012-768 [5] GURSUL I. Review of unsteady vortex flows over slender delta wings[J]. Journal of Aircraft, 2005, 42(2): 299-319. DOI: 10.2514/1.5269. [6] CARR L W, CHANDRASEKHARA M S. Compressibility effects on dynamic stall[J]. Progress in Aerospace Sciences, 1996, 32(6): 523-573. DOI: 10.1016/0376-0421(95)00009-7 [7] 吴子牛, 白晨媛, 李娟, 等. 空气动力学[M]. 北京: 北京航空航天大学出版社, 2016. [8] POLHAMUS E C. Predictions of vortex-lift characteristics by a leading-edge suction analogy[J]. Journal of Aircraft, 1971, 8(4): 193-199. DOI: 10.2514/3.44254 [9] 刘沛清, 邓学蓥, 马宝峰. 鸭式布局飞机水洞流场显示研究[J]. 流体力学实验与测量, 2002, 16(3): 26-31.LIU P Q, DENG X Y, MA B F. Water tunnel flow visualization study of a canard-configuration aircraft model[J]. Experiments and Measurements in Fluid Mechanics, 2002, 16(3): 26-31. (in Chinese) [10] 刘沛清, 易渊. 鸭式布局大迎角复杂涡系干扰与控制技术[J]. 空气动力学学报, 2020, 38(6): 1034-1046.LIU P Q, YI Y. Vortex interaction mechanism and control technology of canard configuration at high angle of attack[J]. Acta Aerodynamica Sinica, 2020, 38(6): 1034-1046. (in Chinese) [11] ROCKWELL D. Vortex-body interactions[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 199-229. DOI: 10.1146/annurev.fluid.30.1.199 [12] 李栋, 付海鸣, 张振辉, 等. 机身前体横截面形状对三角翼涡破裂位置的影响[J]. 航空学报, 2011, 32(8): 1400-1410.LI D, FU H M, ZHANG Z H, et al. Influence of forebody cross-sectional shape on delta wing vortex burst location[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1400-1410. (in Chinese) [13] 宋文骢, 谢品, 郑遂, 等. 一种小展弦比高升力飞机的气动布局研究[J]. 中国工程科学, 2001, 3(8): 70-75. doi: 10.3969/j.issn.1009-1742.2001.08.012SONG W C, XIE P, ZHENG S, et al. A research on the aerodynamic characteristics of a small aspect ratio, high lift fighter configuration[J]. Engineering Science, 2001, 3(8): 70-75. (in Chinese) doi: 10.3969/j.issn.1009-1742.2001.08.012 [14] 宋文骢. 鸭式布局飞机的发展[C]//中国航空学会航空百年学术论坛, 中国航空学会总体专业分会第六届学术交流会论文集, 2003: 16-23. [15] 郑遂, 展京霞, 曹原, 等. 放宽纵向静稳定性对战斗机布局升阻比特性的影响[J]. 南京航空航天大学学报, 2008, 40(4): 556-560. doi: 10.3969/j.issn.1005-2615.2008.04.029ZHENG S, ZHAN J X, CAO Y, et al. Effect of relaxed longitudinal static stability on lift-to-drag ratio of aircraft configurations[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(4): 556-560. (in Chinese) doi: 10.3969/j.issn.1005-2615.2008.04.029 [16] CANBAZOGLU S, LIN J C, WOLFE S, et al. Buffeting of fin - Distortion of incident vortex[J]. AIAA Journal, 1995, 33(11): 2144-2150. DOI: 10.2514/3.12959 [17] LEE B H K, TANG F C. Characteristics of the surface pressures on a F/A-18 vertical fin due to buffet[J]. Journal of Aircraft, 1994, 31(1): 228-235. DOI: 10.2514/3.46478 [18] LEVY Y, HESSELINK L, DEGANI D. Anomalous asymmetries in flows generated by algorithms that fail to conserve symmetry[J]. AIAA Journal, 1995, 33(6): 999-1007. DOI: 10.2514/3.12520 [19] MA B F, DENG X Y. Tip-disturbance effects on asymmetric vortex breakdown around a chined forebody[J]. Journal of Aircraft, 2008, 45(4): 1098-1104. DOI: 10.2514/1.31352 [20] PENG S H, JIRÁSEK A. Verification of RANS and hybrid RANS-LES modelling in computations of a delta-wing flow[C]//AIAA Fluid Dynamics Conference, Washington, D. C. . Reston, Virginia: AIAA, 2016. doi: 10.2514/6.2016-3480 [21] 刘周, 杨云军, 周伟江, 等. 基于RANS-LES混合方法的翼型大迎角非定常分离流动研究[J]. 航空学报, 2014, 35(2): 372-380.LIU Z, YANG Y J, ZHOU W J, et al. Study of unsteady separation flow around airfoil at high angle of attack using hybrid RANS-LES method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 372-380. (in Chinese) [22] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]//30th Aerospace Sciences Meeting and Exhibit, Reno, NV. Reston, Virginia: AIAA, 1992. doi: 10.2514/6.1992-439 [23] JONES W P, LAUNDER B E. The prediction of laminarization with a two-equation model of turbulence[J]. International Journal of Heat and Mass Transfer, 1972, 15(2): 301-314. DOI: 10.1016/0017-9310(72)90076-2 [24] WILCOX D C. Reassessment of the scale-determining equation for advanced turbulence models[J]. AIAA Journal, 1988, 26(11): 1299-1310. DOI: 10.2514/3.10041 [25] SMAGORINSKY J. