留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

战斗机大迎角气动特性研究技术的发展与应用

王海峰 展京霞 陈科 陈翔 陈梓钧

王海峰, 展京霞, 陈科, 等. 战斗机大迎角气动特性研究技术的发展与应用[J]. 空气动力学学报, 2022, 40(1): 1−25 doi: 10.7638/kqdlxxb-2021.0306
引用本文: 王海峰, 展京霞, 陈科, 等. 战斗机大迎角气动特性研究技术的发展与应用[J]. 空气动力学学报, 2022, 40(1): 1−25 doi: 10.7638/kqdlxxb-2021.0306
WANG H F, ZHAN J X, CHEN K, et al. Development and application of aerodynamic research technologies for fighters at high angle of attack[J]. Acta Aerodynamica Sinica, 2022, 40(1): 1−25 doi: 10.7638/kqdlxxb-2021.0306
Citation: WANG H F, ZHAN J X, CHEN K, et al. Development and application of aerodynamic research technologies for fighters at high angle of attack[J]. Acta Aerodynamica Sinica, 2022, 40(1): 1−25 doi: 10.7638/kqdlxxb-2021.0306

战斗机大迎角气动特性研究技术的发展与应用

doi: 10.7638/kqdlxxb-2021.0306
详细信息
    作者简介:

    王海峰*(1964-),甘肃人,研究员,研究方向:飞行器设计,飞行控制与飞行试验,飞行器健康管理与自主保障. E-mail:wanghf611@163.com

  • 中图分类号: V211.24

Development and application of aerodynamic research technologies for fighters at high angle of attack

  • 摘要: 飞机布局的大迎角气动特性是决定飞行包线左边界的主要因素之一。 飞行包线左边界区域的扩展增强了飞机的大迎角机动性和敏捷性,但是同时也极大地挑战着飞机的安全。几十年来,随着大迎角飞行研究技术的发展,战斗机飞行不断突破失速迎角附近及以上区域,将飞行左边界左移,扩大了飞行包线,减少了飞行限制,挖掘了战斗机的作战潜能。本文对战斗机大迎角飞行相关的气动特性研究技术,包括流动机理研究、数值计算方法研究、风洞气动试验、气动建模与数据库构建、气动与控制综合验证等关键技术的发展与应用进行了阐述。基于这些技术的发展,结合工程实践经验,提出了战斗机大迎角气动特性研究的整体思路和方法,包括大迎角气动力预先设计、气动力获取、气动力表达、气动力综合分析和气动-运动-控制一体化验证五个部分,以供相关装备研制参考。
  • 图  1  大迎角非线性、非定常气动力

    Figure  1.  Nonlinear and unsteady aerodynamic forcesat high angle of attack

    图  2  大迎角涡升力占总升力的典型比例[6]

    Figure  2.  Typical proportion of vortex lift to total lift at high angle of attack[6]

    图  3  涡系干扰对升力系数的贡献

    Figure  3.  Contribution of vortex interaction to the lift coefficient

    图  4  鸭式布局大迎角典型涡系结构

    Figure  4.  Typical vortex structuresfor the canard configuration at high angles of attack

    图  5  前缘涡对微扰敏感性导致横航向非对称力矩的原理[19]

    Figure  5.  Mechanism of asymmetric lateral moment induced by the leading-edge vortex sensitivity[19]

    图  6  后掠机翼前缘涡破裂的机理解释[5]

    Figure  6.  Mechanism of the vortex breakdown on a backward swept wing[5]

    图  7  基于雷诺平均湍流模式和试验的俯仰力矩系数对比

    Figure  7.  Pitch moment comparison between RANS and wind tunnel test

    图  8  F-22过失速机动计算结果[37]

    Figure  8.  Numerical results of F-22 in the post-stall maneuver[37]

    图  9  F22开展的地面动态试验[41]

    Figure  9.  Dynamic tests in wind tunnels for F-22[41]

    图  10  动导数试验

    Figure  10.  Dynamic derivative tests

    图  11  旋转天平试验

    Figure  11.  Rotating balance tests

    图  12  运动频率对动导数的影响

    Figure  12.  Effect of moving frequencies on the dynamic derivative

    图  13  大迎角区旋转天平数据的非线性

    Figure  13.  Nonlinear aerodynamics caused by rotationat high angle of attack

    图  14  不同耦合比运动中的气动力迟滞环(${\theta _{j}}{\text{ = }}{35^ \circ },f = 0.5\;{\rm{Hz}}$)[64]

    Figure  14.  Hysteresis loops of aerodynamic forces for different yaw-to-roll ratios (${\theta _{j}}{\text{ = }}{35^ \circ },f = 0.5\;{\rm{Hz}}$)[64]

    图  15  国外典型虚拟飞行试验

    Figure  15.  Typical virtual flight tests in wind tunnels abroad

    图  16  美国的水平风洞自由飞试验

    Figure  16.  American free flight test in a horizontal wind tunnel

    图  17  国内多轴机动历程模拟系统

    Figure  17.  Multi-axis maneuver simulation systems in China

    图  18  风洞尾旋试验示意图[121]

    Figure  18.  Schematic diagram of spin test in a wind tunnel[121]

    图  19  风洞虚拟飞行试验原理图[111]

    Figure  19.  Schematic diagram of virtual flight test in a wind tunnel[111]

    图  20  水平风洞自由飞试验原理图[132]

    Figure  20.  Schematic diagram of free flight testin a horizontal wind tunnel[132]

    图  21  带动力缩比模型飞行试验系统构成[137]

    Figure  21.  Flight test system of scaled models with power[137]

    图  22  歼-10B飞机眼镜蛇机动

    Figure  22.  Cobra maneuver of J-10B

    图  23  歼-10B飞机直升机机动

    Figure  23.  Helicopter maneuver of J-10B

    图  24  歼-10B飞机全尺寸过失速机动飞行动作

    Figure  24.  Post-stall maneuver of J-10B in a full scale flight test

    图  25  大迎角气动特性综合设计与研究方法

    Figure  25.  Integrated method of design and research on aerodynamics at high angle of attack