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 1963, 91(3): 99-164. DOI:10.1175/1520-0493(1963)091<0099: gcewtp>2.3.co;2 [26] SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3): 181-195.https://www.cobaltcfd.com/pdfs/TCFD_2006_des_grid_densities.pdf DOI: 10.1007/s00162-006-0015-0 [27] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649. DOI: 10.1016/j.ijheatfluidflow.2008.07.001 [28] SHUR M L, SPALART P R, STRELETS M K, et al. An enhanced version of DES with rapid transition from RANS to LES in separated flows[J]. Flow, Turbulence and Combustion, 2015, 95(4): 709-737. DOI: 10.1007/s10494-015-9618-0 [29] GUSEVA E K, GARBARUK A V, STRELETS M K. Assessment of delayed DES and improved delayed DES combined with a shear-layer-adapted subgrid length-scale in separated flows[J]. Flow, Turbulence and Combustion, 2017, 98(2): 481-502. DOI: 10.1007/s10494-016-9769-7 [30] 刘健. 临界迎角动态失速的涡破裂及大分离数值研究[D]. 北京: 清华大学, 2018.LIU J. Numerical studies on vortex breakdown and massive separation during dynamic stall near critical angle of attack[D]. Beijing: Tsinghua University, 2018. (in Chinese) [31] MITCHELL A M, MORTON S A, FORSYTHE J R, et al. Analysis of delta-wing vortical substructures using detached-eddy simulation[J]. AIAA Journal, 2006, 44(5): 964-972. DOI: 10.2514/1.755 [32] NONOMURA T, FUKUMOTO H, ISHIKAWA Y, et al. Mach-number effects on vortex breakdown in subsonic flows over delta wings[J]. AIAA Journal, 2013, 51(9): 2281-2286. DOI: 10.2514/1.J052321 [33] MORTON S. Detached-eddy simulations of vortex breakdown over a 70-degree delta wing[J]. Journal of Aircraft, 2009, 46(3): 746-755. DOI: 10.2514/1.4659 [34] SUN D, LI Q, ZHANG H X. Detached-eddy simulations on massively separated flows over a 76/40° double-delta wing[J]. Aerospace Science and Technology, 2013, 30(1): 33-45. DOI: 10.1016/j.ast.2013.07.001 [35] 刘健, 蒋永, 吴金华. 基于iDDES的双三角翼大迎角非定常涡破裂特征分析[J]. 工程力学, 2016, 33(4): 241-249, 256.LIU J, JIANG Y, WU J H. Analysis on characteristics of unsteady vortex breakdown flows around a double-delta wings at high incidence based on iddes method[J]. Engineering Mechanics, 2016, 33(4): 241-249, 256. (in Chinese) [36] GLASBY R S, ERWIN J T, STEFANSKI D L, et al. Introduction to COFFE: The next-generation HPCMP CREATE™-AV CFD solver[C]//54th AIAA Aerospace Sciences Meeting, 2016. https://ntrs.nasa.gov/api/citations/20160007758/downloads/20160007758.pdf doi: 10.2514/6.2016-0567 [37] DEAN J, CLIFTON J, BODKIN D, et al. High resolution CFD simulations of maneuvering aircraft using the CREATE-AV/kestrel solver[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida. Reston, Virginia: AIAA, 2011. AIAA 2011-1109. doi: 10.2514/6.2011-1109 [38] 李锋, 杨云军, 刘周, 等. 飞行器气动/飞行/控制一体化耦合模拟技术[J]. 空气动力学学报, 2015, 33(2): 156-161. doi: 10.7638/kqdlxxb-2014.0097LI F, YANG Y J, LIU Z, et al. Integrative simulation technique of coupled aerodynamics and flight dynamics with control law on a vehicle[J]. Acta Aerodynamica Sinica, 2015, 33(2): 156-161. (in Chinese) doi: 10.7638/kqdlxxb-2014.0097 [39] 马戎, 常兴华, 赫新, 等. 流动/运动松耦合与紧耦合计算方法及稳定性分析[J]. 气体物理, 2016, 1(6): 36-49.MA R, CHANG X H, HE X, et al. Loose and strong coupling methods for flow/kinematics coupled simulations and stability analysis[J]. Physics of Gases, 2016, 1(6): 36-49. (in Chinese) [40] 刘铁中, 李强, 李周复. 虚拟飞行器风洞的研究与实现[J]. 系统仿真学报, 2009, 21(14): 4397-4399, 4442.LIU T Z, LI Q, LI Z F. Research and implementation on virtual aircraft wind tunnel[J]. Journal of System Simulation, 2009, 21(14): 4397-4399, 4442. (in Chinese) [41] GILLARD W. AFRL F-22 dynamic wind tunnel test results[C]// 24th Atmospheric Flight Mechanics Conference, Portland, OR, USA. Reston, Virigina: AIAA, 1999. AIAA-99-4015. doi: 10.2514/6.1999-4015 [42] ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT, NEUILLY-SUR-SEINE(FRANCE). Cooperative Programme on dynamic wind tunnel experiments for maneuvering aircraft[R]. AGARD-AR-305, 1996. [43] KLEIN V, MURPHY P C, Curry T J. Analysis of wind tunnel longitudinal static and oscillatory data of the F-16XL aircraft[R]. NASA/TM-97-206276, 1997-12. https://ntrs.nasa.gov/api/citations/19980007406/downloads/19980007406.pdf [44] BRANDON J, FOSTER J. Recent dynamic measurements and considerations for aerodynamic modeling of fighter airplane configurations[C]//23rd Atmospheric Flight Mechanics Conference, Boston, MA. Reston, Virginia: AIAA, 1998. doi: 10.2514/6.1998-4447 [45] 沈礼敏. CARDC旋转天平试验系统[J]. 气动实验与测量控制, 1995, 9(1): 18-24. [46] 中国人民解放军总装备部军事训练教材工作委员会. 低速风洞试验[M]. 北京: 国防工业出版社, 2002. [47] 中国人民解放军总装备部军事训练教材工作委员会. 高速风洞试验[M]. 北京: 国防工业出版社, 2002. [48] 恽起麟, 编著. 实验空气动力学[M]. 北京: 国防工业出版社, 2003. [49] 孙海生. 飞行器大攻角升沉平移加速度导数测量技术[J]. 流体力学实验与测量, 2001, 15(4): 15-19.SUN H S. A measurement technique for derivatives of aircraft due to acceleration in heave and sideslip at high angle of attack[J]. Experiments and Measurements in Fluid Mechanics, 2001, 15(4): 15-19. (in Chinese) [50] 李周复. 风洞特种试验技术[M]. 北京: 航空工业出版社, 2010. [51] 黄浩, 张永升, 刘丹. FD09风洞旋转天平试验系统研制[J]. 航空工程进展, 2014, 5(4): 429-434. doi: 10.3969/j.issn.1674-8190.2014.04.004HUANG H, ZHANG Y S, LIU D. Development of rotary balance system in FD09Wind tunnel[J]. Advances in Aeronautical Science and Engineering, 2014, 5(4): 429-434. (in Chinese) doi: 10.3969/j.issn.1674-8190.2014.04.004 [52] 马军, 姜裕标, 祝明红, 等. Φ5m立式风洞旋转天平试验装置研制[J]. 实验流体力学, 2012, 26(2): 77-80. doi: 10.3969/j.issn.1672-9897.2012.02.017MA J, JIANG Y B, ZHU M H, et al. Development of the rotary balance system in Φ5m vertical wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 77-80. (in Chinese) doi: 10.3969/j.issn.1672-9897.2012.02.017 [53] 杨文, 卜忱, 眭建军. 某复杂构型飞机偏航-滚转耦合运动非定常气动力特性实验研究[J]. 实验流体力学, 2016, 30(3): 61-65.YANG W, BU C, SUI J J. Investigation of the unsteady aerodynamic characteristics of a fighter with complex configuration undergoing yaw-roll coupling oscillation motion[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 61-65. (in Chinese) [54] 黄达, 吴根兴. 飞机偏航-滚转耦合运动非定常空气动力实验[J]. 南京航空航天大学学报, 2005, 37(4): 408-411. doi: 10.3969/j.issn.1005-2615.2005.04.002HUANG D, WU G X. Experiment on fighter oscillating in large amplitude yaw-roll motion[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2005, 37(4): 408-411. (in Chinese) doi: 10.3969/j.issn.1005-2615.2005.04.002 [55] 程厚梅, 编著. 风洞实验干扰与修正[M]. 北京: 国防工业出版社, 2003. [56] 黄达, 吴根兴. 模型大振幅运动风洞壁面影响实验研究[J]. 南京理工大学学报(自然科学版), 2003, 27(4): 349-354.HUANG D, WU G X. Experiment investigation of unsteady wall interference to model pitching in large angle of attack[J]. Journal of Nanjing University of Science and Technology, 2003, 27(4): 349-354. (in Chinese) [57] 尹陆平, 贺中, 于志松, 等. 亚声速大迎角模型试验洞壁干扰修正方法研究[J]. 流体力学实验与测量, 2000, 14(3): 37-41.YIN L P, HE Z, YU Z S, et al. Research on subsonic wall interference correction for model tests at high angle of attack[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(3): 37-41. (in Chinese) [58] 孙海生, 祝明红, 黄勇, 等. Φ3.2m风洞战斗机大迎角试验关键技术研究[J]. 实验流体力学, 2011, 25(3): 50-55. doi: 10.3969/j.issn.1672-9897.2011.03.012SUN H S, ZHU M H, HUANG Y, et al. Key technique for high angle of attack test of fighter aircraft in Φ3.2m low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3): 50-55. (in Chinese) doi: 10.3969/j.issn.1672-9897.2011.03.012 [59] 贺中, 范召林. 大迎角试验洞壁干扰的工程修正[J].气动研究与发展, 2002, 12(1): 24-30. [60] 范召林, 陈作斌, 贺中, 等. 跨声速风洞模型试验非线性洞壁干扰修正方法研究[J]. 