    表  1  不同数值方法的特点

    Table  1.   Characteristics of different numerical methods

    计算方法思路置信度效率应用
    雷诺平均(RANS)将湍流全部简化
    为工程模型
    较低,可定性反映规律,
    但定量上与风洞试验有差异
    较高,分析周期
    在天的量级
    工程上作为风洞试验的补充,给出全机气动力的总量/
    分量和空间流场信息,用于全机的比对研究、机理分析等
    大涡模拟(LES)将某一小尺度以下的
    湍流简化为工程模型
    较高,定量可与
    风洞试验吻合
    最差,分析周期
    在年的量级
    仅用于学术研究,对于翼型、锥、柱等简单外形,
    给出动态气动力及脉动精细频谱
    分离涡模拟(DES)用大涡模拟计算分离流,
    其余用雷诺平均
    较高,定量可与
    风洞试验吻合
    较差,分析周期
    在月的量级
    多用于学术研究,未来可能用于工程计算,
    作为RANS的补充,用于全机气动机理分析
    下载: 导出CSV

    表  2  大迎角飞行综合验证技术的特点

    Table  2.   Characteristics of aerodynamics/dynamics/control synthesis tests

    综合验证试验技术直接观测的物理量试验环境支撑形式验证内容
    机动历程模拟试验迎角/侧滑角、全量气动力、
    机构角速率等
    风洞有支撑,模型相对支撑不能运动;
    模型运动由机构运动实现
    直接验证大迎角气动数据库
    风洞尾旋试验俯仰角、偏航角、滚转角、
    角速率、过载等
    风洞无支撑验证尾旋模态、尾旋平衡状态参数
    及尾旋改出操纵方法
    风洞虚拟飞行试验俯仰角、偏航角、滚转角、
    角速率/角加速率等
    风洞有支撑,模型相对支撑可以进行
    三轴自由转动;模型运动由模型在
    风洞中产生的气动力驱动
    验证大迎角偏离特性、
    三轴自由振荡特性等
    水平风洞自由飞试验迎角/侧滑角、俯仰角、
    偏航角、滚转角、角速率/
    角加速率、过载等
    风洞无支撑中小迎角平衡特性、操纵响应特性、控制律;
    大迎角偏离趋势(需结合推力矢量)
    缩比模型大气飞行试验迎角/侧滑角、俯仰角、
    偏航角、滚转角、角速率/
    角加速率、过载等
    大气环境无支撑低速全迎角包线飞行特性,包括平衡特性、
    偏离特性、尾旋进入/平衡/改出过程、过失速飞行,
    直接验证控制律/间接验证气动数据库
    全尺寸飞机飞行试验迎角/侧滑角、俯仰角、
    偏航角、滚转角、角速率/
    角加速率、过载等
    大气环境无支撑全速域全包线飞行性能和全系统性能验证;
    验证控制律/气动数据库
    下载: 导出CSV
  • [1] HERBST W B. Dynamics of air combat[J]. Journal of Aircraft, 1983, 20(7): 594-598. DOI: 10.2514/3.44916
    [2] 方宝瑞. 飞机气动布局设计[M]. 北京: 航空工业出版社, 1997.
    [3] 史忠科. 高性能飞机发展对控制理论的挑战[J]. 航空学报, 2015, 36(8): 2717-2734.

    SHI Z K. Challenge of control theory in the presence of high performance aircraft development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2717-2734. (in Chinese)
    [4] WILLIAMS B, LANDMAN D, FLORY I, et al. The effect of systematic error in forced oscillation testing[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee. Reston, Virigina: AIAA, 2012. AIAA-2012-0768. doi: 10.2514/6.2012-768
    [5] GURSUL I. Review of unsteady vortex flows over slender delta wings[J]. Journal of Aircraft, 2005, 42(2): 299-319. DOI: 10.2514/1.5269.
    [6] CARR L W, CHANDRASEKHARA M S. Compressibility effects on dynamic stall[J]. Progress in Aerospace Sciences, 1996, 32(6): 523-573. DOI: 10.1016/0376-0421(95)00009-7
    [7] 吴子牛, 白晨媛, 李娟, 等. 空气动力学[M]. 北京: 北京航空航天大学出版社, 2016.
    [8] POLHAMUS E C. Predictions of vortex-lift characteristics by a leading-edge suction analogy[J]. Journal of Aircraft, 1971, 8(4): 193-199. DOI: 10.2514/3.44254
    [9] 刘沛清, 邓学蓥, 马宝峰. 鸭式布局飞机水洞流场显示研究[J]. 流体力学实验与测量, 2002, 16(3): 26-31.

    LIU P Q, DENG X Y, MA B F. Water tunnel flow visualization study of a canard-configuration aircraft model[J]. Experiments and Measurements in Fluid Mechanics, 2002, 16(3): 26-31. (in Chinese)
    [10] 刘沛清, 易渊. 鸭式布局大迎角复杂涡系干扰与控制技术[J]. 空气动力学学报, 2020, 38(6): 1034-1046.

    LIU P Q, YI Y. Vortex interaction mechanism and control technology of canard configuration at high angle of attack[J]. Acta Aerodynamica Sinica, 2020, 38(6): 1034-1046. (in Chinese)
    [11] ROCKWELL D. Vortex-body interactions[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 199-229. DOI: 10.1146/annurev.fluid.30.1.199
    [12] 李栋, 付海鸣, 张振辉, 等. 机身前体横截面形状对三角翼涡破裂位置的影响[J]. 航空学报, 2011, 32(8): 1400-1410.

    LI D, FU H M, ZHANG Z H, et al. Influence of forebody cross-sectional shape on delta wing vortex burst location[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1400-1410. (in Chinese)
    [13] 宋文骢, 谢品, 郑遂, 等. 一种小展弦比高升力飞机的气动布局研究[J]. 中国工程科学, 2001, 3(8): 70-75. doi: 10.3969/j.issn.1009-1742.2001.08.012

    SONG W C, XIE P, ZHENG S, et al. A research on the aerodynamic characteristics of a small aspect ratio, high lift fighter configuration[J]. Engineering Science, 2001, 3(8): 70-75. (in Chinese) doi: 10.3969/j.issn.1009-1742.2001.08.012
    [14] 宋文骢. 鸭式布局飞机的发展[C]//中国航空学会航空百年学术论坛, 中国航空学会总体专业分会第六届学术交流会论文集, 2003: 16-23.
    [15] 郑遂, 展京霞, 曹原, 等. 放宽纵向静稳定性对战斗机布局升阻比特性的影响[J]. 南京航空航天大学学报, 2008, 40(4): 556-560. doi: 10.3969/j.issn.1005-2615.2008.04.029

    ZHENG S, ZHAN J X, CAO Y, et al. Effect of relaxed longitudinal static stability on lift-to-drag ratio of aircraft configurations[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(4): 556-560. (in Chinese) doi: 10.3969/j.issn.1005-2615.2008.04.029
    [16] CANBAZOGLU S, LIN J C, WOLFE S, et al. Buffeting of fin - Distortion of incident vortex[J]. AIAA Journal, 1995, 33(11): 2144-2150. DOI: 10.2514/3.12959
    [17] LEE B H K, TANG F C. Characteristics of the surface pressures on a F/A-18 vertical fin due to buffet[J]. Journal of Aircraft, 1994, 31(1): 228-235. DOI: 10.2514/3.46478
    [18] LEVY Y, HESSELINK L, DEGANI D. Anomalous asymmetries in flows generated by algorithms that fail to conserve symmetry[J]. AIAA Journal, 1995, 33(6): 999-1007. DOI: 10.2514/3.12520
    [19] MA B F, DENG X Y. Tip-disturbance effects on asymmetric vortex breakdown around a chined forebody[J]. Journal of Aircraft, 2008, 45(4): 1098-1104. DOI: 10.2514/1.31352
    [20] PENG S H, JIRÁSEK A. Verification of RANS and hybrid RANS-LES modelling in computations of a delta-wing flow[C]//AIAA Fluid Dynamics Conference, Washington, D. C. . Reston, Virginia: AIAA, 2016. doi: 10.2514/6.2016-3480
    [21] 刘周, 杨云军, 周伟江, 等. 基于RANS-LES混合方法的翼型大迎角非定常分离流动研究[J]. 航空学报, 2014, 35(2): 372-380.

    LIU Z, YANG Y J, ZHOU W J, et al. Study of unsteady separation flow around airfoil at high angle of attack using hybrid RANS-LES method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 372-380. (in Chinese)
    [22] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]//30th Aerospace Sciences Meeting and Exhibit, Reno, NV. Reston, Virginia: AIAA, 1992. doi: 10.2514/6.1992-439
    [23] JONES W P, LAUNDER B E. The prediction of laminarization with a two-equation model of turbulence[J]. International Journal of Heat and Mass Transfer, 1972, 15(2): 301-314. DOI: 10.1016/0017-9310(72)90076-2
    [24] WILCOX D C. Reassessment of the scale-determining equation for advanced turbulence models[J]. AIAA Journal, 1988, 26(11): 1299-1310. DOI: 10.2514/3.10041
    [25] SMAGORINSKY J. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 1963, 91(3): 99-164. DOI:10.1175/1520-0493(1963)091<0099: gcewtp>2.3.co;2
    [26] SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3): 181-195.https://www.cobaltcfd.com/pdfs/TCFD_2006_des_grid_densities.pdf DOI: 10.1007/s00162-006-0015-0
    [27] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649. DOI: 10.1016/j.ijheatfluidflow.2008.07.001
    [28] SHUR M L, SPALART P R, STRELETS M K, et al. An enhanced version of DES with rapid transition from RANS to LES in separated flows[J]. Flow, Turbulence and Combustion, 2015, 95(4): 709-737. DOI: 10.1007/s10494-015-9618-0
    [29] GUSEVA E K, GARBARUK A V, STRELETS M K. Assessment of delayed DES and improved delayed DES combined with a shear-layer-adapted subgrid length-scale in separated flows[J]. Flow, Turbulence and Combustion, 2017, 98(2): 481-502. DOI: 10.1007/s10494-016-9769-7
    [30] 刘健. 临界迎角动态失速的涡破裂及大分离数值研究[D]. 北京: 清华大学, 2018.

    LIU J. Numerical studies on vortex breakdown and massive separation during dynamic stall near critical angle of attack[D]. Beijing: Tsinghua University, 2018. (in Chinese)
    [31] MITCHELL A M, MORTON S A, FORSYTHE J R, et al. Analysis of delta-wing vortical substructures using detached-eddy simulation[J]. AIAA Journal, 2006, 44(5): 964-972. DOI: 10.2514/1.755
    [32] NONOMURA T, FUKUMOTO H, ISHIKAWA Y, et al. Mach-number effects on vortex breakdown in subsonic flows over delta wings[J]. AIAA Journal, 2013, 51(9): 2281-2286. DOI: 10.2514/1.J052321
    [33] MORTON S. Detached-eddy simulations of vortex breakdown over a 70-degree delta wing[J]. Journal of Aircraft, 2009, 46(3): 746-755. DOI: 10.2514/1.4659
    [34] SUN D, LI Q, ZHANG H X. Detached-eddy simulations on massively separated flows over a 76/40° double-delta wing[J]. Aerospace Science and Technology, 2013, 30(1): 33-45. DOI: 10.1016/j.ast.2013.07.001
    [35] 刘健, 蒋永, 吴金华. 基于iDDES的双三角翼大迎角非定常涡破裂特征分析[J]. 工程力学, 2016, 33(4): 241-249, 256.

    LIU J, JIANG Y, WU J H. Analysis on characteristics of unsteady vortex breakdown flows around a double-delta wings at high incidence based on iddes method[J]. Engineering Mechanics, 2016, 33(4): 241-249, 256. (in Chinese)
    [36] GLASBY R S, ERWIN J T, STEFANSKI D L, et al. Introduction to COFFE: The next-generation HPCMP CREATE™-AV CFD solver[C]//54th AIAA Aerospace Sciences Meeting, 2016. https://ntrs.nasa.gov/api/citations/20160007758/downloads/20160007758.pdf doi: 10.2514/6.2016-0567
    [37] DEAN J, CLIFTON J, BODKIN D, et al. High resolution CFD simulations of maneuvering aircraft using the CREATE-AV/kestrel solver[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida. Reston, Virginia: AIAA, 2011. AIAA 2011-1109. doi: 10.2514/6.2011-1109
    [38] 李锋, 杨云军, 刘周, 等. 飞行器气动/飞行/控制一体化耦合模拟技术[J]. 空气动力学学报, 2015, 33(2): 156-161. doi: 10.7638/kqdlxxb-2014.0097

    LI F, YANG Y J, LIU Z, et al. Integrative simulation technique of coupled aerodynamics and flight dynamics with control law on a vehicle[J]. Acta Aerodynamica Sinica, 2015, 33(2): 156-161. (in Chinese) doi: 10.7638/kqdlxxb-2014.0097
    [39] 马戎, 常兴华, 赫新, 等. 流动/运动松耦合与紧耦合计算方法及稳定性分析[J]. 气体物理, 2016, 1(6): 36-49.

    MA R, CHANG X H, HE X, et al. Loose and strong coupling methods for flow/kinematics coupled simulations and stability analysis[J]. Physics of Gases, 2016, 1(6): 36-49. (in Chinese)
    [40] 刘铁中, 李强, 李周复. 虚拟飞行器风洞的研究与实现[J]. 系统仿真学报, 2009, 21(14): 4397-4399, 4442.