流体力学实验与测量, 1998, 12(2): 9-19.FAN Z L, CHEN Z B, HE Z, et al. Investigation on non-linear wall interference correction for model tests in transonic wind tunnel[J]. Experiments and Measurements in Fluid Mechanics, 1998, 12(2): : 9-19. (in Chinese) [61] GREENWELL D I. Frequency effects on dynamic stability derivatives obtained from small-amplitude oscillatory testing[J]. Journal of Aircraft, 1998, 35(5): 776-783. DOI: 10.2514/2.2369 [62] ABRAMOV N, GOMAN M, KHRABROV A. Aircraft dynamics at high incidence flight with account of unsteady aerodynamic effects[C]// AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, Rhode Island. Reston, Virginia: AIAA, 2004. AIAA 2004-5274. doi: 10.2514/6.2004-5274 [63] LIN G F. Effects of nonlinear unsteady aerodynamics on performance, stability and control of an F-18 configuration[D]. University of Kansas, 1997. [64] 沈霖, 黄达, 吴根兴, 等. 战斗机大迎角非定常气动力建模[J]. 航空学报, 2020, 41(6): 523440.SHEN L, HUANG D, WU G X, et al. Unsteady aerodynamic modeling for fighter configuration at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523440. (in Chinese) [65] ABZUG M J, LARRABEE E E. Spinning and recovery[M]//Airplane Stability and Control, Second Edition. Cambridge: Cambridge University Press, 2002: 121-145. doi: 10.1017/cbo9780511607141.011 [66] 王海峰, 杨朝旭, 王成良. 先进战斗机大迎角运动特性分析和试验[J]. 飞行力学, 2006, 24(2): 5-8. doi: 10.3969/j.issn.1002-0853.2006.02.002WANG H F, YANG C X, WANG C L. High angles of attack character analysis and test for an advanced fighter[J]. Flight Dynamics, 2006, 24(2): 5-8. (in Chinese) doi: 10.3969/j.issn.1002-0853.2006.02.002 [67] 王海峰. 飞机大迎角特性理论分析和试飞技术研究[J]. 航空工程, 2003, (3): 2-12.WANG H F. Analysis of Characteristic at high angle of attack and research on flight test technology[J]. Aviation Engineering, 2003, (3): 2-12. (in Chinese) [68] KALVISTE J. Use of rotary balance and forced oscillation test data in six degrees of freedom simulation[C]//9th Atmospheric Flight Mechanics Conference, San Diego, CA. Reston, Virginia: AIAA, 1982. AIAA-82-1364. doi: 10.2514/6.1982-1364 [69] KAY J, RALSTON J, LASH S, et al. Development of non-linear, low-speed aerodynamic model for the F-16/VISTA[C]// 22nd Atmospheric Flight Mechanics Conference, New Orleans, LA, USA. Reston, Virigina: AIAA, 1997. AIAA-97-3576. doi: 10.2514/6.1997-3576 [70] KAY J. Acquiring and modeling unsteady aerodynamic characteristics[C]// Atmospheric Flight Mechanics Conference, Denver, CO. Reston, Virginia: AIAA, 2000. , AIAA-2000-3907. doi: 10.2514/6.2000-3907 [71] 王海峰. 战斗机推力矢量关键技术及应用展望[J]. 航空学报, 2020, 41(6): 524057.WANG H F. Key technologies and future applications of thrust vectoring on fighter aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524057. (in Chinese) [72] GREENWELL D. A review of unsteady aerodynamic modelling for flight dynamics of manoeuvrable aircraft[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, Rhode Island. Reston, Virginia: AIAA, 2004. AIAA-2004-5276. doi: 10.2514/6.2004-5276 [73] 汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报, 2016, 37(8): 2331-2347.WANG Q, QIAN W Q, DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2331-2347. (in Chinese) [74] WANG Z J, LAN C, BRANDON J. Fuzzy logic modeling of nonlinear unsteady aerodynamics[C]//23rd Atmospheric Flight Mechanics Conference, Boston, MA. Reston, Virginia: AIAA, 1998. AIAA 98-4351. doi: 10.2514/6.1998-4351 [75] WANG Z J, LAN C, BRANDON J. Fuzzy logic modeling of lateral-directional unsteady aerodynamics[C]//24th Atmospheric Flight Mechanics Conference, Portland, OR. Reston, Virginia: AIAA, 1999. AIAA 99-4012. doi: 10.2514/6.1999-4012 [76] WANG Z J, LAN C, BRANDON J. Unsteady aerodynamic effects on the flight characteristics of an F-16XL configuration[C]// Atmospheric Flight Mechanics Conference, Denver, CO. Reston, Virginia: AIAA, 2000. AIAA 2000-3910. doi: 10.2514/6.2000-3910 [77] HU C C, LAN C, BRANDON J. Unsteady aerodynamic models for maneuvering aircraft[C]// Flight Simulation and Technologies, Monterey, CA. Reston, Virginia: AIAA, 1993. AIAA 93-3626-CP. doi: 10.2514/6.1993-3626 [78] LIN G F, SONGSTER T, LAN C. Effect of high-alpha unsteady aerodynamics on longitudinal dynamics of an F-18 configuration[C]//20th Atmospheric Flight Mechanics Conference, Baltimore, MD. Reston, Virginia: AIAA, 1995. AIAA 95-3488. doi: 10.2514/6.1995-3488 [79] 高正红, 焦天峰. 飞行器快速俯仰产生大迎角非定常气动力数学模型研究[J]. 西北工业大学学报, 2001, 19(4): 506-510. doi: 10.3969/j.issn.1000-2758.2001.04.004GAO Z H, JIAO T F. On an unsteady aerodynamics model for pitching-oscillating body at high angle of attack[J]. Journal of Northwestern Polytechnical University, 2001, 19(4): 506-510. (in Chinese) doi: 10.3969/j.issn.1000-2758.2001.04.004 [80] JIAO T F, GAO Z H. Unsteady aerodynamic modeling at high angles of attack[C]//Atmospheric Flight Mechanics Conference, Denver, CO. Reston, Virginia: AIAA, 2000. AIAA-2000-3908. doi: 10.2514/6.2000-3908 [81] 陈海萍, 高正红. 大迎角非定常气动力数学模型研究[J]. 飞行力学, 2008, 26(5): 10-12, 16.CHEN H P, GAO Z H. Unsteady aerodynamic modeling of aircraft at high angle of attack[J]. Flight Dynamics, 2008, 26(5): 10-12, 16. (in Chinese) [82] 汪清, 蔡金狮. 飞机大攻角非定常气动力建模与辨识[J]. 航空学报, 1996, 17(4): 391-398. doi: 10.3321/j.issn:1000-6893.1996.04.003WANG Q, CAI J S. Unsteady aerodynamic modeling and identification of airplane at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(4): 391-398. (in Chinese) doi: 10.3321/j.issn:1000-6893.1996.04.003 [83] 汪清, 何开锋, 钱炜祺, 等. 飞机大攻角空间机动气动力建模研究[J]. 航空学报, 2004, 25(5): 447-450. doi: 10.3321/j.issn:1000-6893.2004.05.004WANG Q, HE K F, QIAN W Q, et al. Aerodynamic modeling of spatial maneuvering aircraft at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(5): 447-450. (in Chinese) doi: 10.3321/j.issn:1000-6893.2004.05.004 [84] 黄达, 郑万祥. 基于风洞试验的非定常气动力微分方程建模方法[J]. 南京航空航天大学学报, 2014, 46(4): 599-602. doi: 10.3969/j.issn.1005-2615.2014.04.017HUANG D, ZHENG W X. Unsteady aerodynamic modeling method using differential equations based on wind tunnel test[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(4): 599-602. (in Chinese) doi: 10.3969/j.issn.1005-2615.2014.04.017 [85] 史志伟, 吴根兴. 多变量非线性非定常气动力的模糊逻辑模型[J]. 空气动力学学报, 2001, 19(1): 103-108. doi: 10.3969/j.issn.0258-1825.2001.01.015SHI Z W, WU G X. Fuzzy logic model of nonlinear unsteady aerodynamics with multiple variables[J]. Acta Aerodynamica Sinica, 2001, 19(1): 103-108. (in Chinese) doi: 10.3969/j.issn.0258-1825.2001.01.015 [86] 尹江辉, 刘昶, 王立新. 模糊神经网络在过失速机动飞行中的应用[J]. 飞行力学, 2001, 19(1): 42-44, 54. doi: 10.3969/j.issn.1002-0853.2001.01.011YIN J H, LIU C, WANG L X. Fuzzy neural network control with application to post-stall maneuvers[J]. Flight Dynamics, 2001, 19(1): 42-44, 54. (in Chinese) doi: 10.3969/j.issn.1002-0853.2001.01.011 [87] 刘志涛, 孙海生, 姜裕标, 等. 非线性非定常气动力的模糊逻辑建模方法[J]. 实验流体力学, 2005, 19(1): 99-103. doi: 10.3969/j.issn.1672-9897.2005.01.020LIU Z T, SUN H S, JIANG Y B, et al. Fuzzy logic modeling of nonlinear unsteady aerodynamics[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1): 99-103. (in Chinese) doi: 10.3969/j.issn.1672-9897.2005.01.020 [88] 孔轶男, 王立新, 何开锋, 等. 过失速机动的模糊逻辑建模仿真[J]. 北京航空航天大学学报, 2007, 33(10): 1174-1177. doi: 10.3969/j.issn.1001-5965.2007.10.011KONG Y N, WANG L X, HE K F, et al. Fuzzy logic models for unsteady post stall maneuver[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1174-1177. (in Chinese) doi: 10.3969/j.issn.1001-5965.2007.10.011 [89] 史志伟, 吴根兴, 黄达. 基于大振幅谐波运动的非定常气动模型风洞实验验证[J]. 空气动力学学报, 2010, 28(6): 650-654. doi: 10.3969/j.issn.0258-1825.2010.06.006SHI Z W, WU G X, HUANG D. The validation of unsteady aerodynamic model based on the high amplitude harmonic rolling motion test[J]. Acta Aerodynamica Sinica, 2010, 28(6): 650-654. (in Chinese) doi: 10.3969/j.issn.0258-1825.2010.06.006 [90] 黄达. 飞行器大振幅运动非定常空气动力特性研究[D]. 南京: 南京航空航天大学, 2007.HUANG D. Unsteady aerodynamic characteristics for the aircraft oscilation in large amplitude[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007(in Chinese). [91] 张婉鑫, 朱纪洪. 大迎角非定常气动参数辨识研究[J]. 清华大学学报(自然科学版), 2017, 57(7): 673-679.ZHANG W X, ZHU J H. Unsteady aerodynamic identification of aircraft at high angles of attack[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(7): 673-679. (in Chinese) [92] 姜裕标, 沈礼敏. 