    LIU T Z, LI Q, LI Z F. Research and implementation on virtual aircraft wind tunnel[J]. Journal of System Simulation, 2009, 21(14): 4397-4399, 4442. (in Chinese)
    [41] GILLARD W. AFRL F-22 dynamic wind tunnel test results[C]// 24th Atmospheric Flight Mechanics Conference, Portland, OR, USA. Reston, Virigina: AIAA, 1999. AIAA-99-4015. doi: 10.2514/6.1999-4015
    [42] ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT, NEUILLY-SUR-SEINE(FRANCE). Cooperative Programme on dynamic wind tunnel experiments for maneuvering aircraft[R]. AGARD-AR-305, 1996.
    [43] KLEIN V, MURPHY P C, Curry T J. Analysis of wind tunnel longitudinal static and oscillatory data of the F-16XL aircraft[R]. NASA/TM-97-206276, 1997-12. https://ntrs.nasa.gov/api/citations/19980007406/downloads/19980007406.pdf
    [44] BRANDON J, FOSTER J. Recent dynamic measurements and considerations for aerodynamic modeling of fighter airplane configurations[C]//23rd Atmospheric Flight Mechanics Conference, Boston, MA. Reston, Virginia: AIAA, 1998. doi: 10.2514/6.1998-4447
    [45] 沈礼敏. CARDC旋转天平试验系统[J]. 气动实验与测量控制, 1995, 9(1): 18-24.
    [46] 中国人民解放军总装备部军事训练教材工作委员会. 低速风洞试验[M]. 北京: 国防工业出版社, 2002.
    [47] 中国人民解放军总装备部军事训练教材工作委员会. 高速风洞试验[M]. 北京: 国防工业出版社, 2002.
    [48] 恽起麟, 编著. 实验空气动力学[M]. 北京: 国防工业出版社, 2003.
    [49] 孙海生. 飞行器大攻角升沉平移加速度导数测量技术[J]. 流体力学实验与测量, 2001, 15(4): 15-19.

    SUN H S. A measurement technique for derivatives of aircraft due to acceleration in heave and sideslip at high angle of attack[J]. Experiments and Measurements in Fluid Mechanics, 2001, 15(4): 15-19. (in Chinese)
    [50] 李周复. 风洞特种试验技术[M]. 北京: 航空工业出版社, 2010.
    [51] 黄浩, 张永升, 刘丹. FD09风洞旋转天平试验系统研制[J]. 航空工程进展, 2014, 5(4): 429-434. doi: 10.3969/j.issn.1674-8190.2014.04.004

    HUANG H, ZHANG Y S, LIU D. Development of rotary balance system in FD09Wind tunnel[J]. Advances in Aeronautical Science and Engineering, 2014, 5(4): 429-434. (in Chinese) doi: 10.3969/j.issn.1674-8190.2014.04.004
    [52] 马军, 姜裕标, 祝明红, 等. Φ5m立式风洞旋转天平试验装置研制[J]. 实验流体力学, 2012, 26(2): 77-80. doi: 10.3969/j.issn.1672-9897.2012.02.017

    MA J, JIANG Y B, ZHU M H, et al. Development of the rotary balance system in Φ5m vertical wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 77-80. (in Chinese) doi: 10.3969/j.issn.1672-9897.2012.02.017
    [53] 杨文, 卜忱, 眭建军. 某复杂构型飞机偏航-滚转耦合运动非定常气动力特性实验研究[J]. 实验流体力学, 2016, 30(3): 61-65.

    YANG W, BU C, SUI J J. Investigation of the unsteady aerodynamic characteristics of a fighter with complex configuration undergoing yaw-roll coupling oscillation motion[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 61-65. (in Chinese)
    [54] 黄达, 吴根兴. 飞机偏航-滚转耦合运动非定常空气动力实验[J]. 南京航空航天大学学报, 2005, 37(4): 408-411. doi: 10.3969/j.issn.1005-2615.2005.04.002

    HUANG D, WU G X. Experiment on fighter oscillating in large amplitude yaw-roll motion[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2005, 37(4): 408-411. (in Chinese) doi: 10.3969/j.issn.1005-2615.2005.04.002
    [55] 程厚梅, 编著. 风洞实验干扰与修正[M]. 北京: 国防工业出版社, 2003.
    [56] 黄达, 吴根兴. 模型大振幅运动风洞壁面影响实验研究[J]. 南京理工大学学报(自然科学版), 2003, 27(4): 349-354.

    HUANG D, WU G X. Experiment investigation of unsteady wall interference to model pitching in large angle of attack[J]. Journal of Nanjing University of Science and Technology, 2003, 27(4): 349-354. (in Chinese)
    [57] 尹陆平, 贺中, 于志松, 等. 亚声速大迎角模型试验洞壁干扰修正方法研究[J]. 流体力学实验与测量, 2000, 14(3): 37-41.

    YIN L P, HE Z, YU Z S, et al. Research on subsonic wall interference correction for model tests at high angle of attack[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(3): 37-41. (in Chinese)
    [58] 孙海生, 祝明红, 黄勇, 等. Φ3.2m风洞战斗机大迎角试验关键技术研究[J]. 实验流体力学, 2011, 25(3): 50-55. doi: 10.3969/j.issn.1672-9897.2011.03.012

    SUN H S, ZHU M H, HUANG Y, et al. Key technique for high angle of attack test of fighter aircraft in Φ3.2m low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3): 50-55. (in Chinese) doi: 10.3969/j.issn.1672-9897.2011.03.012
    [59] 贺中, 范召林. 大迎角试验洞壁干扰的工程修正[J].气动研究与发展, 2002, 12(1): 24-30.
    [60] 范召林, 陈作斌, 贺中, 等. 跨声速风洞模型试验非线性洞壁干扰修正方法研究[J]. 流体力学实验与测量, 1998, 12(2): 9-19.

    FAN Z L, CHEN Z B, HE Z, et al. Investigation on non-linear wall interference correction for model tests in transonic wind tunnel[J]. Experiments and Measurements in Fluid Mechanics, 1998, 12(2): : 9-19. (in Chinese)
    [61] GREENWELL D I. Frequency effects on dynamic stability derivatives obtained from small-amplitude oscillatory testing[J]. Journal of Aircraft, 1998, 35(5): 776-783. DOI: 10.2514/2.2369
    [62] ABRAMOV N, GOMAN M, KHRABROV A. Aircraft dynamics at high incidence flight with account of unsteady aerodynamic effects[C]// AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, Rhode Island. Reston, Virginia: AIAA, 2004. AIAA 2004-5274. doi: 10.2514/6.2004-5274
    [63] LIN G F. Effects of nonlinear unsteady aerodynamics on performance, stability and control of an F-18 configuration[D]. University of Kansas, 1997.
    [64] 沈霖, 黄达, 吴根兴, 等. 战斗机大迎角非定常气动力建模[J]. 航空学报, 2020, 41(6): 523440.