飞行器非定常气动力试验与建模研究[J]. 流体力学实验与测量, 2000, 14(4): 26-31.JIANG Y B, SHEN L M. An experimental investigation on unsteady aerodynamics and modeling for a fighter configuration[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(4): 26-31. (in Chinese) [93] 黄达, 李志强, 吴根兴. 大振幅非定常实验数学模型与动导数仿真实验[J]. 空气动力学学报, 1999, 17(2): 219-223. doi: 10.3969/j.issn.0258-1825.1999.02.014HUANG D, LI Z Q, WU G X. Dynamic derivative simulation and mathematical model of the wind tunnel test about a model pitching in very large amplitude[J]. Acta Aerodynamica Sinica, 1999, 17(2): 219-223. (in Chinese) doi: 10.3969/j.issn.0258-1825.1999.02.014 [94] 赵磊. 大迎角气动力预示方法研究[D]. 北京: 北京空气动力研究所, 1997. [95] WANG Q, HE K F, QIAN W Q, et al. Unsteady aerodynamics modeling for flight dynamics application[J]. Acta Mechanica Sinica, 2012, 28(1): 14-23. DOI: 10.1007/s10409-012-0012-z [96] 陈翔, 王海峰, 展京霞, 等. 基于循环神经网络的非定常气动力建模研究[J]. 气动研究与实验, 2020, (1): 101-108. doi: 10.12050/are20200107CHEN X, WANG H F, ZHAN J X, et al. Unsteady aerodynamic modeling based on recurrent neural network[J]. Aerodynamic Research&Experiment, 2020, (1): 101-108. (in Chinese) doi: 10.12050/are20200107 [97] WANG Q, QIAN W Q, HE K F. Unsteady aerodynamic modeling at high angles of attack using support vector machines[J]. Chinese Journal of Aeronautics, 2015, 28(3): 659-668. DOI: 10.1016/j.cja.2015.03.010 [98] TOBAK M, SCHIFF L B. On the formulation of the aerodynamics in aircraft dynamics[R]. NASA TR-R-456, 1976. https://ntrs.nasa.gov/api/citations/19760007994/downloads/19760007994.pdf [99] SCHIFF L, TOBAK M, MALCOLM G. Mathematical modeling of the aerodynamics of high-angle-of-attack maneuvers[C]// 6th Atmospheric Flight Mechanics Conference, Danvers, MA, USA. Reston, Virigina: AIAA, 1980. AIAA-80-1583. doi: 10.2514/6.1980-1583 [100] TOBAK M. , CHAPMAN G T, SCHIFF L B. Mathematical modeling of the aerodynamic characteristics in flight dynamics[R]. NASA-TM-85880, 1984. [101] GUPTA N, ILIFF K. Identification of integro-differential systems for application to unsteady aerodynamics and aeroelasticity[C]// 12th Atmospheric Flight Mechanics Conference, Snowmass, CO. Reston, Virginia: AIAA, 1985. AIAA-85-1763. doi: 10.2514/6.1985-1763 [102] LIN G F, LAN C, BRANDON J, et al. A generalized dynamic aerodynamic coefficient model for flight dynamics applications[C]// 22nd Atmospheric Flight Mechanics Conference, New Orleans, LA. Reston, Virginia: AIAA, 1997. AIAA-97-3643. doi: 10.2514/6.1997-3643 [103] GOMAN M, KHRABROV A. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[J]. Journal of Aircraft, 1994, 31(5): 1109-1115. DOI: 10.2514/3.46618 [104] ABRAMOV N B, GOMAN M G, GREENWELL D I, et al. Two-step linear regression method for identification of high incidence unsteady aerodynamic model[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Montreal, Canada. Reston, Virigina: AIAA, 2001. AIAA-2001-4080. doi: 10.2514/6.2001-4080 [105] VAPNIK V N. The nature of statistical learning theory[M]. New York, NY: Springer New York, 1995. doi: 10.1007/978-1-4757-2440-0 [106] ROKHSAZ K, STECK J E. Use of neural networks in control of high-alpha maneuvers[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(5): 934-939. DOI: 10.2514/3.21104 [107] ROKHSAZ K, STECK J E. Application of artificial neural networks in nonlinear aerodynamics and aircraft design[C]//SAE Technical Paper Series, 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. doi: 10.4271/932533 [108] 卿理勋. 几种动态模型自由飞试验技术[J]. 飞行力学, 1995, 13(3): : 18-23.QING L X. Dynamic model free-flight test techniques[J]. Flight Dynamics, 1995, 13(3): : 18-23. (in Chinese) [109] 颜巍. 大型飞机研制与模型自由飞试验技术[J]. 民用飞机设计与研究, 2019(4): 51-55.YAN W. Free-flight model technique during development of large civil aircraft[J]. Civil Aircraft Design & Research, 2019(4): 51-55. (in Chinese) [110] 颜巍. 俄罗斯飞机模型动态试验与失速/过失速模态研究回顾[J]. 