    SHEN L, HUANG D, WU G X, et al. Unsteady aerodynamic modeling for fighter configuration at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523440. (in Chinese)
    [65] ABZUG M J, LARRABEE E E. Spinning and recovery[M]//Airplane Stability and Control, Second Edition. Cambridge: Cambridge University Press, 2002: 121-145. doi: 10.1017/cbo9780511607141.011
    [66] 王海峰, 杨朝旭, 王成良. 先进战斗机大迎角运动特性分析和试验[J]. 飞行力学, 2006, 24(2): 5-8. doi: 10.3969/j.issn.1002-0853.2006.02.002

    WANG H F, YANG C X, WANG C L. High angles of attack character analysis and test for an advanced fighter[J]. Flight Dynamics, 2006, 24(2): 5-8. (in Chinese) doi: 10.3969/j.issn.1002-0853.2006.02.002
    [67] 王海峰. 飞机大迎角特性理论分析和试飞技术研究[J]. 航空工程, 2003, (3): 2-12.

    WANG H F. Analysis of Characteristic at high angle of attack and research on flight test technology[J]. Aviation Engineering, 2003, (3): 2-12. (in Chinese)
    [68] KALVISTE J. Use of rotary balance and forced oscillation test data in six degrees of freedom simulation[C]//9th Atmospheric Flight Mechanics Conference, San Diego, CA. Reston, Virginia: AIAA, 1982. AIAA-82-1364. doi: 10.2514/6.1982-1364
    [69] KAY J, RALSTON J, LASH S, et al. Development of non-linear, low-speed aerodynamic model for the F-16/VISTA[C]// 22nd Atmospheric Flight Mechanics Conference, New Orleans, LA, USA. Reston, Virigina: AIAA, 1997. AIAA-97-3576. doi: 10.2514/6.1997-3576
    [70] KAY J. Acquiring and modeling unsteady aerodynamic characteristics[C]// Atmospheric Flight Mechanics Conference, Denver, CO. Reston, Virginia: AIAA, 2000. , AIAA-2000-3907. doi: 10.2514/6.2000-3907
    [71] 王海峰. 战斗机推力矢量关键技术及应用展望[J]. 航空学报, 2020, 41(6): 524057.

    WANG H F. Key technologies and future applications of thrust vectoring on fighter aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524057. (in Chinese)
    [72] GREENWELL D. A review of unsteady aerodynamic modelling for flight dynamics of manoeuvrable aircraft[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, Rhode Island. Reston, Virginia: AIAA, 2004. AIAA-2004-5276. doi: 10.2514/6.2004-5276
    [73] 汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报, 2016, 37(8): 2331-2347.

    WANG Q, QIAN W Q, DING D. A review of unsteady aerodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2331-2347. (in Chinese)
    [74] WANG Z J, LAN C, BRANDON J. Fuzzy logic modeling of nonlinear unsteady aerodynamics[C]//23rd Atmospheric Flight Mechanics Conference, Boston, MA. Reston, Virginia: AIAA, 1998. AIAA 98-4351. doi: 10.2514/6.1998-4351
    [75] WANG Z J, LAN C, BRANDON J. Fuzzy logic modeling of lateral-directional unsteady aerodynamics[C]//24th Atmospheric Flight Mechanics Conference, Portland, OR. Reston, Virginia: AIAA, 1999. AIAA 99-4012. doi: 10.2514/6.1999-4012
    [76] WANG Z J, LAN C, BRANDON J. Unsteady aerodynamic effects on the flight characteristics of an F-16XL configuration[C]// Atmospheric Flight Mechanics Conference, Denver, CO. Reston, Virginia: AIAA, 2000. AIAA 2000-3910. doi: 10.2514/6.2000-3910
    [77] HU C C, LAN C, BRANDON J. Unsteady aerodynamic models for maneuvering aircraft[C]// Flight Simulation and Technologies, Monterey, CA. Reston, Virginia: AIAA, 1993. AIAA 93-3626-CP. doi: 10.2514/6.1993-3626
    [78] LIN G F, SONGSTER T, LAN C. Effect of high-alpha unsteady aerodynamics on longitudinal dynamics of an F-18 configuration[C]//20th Atmospheric Flight Mechanics Conference, Baltimore, MD. Reston, Virginia: AIAA, 1995. AIAA 95-3488. doi: 10.2514/6.1995-3488
    [79] 高正红, 焦天峰. 飞行器快速俯仰产生大迎角非定常气动力数学模型研究[J]. 西北工业大学学报, 2001, 19(4): 506-510. doi: 10.3969/j.issn.1000-2758.2001.04.004

    GAO Z H, JIAO T F. On an unsteady aerodynamics model for pitching-oscillating body at high angle of attack[J]. Journal of Northwestern Polytechnical University, 2001, 19(4): 506-510. (in Chinese) doi: 10.3969/j.issn.1000-2758.2001.04.004
    [80] JIAO T F, GAO Z H. Unsteady aerodynamic modeling at high angles of attack[C]//Atmospheric Flight Mechanics Conference, Denver, CO. Reston, Virginia: AIAA, 2000. AIAA-2000-3908. doi: 10.2514/6.2000-3908
    [81] 陈海萍, 高正红. 大迎角非定常气动力数学模型研究[J]. 飞行力学, 2008, 26(5): 10-12, 16.

    CHEN H P, GAO Z H. Unsteady aerodynamic modeling of aircraft at high angle of attack[J]. Flight Dynamics, 2008, 26(5): 10-12, 16. (in Chinese)
    [82] 汪清, 蔡金狮. 飞机大攻角非定常气动力建模与辨识[J]. 航空学报, 1996, 17(4): 391-398. doi: 10.3321/j.issn:1000-6893.1996.04.003

    WANG Q, CAI J S. Unsteady aerodynamic modeling and identification of airplane at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 1996, 17(4): 391-398. (in Chinese) doi: 10.3321/j.issn:1000-6893.1996.04.003
    [83] 汪清, 何开锋, 钱炜祺, 等. 飞机大攻角空间机动气动力建模研究[J]. 航空学报, 2004, 25(5): 447-450. doi: 10.3321/j.issn:1000-6893.2004.05.004

    WANG Q, HE K F, QIAN W Q, et al. Aerodynamic modeling of spatial maneuvering aircraft at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(5): 447-450. (in Chinese) doi: 10.3321/j.issn:1000-6893.2004.05.004
    [84] 黄达, 郑万祥. 基于风洞试验的非定常气动力微分方程建模方法[J]. 南京航空航天大学学报, 2014, 46(4): 599-602. doi: 10.3969/j.issn.1005-2615.2014.04.017

    HUANG D, ZHENG W X. Unsteady aerodynamic modeling method using differential equations based on wind tunnel test[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(4): 599-602. (in Chinese) doi: 10.3969/j.issn.1005-2615.2014.04.017
    [85] 史志伟, 吴根兴. 多变量非线性非定常气动力的模糊逻辑模型[J]. 空气动力学学报, 2001, 19(1): 103-108. doi: 10.3969/j.issn.0258-1825.2001.01.015

    SHI Z W, WU G X. Fuzzy logic model of nonlinear unsteady aerodynamics with multiple variables[J]. Acta Aerodynamica Sinica, 2001, 19(1): 103-108. (in Chinese) doi: 10.3969/j.issn.0258-1825.2001.01.015
    [86] 尹江辉, 刘昶, 王立新. 模糊神经网络在过失速机动飞行中的应用[J]. 飞行力学, 2001, 19(1): 42-44, 54. doi: 10.3969/j.issn.1002-0853.2001.01.011

    YIN J H, LIU C, WANG L X. Fuzzy neural network control with application to post-stall maneuvers[J]. Flight Dynamics, 2001, 19(1): 42-44, 54. (in Chinese) doi: 10.3969/j.issn.1002-0853.2001.01.011
    [87] 刘志涛, 孙海生, 姜裕标, 等. 非线性非定常气动力的模糊逻辑建模方法[J]. 实验流体力学, 2005, 19(1): 99-103. doi: 10.3969/j.issn.1672-9897.2005.01.020

    LIU Z T, SUN H S, JIANG Y B, et al. Fuzzy logic modeling of nonlinear unsteady aerodynamics[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1): 99-103. (in Chinese) doi: 10.3969/j.issn.1672-9897.2005.01.020
    [88] 孔轶男, 王立新, 何开锋, 等. 过失速机动的模糊逻辑建模仿真[J]. 北京航空航天大学学报, 2007, 33(10): 1174-1177. doi: 10.3969/j.issn.1001-5965.2007.10.011

    KONG Y N, WANG L X, HE K F, et al. Fuzzy logic models for unsteady post stall maneuver[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1174-1177. (in Chinese) doi: 10.3969/j.issn.1001-5965.2007.10.011
    [89] 史志伟, 吴根兴, 黄达. 基于大振幅谐波运动的非定常气动模型风洞实验验证[J]. 空气动力学学报, 2010, 28(6): 650-654. doi: 10.3969/j.issn.0258-1825.2010.06.006

    SHI Z W, WU G X, HUANG D. The validation of unsteady aerodynamic model based on the high amplitude harmonic rolling motion test[J]. Acta Aerodynamica Sinica, 2010, 28(6): 650-654. (in Chinese) doi: 10.3969/j.issn.0258-1825.2010.06.006
    [90] 黄达. 飞行器大振幅运动非定常空气动力特性研究[D]. 南京: 南京航空航天大学, 2007.

    HUANG D. Unsteady aerodynamic characteristics for the aircraft oscilation in large amplitude[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007(in Chinese).
    [91] 张婉鑫, 朱纪洪. 大迎角非定常气动参数辨识研究[J]. 清华大学学报(自然科学版), 2017, 57(7): 673-679.

    ZHANG W X, ZHU J H. Unsteady aerodynamic identification of aircraft at high angles of attack[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(7): 673-679. (in Chinese)
    [92] 姜裕标, 沈礼敏. 飞行器非定常气动力试验与建模研究[J]. 流体力学实验与测量, 2000, 14(4): 26-31.

    JIANG Y B, SHEN L M. An experimental investigation on unsteady aerodynamics and modeling for a fighter configuration[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(4): 26-31. (in Chinese)
    [93] 黄达, 李志强, 吴根兴. 大振幅非定常实验数学模型与动导数仿真实验[J]. 空气动力学学报, 1999, 17(2): 219-223. doi: 10.3969/j.issn.0258-1825.1999.02.014

    HUANG D, LI Z Q, WU G X. Dynamic derivative simulation and mathematical model of the wind tunnel test about a model pitching in very large amplitude[J]. Acta Aerodynamica Sinica, 1999, 17(2): 219-223. (in Chinese) doi: 10.3969/j.issn.0258-1825.1999.02.014
    [94] 赵磊. 大迎角气动力预示方法研究[D]. 北京: 北京空气动力研究所, 1997.
    [95] WANG Q, HE K F, QIAN W Q, et al. Unsteady aerodynamics modeling for flight dynamics application[J]. Acta Mechanica Sinica, 2012, 28(1): 14-23. DOI: 10.1007/s10409-012-0012-z
    [96] 陈翔, 王海峰, 展京霞, 等. 基于循环神经网络的非定常气动力建模研究[J]. 气动研究与实验, 2020, (1): 101-108. doi: 10.12050/are20200107