民用飞机设计与研究, 2020(2): 77-84.YAN W. Summary of dynamically scaled aircraft model experiments and stall / post-stall (spin) mode research in Russia[J]. Civil Aircraft Design & Research, 2020(2): 77-84. (in Chinese) [111] LAWRENCE F, MILLS B. Status update of the AEDC wind tunnel Virtual Flight Testing development program[C]//40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV. Reston, Virginia: AIAA, 2002. doi: 10.2514/6.2002-168 [112] REIN M, HÖHLER G, SCHÜTTE A, et al. Ground-based simulation of complex maneuvers of a delta-wing aircraft[J]. Journal of Aircraft, 2008, 45(1): 286-291. DOI: 10.2514/1.30033 [113] BERGMANN A, HUEBNER A, LOESER T. Experimental and numerical research on the aerodynamics of unsteady moving aircraft[J]. Progress in Aerospace Sciences, 2008, 44(2): 121-137. DOI: 10.1016/j.paerosci.2007.10.006 [114] MULLIN S N. The evolution of the F-22 advanced tactical fighter (1992 Wright Brothers Lecture)[C]// Flight Simulation Technologies Conference, Hilton Head Island, SC, U. S. A. , 1992. doi: 10.2514/6.1992-4188 [115] MURRI D G, NGUYEN L T, GRAFTON S B. Wind-tunnel free-flight investigation of a model of a forward-swept-wing fighter configuration[R]. NASA-TP-2230, 1984. https://ntrs.nasa.gov/api/citations/19840009116/downloads/19840009116.pdf [116] 李永富. 用风洞技术预测飞机的失速/尾旋特性[J]. 航空与航天, 2004(4): 12-15, 18. [117] 李永富, 陈洪. 研究尾旋的风洞试验技术[M]. 北京: 国防工业出版社, 2002.LI Y F, CHEN H. Wind Tunnel Techniques for Studying Spin[M]. Beijing: National Defense Industry Press, 2002. (in Chinese) [118] 李永富. 立式风洞尾旋试验技术[J]. 流体力学实验与测量, 1999, 13(1): 13-18.LI Y F. The test technique of spin for vertical wind tunnel[J]. Experiments and Measurements in Fluid Mechanics, 1999, 13(1): 13-18. (in Chinese) [119] 马军, 蒋敏, 宋晋. Φ5m立式风洞测试技术发展概况[C]//中国空气动力学会测控技术专委会第六届四次学术交流会论文集. 襄阳, 2013: 217-222. [120] 马军, 宋晋, 刘蓓, 等. 立式风洞全视场尾旋姿态测量技术研究[J]. 实验流体力学, 2016, 30(6): 66-70, 104.MA J, SONG J, LIU B, et al. Design and implementationfor full field of view measurement scheme in vertical wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 66-70, 104. (in Chinese) [121] 祝明红, 王勋年, 李宝, 等. Φ5m立式风洞尾旋试验技术[J]. 实验流体力学, 2007, 21(3): 49-53. doi: 10.3969/j.issn.1672-9897.2007.03.010ZHU M H, WANG X N, LI B, et al. Free-spin test technique in Φ5m vertical wind tunnel in CARDC[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 49-53. (in Chinese) doi: 10.3969/j.issn.1672-9897.2007.03.010 [122] MAGILL J C, CATALDI P, MORENCY J R, et al. Demonstration of a wire suspension for wind-tunnel virtual flight testing[J]. Journal of Spacecraft and Rockets, 2009, 46(3): 624-633. DOI: 10.2514/1.39188 [123] 李浩. 风洞虚拟飞行试验相似准则和模拟方法研究[D]. 绵阳: 中国空气动力研究与发展中心, 2012. [124] 赵忠良, 吴军强, 李浩, 等. 2.4m跨声速风洞虚拟飞行试验技术研究[J]. 航空学报, 2016, 37(2): 504-512.ZHAO Z L, WU J Q, LI H, et al. Investigation of virtual flight testing technique based on 2.4m transonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 504-512. (in Chinese) [125] 李浩, 赵忠良, 范召林. 风洞虚拟飞行试验模拟方法研究[J]. 实验流体力学, 2011, 25(6): 72-76. doi: 10.3969/j.issn.1672-9897.2011.06.014LI H, ZHAO Z L, FAN Z L. Simulation method for wind tunnel based virtual flight testing[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 72-76. (in Chinese) doi: 10.3969/j.issn.1672-9897.2011.06.014 [126] 胡静, 李潜. 风洞虚拟飞行试验技术初步研究[J]. 实验流体力学, 2010, 24(1): 95-99. doi: 10.3969/j.issn.1672-9897.2010.01.018HU J, LI Q. Primary investigation of the virtual flight testing techniques in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 95-99. (in Chinese) doi: 10.3969/j.issn.1672-9897.2010.01.018 [127] 尚祖铭, 吴佳莉, 牛中国, 等. 带等离子控制的飞翼布局飞机模型的风洞虚拟飞行试验[J]. 航空科学技术, 2019, 30(9): 40-46.SHANG Z M, WU J L, NIU Z G, et al. The wind tunnel virtual flight test of flying wing configuration aircraft model with the plasma actuation[J]. Aeronautical Science & Technology, 2019, 30(9): 40-46. (in Chinese) [128] 郭林亮, 祝明红, 孔鹏, 等. 风洞虚拟飞行模型机与原型机动力学特性分析[J]. 航空学报, 2016, 37(8): 2583-2593.GUO L L, ZHU M H, KONG P, et al. Analysis of dynamic characteristics between prototype aircraft and scaled-model of virtual flight test in wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2583-2593. (in Chinese) [129] 郭林亮, 祝明红, 傅澔, 等. 一种低速风洞虚拟飞行试验装置的建模与仿真[J]. 空气动力学学报, 2017, 35(5): 708-717, 726. doi: 10.7638/kqdlxxb-2017.0164GUO L L, ZHU M H, FU H, et al. Modeling and simulation for a low speed wind tunnel virtual flight test rig[J]. Acta Aerodynamica Sinica, 2017, 35(5): 708-717, 726. (in Chinese) doi: 10.7638/kqdlxxb-2017.0164 [130] 张石玉, 赵俊波, 付增良, 等. 类F-16飞行器风洞虚拟飞行试验研究[J]. 实验流体力学, 2020, 34(1): 49-54, 86.ZHANG S Y, ZHAO J B, FU Z L, et al. Wind tunnel based virtual flight testing research of F-16 fighter[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 49-54, 86. (in Chinese) [131] 郭林亮, 祝明红, 傅澔, 等. 水平风洞中开展飞机尾旋特性研究的理论分析[J]. 航空学报, 2018, 39(6): 122030.GUO L L, ZHU M H, FU H, et al. Theoretical analysis of research on aircraft spin characteristic in horizontal wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 122030. (in Chinese) [132] 孙海生, 岑飞, 聂博文, 等. 水平风洞模型自由飞试验技术研究现状及展望[J]. 实验流体力学, 2011, 25(4): 103-108. doi: 10.3969/j.issn.1672-9897.2011.04.020SUN H S, CEN F, NIE B W, et al. Present research status and prospective application of wind-tunnel free-flight test technique[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 103-108. (in Chinese) doi: 10.3969/j.issn.1672-9897.2011.04.020 [133] 岑飞, 聂博文, 刘志涛, 等. 面向先进战斗机研制的风洞模型飞行试验技术[J]. 航空学报, 2020, 41(6): 523444.CEN F, NIE B W, LIU Z T, et al. Wind tunnel model flight test technique for advanced fighter aircraft design[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523444. (in Chinese) [134] 张天姣, 汪清, 何开锋, 等. 风洞自由飞试验中气动参数辨识准度评价方法研究[J]. 实验流体力学, 2017, 31(1): 39-46.ZHANG T J, WANG Q, HE K F, et al. Research on accuracy assessment method of aerodynamic parameters identified from wind tunnel free-flight test data[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 39-46. (in Chinese) [135] 张天姣, 钱炜祺, 何开锋, 等. 基于最大似然法的风洞自由飞试验气动力参数辨识技术研究[J]. 实验流体力学, 2015, 29(5): 8-14.ZHANG T J, QIAN W Q, HE K F, et al. Research on aerodynamic parameter identification technology in wind tunnel free-flight test based on Maximum Likelihood Estimation[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(5): 8-14. (in Chinese) [136] 何开锋, 毛仲君, 汪清, 等. 缩比模型演示验证飞行试验及关键技术[J]. 空气动力学学报, 2017, 35(5): 670-679.HE K F, MAO Z J, WANG Q, et al. Demonstration and validation flight test of scaled aircraft model and its key technologies[J]. Acta Aerodynamica Sinica, 2017, 35(5): 670-679. (in Chinese) [137] 何开锋, 刘刚, 张利辉, 等. 航空器带动力自主控制模型飞行试验技术研究进展[J]. 实验流体力学, 2016, 30(2): 1-7.HE K F, LIU G, ZHANG L H, et al. Research progress on model flight test of powered aircraft with autonomous control system[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 1-7. (in Chinese) [138] ILIFF K W, WANG K C. Flight-determined subsonic longitudinal stability and control derivatives of the F-18 high angle of attack research vehicle[R]. NASA/TP-97-206539, 1997. https://ntrs.nasa.gov/api/citations/19980007172/downloads/19980007172.pdf [139] SMITH W, PELLICANO P. X-29 high angle-of-attack military utility flight test results[C]// 6th AIAA Biennial Flight Test Conference, Hilton Head, SC. Reston, Virigina: AIAA, 1992. AIAA-1992-4080. doi: 10.2514/6.1992-4080 [140] 蔡金狮. 飞行器气动参数辨识进展[J]. 力学进展, 1987, 17(4): 467-478.CAI J S. Advances in identification of aircraft aerodynamic parameters[J]. Advances in Mechanics, 1987, 17(4): 467-478. (in Chinese) [141] MILLIKEN W F JR. Progress in dynamic stability and control research[J]. Journal of the Aeronautical Sciences, 1947, 14(9): 493-519. DOI: 10.2514/8.1434 [142] KLEIN V, MURPHY P C. Aerodynamic parameters of high performance aircraft estimated from wind tunnel and flight test data[R]. NASA/TM-1997-207993, 1998. https://ntrs.nasa.gov/api/citations/19980210397/downloads/19980210397.pdf -