    CHEN X, WANG H F, ZHAN J X, et al. Unsteady aerodynamic modeling based on recurrent neural network[J]. Aerodynamic Research&Experiment, 2020, (1): 101-108. (in Chinese) doi: 10.12050/are20200107
    [97] WANG Q, QIAN W Q, HE K F. Unsteady aerodynamic modeling at high angles of attack using support vector machines[J]. Chinese Journal of Aeronautics, 2015, 28(3): 659-668. DOI: 10.1016/j.cja.2015.03.010
    [98] TOBAK M, SCHIFF L B. On the formulation of the aerodynamics in aircraft dynamics[R]. NASA TR-R-456, 1976. https://ntrs.nasa.gov/api/citations/19760007994/downloads/19760007994.pdf
    [99] SCHIFF L, TOBAK M, MALCOLM G. Mathematical modeling of the aerodynamics of high-angle-of-attack maneuvers[C]// 6th Atmospheric Flight Mechanics Conference, Danvers, MA, USA. Reston, Virigina: AIAA, 1980. AIAA-80-1583. doi: 10.2514/6.1980-1583
    [100] TOBAK M. , CHAPMAN G T, SCHIFF L B. Mathematical modeling of the aerodynamic characteristics in flight dynamics[R]. NASA-TM-85880, 1984.
    [101] GUPTA N, ILIFF K. Identification of integro-differential systems for application to unsteady aerodynamics and aeroelasticity[C]// 12th Atmospheric Flight Mechanics Conference, Snowmass, CO. Reston, Virginia: AIAA, 1985. AIAA-85-1763. doi: 10.2514/6.1985-1763
    [102] LIN G F, LAN C, BRANDON J, et al. A generalized dynamic aerodynamic coefficient model for flight dynamics applications[C]// 22nd Atmospheric Flight Mechanics Conference, New Orleans, LA. Reston, Virginia: AIAA, 1997. AIAA-97-3643. doi: 10.2514/6.1997-3643
    [103] GOMAN M, KHRABROV A. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[J]. Journal of Aircraft, 1994, 31(5): 1109-1115. DOI: 10.2514/3.46618
    [104] ABRAMOV N B, GOMAN M G, GREENWELL D I, et al. Two-step linear regression method for identification of high incidence unsteady aerodynamic model[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Montreal, Canada. Reston, Virigina: AIAA, 2001. AIAA-2001-4080. doi: 10.2514/6.2001-4080
    [105] VAPNIK V N. The nature of statistical learning theory[M]. New York, NY: Springer New York, 1995. doi: 10.1007/978-1-4757-2440-0
    [106] ROKHSAZ K, STECK J E. Use of neural networks in control of high-alpha maneuvers[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(5): 934-939. DOI: 10.2514/3.21104
    [107] ROKHSAZ K, STECK J E. Application of artificial neural networks in nonlinear aerodynamics and aircraft design[C]//SAE Technical Paper Series, 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. doi: 10.4271/932533
    [108] 卿理勋. 几种动态模型自由飞试验技术[J]. 飞行力学, 1995, 13(3): : 18-23.

    QING L X. Dynamic model free-flight test techniques[J]. Flight Dynamics, 1995, 13(3): : 18-23. (in Chinese)
    [109] 颜巍. 大型飞机研制与模型自由飞试验技术[J]. 民用飞机设计与研究, 2019(4): 51-55.

    YAN W. Free-flight model technique during development of large civil aircraft[J]. Civil Aircraft Design & Research, 2019(4): 51-55. (in Chinese)
    [110] 颜巍. 俄罗斯飞机模型动态试验与失速/过失速模态研究回顾[J]. 民用飞机设计与研究, 2020(2): 77-84.

    YAN W. Summary of dynamically scaled aircraft model experiments and stall / post-stall (spin) mode research in Russia[J]. Civil Aircraft Design & Research, 2020(2): 77-84. (in Chinese)
    [111] LAWRENCE F, MILLS B. Status update of the AEDC wind tunnel Virtual Flight Testing development program[C]//40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV. Reston, Virginia: AIAA, 2002. doi: 10.2514/6.2002-168
    [112] REIN M, HÖHLER G, SCHÜTTE A, et al. Ground-based simulation of complex maneuvers of a delta-wing aircraft[J]. Journal of Aircraft, 2008, 45(1): 286-291. DOI: 10.2514/1.30033
    [113] BERGMANN A, HUEBNER A, LOESER T. Experimental and numerical research on the aerodynamics of unsteady moving aircraft[J]. Progress in Aerospace Sciences, 2008, 44(2): 121-137. DOI: 10.1016/j.paerosci.2007.10.006
    [114] MULLIN S N. The evolution of the F-22 advanced tactical fighter (1992 Wright Brothers Lecture)[C]// Flight Simulation Technologies Conference, Hilton Head Island, SC, U. S. A. , 1992. doi: 10.2514/6.1992-4188
    [115] MURRI D G, NGUYEN L T, GRAFTON S B. Wind-tunnel free-flight investigation of a model of a forward-swept-wing fighter configuration[R]. NASA-TP-2230, 1984. https://ntrs.nasa.gov/api/citations/19840009116/downloads/19840009116.pdf
    [116] 李永富. 用风洞技术预测飞机的失速/尾旋特性[J]. 航空与航天, 2004(4): 12-15, 18.
    [117] 李永富, 陈洪. 研究尾旋的风洞试验技术[M]. 北京: 国防工业出版社, 2002.

    LI Y F, CHEN H. Wind Tunnel Techniques for Studying Spin[M]. Beijing: National Defense Industry Press, 2002. (in Chinese)
    [118] 李永富. 立式风洞尾旋试验技术[J]. 流体力学实验与测量, 1999, 13(1): 13-18.

    LI Y F. The test technique of spin for vertical wind tunnel[J]. Experiments and Measurements in Fluid Mechanics, 1999, 13(1): 13-18. (in Chinese)
    [119] 马军, 蒋敏, 宋晋. Φ5m立式风洞测试技术发展概况[C]//中国空气动力学会测控技术专委会第六届四次学术交流会论文集. 襄阳, 2013: 217-222.
    [120] 马军, 宋晋, 刘蓓, 等. 立式风洞全视场尾旋姿态测量技术研究[J]. 实验流体力学, 2016, 30(6): 66-70, 104.

    MA J, SONG J, LIU B, et al. Design and implementationfor full field of view measurement scheme in vertical wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 66-70, 104. (in Chinese)
    [121] 祝明红, 王勋年, 李宝, 等. Φ5m立式风洞尾旋试验技术[J]. 实验流体力学, 2007, 21(3): 49-53. doi: 10.3969/j.issn.1672-9897.2007.03.010

    ZHU M H, WANG X N, LI B, et al. Free-spin test technique in Φ5m vertical wind tunnel in CARDC[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 49-53. (in Chinese) doi: 10.3969/j.issn.1672-9897.2007.03.010
    [122] MAGILL J C, CATALDI P, MORENCY J R, et al. Demonstration of a wire suspension for wind-tunnel virtual flight testing[J]. Journal of Spacecraft and Rockets, 2009, 46(3): 624-633. DOI: 10.2514/1.39188
    [123] 李浩. 风洞虚拟飞行试验相似准则和模拟方法研究[D]. 绵阳: 中国空气动力研究与发展中心, 2012.
    [124] 赵忠良, 吴军强, 李浩, 等. 2.4m跨声速风洞虚拟飞行试验技术研究[J]. 航空学报, 2016, 37(2): 504-512.

    ZHAO Z L, WU J Q, LI H, et al. Investigation of virtual flight testing technique based on 2.4m transonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 504-512. (in Chinese)
    [125] 李浩, 赵忠良, 范召林. 风洞虚拟飞行试验模拟方法研究[J]. 实验流体力学, 2011, 25(6): 72-76. doi: 10.3969/j.issn.1672-9897.2011.06.014

    LI H, ZHAO Z L, FAN Z L. Simulation method for wind tunnel based virtual flight testing[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 72-76. (in Chinese) doi: 10.3969/j.issn.1672-9897.2011.06.014
    [126] 胡静, 李潜. 风洞虚拟飞行试验技术初步研究[J]. 实验流体力学, 2010, 24(1): 95-99. doi: 10.3969/j.issn.1672-9897.2010.01.018

    HU J, LI Q. Primary investigation of the virtual flight testing techniques in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 95-99. (in Chinese) doi: 10.3969/j.issn.1672-9897.2010.01.018
    [127] 尚祖铭, 吴佳莉, 牛中国, 等. 带等离子控制的飞翼布局飞机模型的风洞虚拟飞行试验[J]. 航空科学技术, 2019, 30(9): 40-46.

    SHANG Z M, WU J L, NIU Z G, et al. The wind tunnel virtual flight test of flying wing configuration aircraft model with the plasma actuation[J]. Aeronautical Science & Technology, 2019, 30(9): 40-46. (in Chinese)
    [128] 郭林亮, 祝明红, 孔鹏, 等. 风洞虚拟飞行模型机与原型机动力学特性分析[J]. 航空学报, 2016, 37(8): 2583-2593.

    GUO L L, ZHU M H, KONG P, et al. Analysis of dynamic characteristics between prototype aircraft and scaled-model of virtual flight test in wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2583-2593. (in Chinese)
    [129] 郭林亮, 祝明红, 傅澔, 等. 一种低速风洞虚拟飞行试验装置的建模与仿真[J]. 空气动力学学报, 2017, 35(5): 708-717, 726. doi: 10.7638/kqdlxxb-2017.0164

    GUO L L, ZHU M H, FU H, et al. Modeling and simulation for a low speed wind tunnel virtual flight test rig[J]. Acta Aerodynamica Sinica, 2017, 35(5): 708-717, 726. (in Chinese) doi: 10.7638/kqdlxxb-2017.0164
    [130] 张石玉, 赵俊波, 付增良, 等. 类F-16飞行器风洞虚拟飞行试验研究[J]. 实验流体力学, 2020, 34(1): 49-54, 86.

    ZHANG S Y, ZHAO J B, FU Z L, et al. Wind tunnel based virtual flight testing research of F-16 fighter[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 49-54, 86. (in Chinese)
    [131] 郭林亮, 祝明红, 傅澔, 等. 水平风洞中开展飞机尾旋特性研究的理论分析[J]. 航空学报, 2018, 39(6): 122030.

    GUO L L, ZHU M H, FU H, et al. Theoretical analysis of research on aircraft spin characteristic in horizontal wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 122030. (in Chinese)
    [132] 孙海生, 岑飞, 聂博文, 等. 水平风洞模型自由飞试验技术研究现状及展望[J]. 实验流体力学, 2011, 25(4): 103-108. doi: 10.3969/j.issn.1672-9897.2011.04.020

    SUN H S, CEN F, NIE B W, et al. Present research status and prospective application of wind-tunnel free-flight test technique[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 103-108. (in Chinese) doi: 10.3969/j.issn.1672-9897.2011.04.020
    [133] 岑飞, 聂博文, 刘志涛, 等. 面向先进战斗机研制的风洞模型飞行试验技术[J]. 航空学报, 2020, 41(6): 523444.

    CEN F, NIE B W, LIU Z T, et al. Wind tunnel model flight test technique for advanced fighter aircraft design[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523444. (in Chinese)
    [134] 张天姣, 汪清, 何开锋, 等. 风洞自由飞试验中气动参数辨识准度评价方法研究[J]. 实验流体力学, 2017, 31(1): 39-46.

    ZHANG T J, WANG Q, HE K F, et al. Research on accuracy assessment method of aerodynamic parameters identified from wind tunnel free-flight test data[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 39-46. (in Chinese)
    [135] 张天姣, 钱炜祺, 何开锋, 等. 基于最大似然法的风洞自由飞试验气动力参数辨识技术研究[J]. 实验流体力学, 2015, 29(5): 8-14.

    ZHANG T J, QIAN W Q, HE K F, et al. Research on aerodynamic parameter identification technology in wind tunnel free-flight test based on Maximum Likelihood Estimation[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(5): 8-14. (in Chinese)
    [136] 何开锋, 毛仲君, 汪清, 等. 缩比模型演示验证飞行试验及关键技术[J]. 空气动力学学报, 2017, 35(5): 670-679.

    HE K F, MAO Z J, WANG Q, et al. Demonstration and validation flight test of scaled aircraft model and its key technologies[J]. Acta Aerodynamica Sinica, 2017, 35(5): 670-679. (in Chinese)
    [137] 何开锋, 刘刚, 张利辉, 等. 航空器带动力自主控制模型飞行试验技术研究进展[J]. 实验流体力学, 2016, 30(2): 1-7.

    HE K F, LIU G, ZHANG L H, et al. Research progress on model flight test of powered aircraft with autonomous control system[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 1-7. (in Chinese)
    [138] ILIFF K W, WANG K C. Flight-determined subsonic longitudinal stability and control derivatives of the F-18 high angle of attack research vehicle[R]. NASA/TP-97-206539, 1997. https://ntrs.nasa.gov/api/citations/19980007172/downloads/19980007172.pdf
    [139] SMITH W, PELLICANO P. X-29 high angle-of-attack military utility flight test results[C]// 6th AIAA Biennial Flight Test Conference, Hilton Head, SC. Reston, Virigina: AIAA, 1992. AIAA-1992-4080. doi: 10.2514/6.1992-4080
    [140] 蔡金狮. 飞行器气动参数辨识进展[J]. 力学进展, 1987, 17(4): 467-478.

    CAI J S. Advances in identification of aircraft aerodynamic parameters[J]. Advances in Mechanics, 1987, 17(4): 467-478. (in Chinese)
    [141] MILLIKEN W F JR. Progress in dynamic stability and control research[J]. Journal of the Aeronautical Sciences, 1947, 14(9): 493-519. DOI: 10.2514/8.1434
    [142] KLEIN V, MURPHY P C. Aerodynamic parameters of high performance aircraft estimated from wind tunnel and flight test data[R]. NASA/TM-1997-207993, 1998. https://ntrs.nasa.gov/api/citations/19980210397/downloads/19980210397.pdf
  • 加载中
图(25) / 表(2)
计量
  • 文章访问数:  969
  • HTML全文浏览量:  195
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29
  • 录用日期:  2021-11-21
  • 修回日期:  2021-11-10
  • 网络出版日期:  2022-01-04
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回