留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声涡相互作用下翼型分离泡内流动动力学特征

史泽奇 刘勇 钟伯文 汤崇辉

史泽奇, 刘勇, 钟伯文, 等. 声涡相互作用下翼型分离泡内流动动力学特征[J]. 空气动力学学报, 2023, 41(2): 29−37 doi: 10.7638/kqdlxxb-2021.0308
引用本文: 史泽奇, 刘勇, 钟伯文, 等. 声涡相互作用下翼型分离泡内流动动力学特征[J]. 空气动力学学报, 2023, 41(2): 29−37 doi: 10.7638/kqdlxxb-2021.0308
SHI Z Q, LIU Y, ZHONG B W, et al. Hydrodynamic characteristics in separation bubbles of airfoil under acoustic vortex interaction[J]. Acta Aerodynamica Sinica, 2023, 41(2): 29−37 doi: 10.7638/kqdlxxb-2021.0308
Citation: SHI Z Q, LIU Y, ZHONG B W, et al. Hydrodynamic characteristics in separation bubbles of airfoil under acoustic vortex interaction[J]. Acta Aerodynamica Sinica, 2023, 41(2): 29−37 doi: 10.7638/kqdlxxb-2021.0308

声涡相互作用下翼型分离泡内流动动力学特征

doi: 10.7638/kqdlxxb-2021.0308
基金项目: 国家自然科学基金(11962018)
详细信息
    作者简介:

    史泽奇(1996-),男,湖北赤壁人,硕士研究生,研究方向:气动噪声与计算流体力学. E-mail:zeqi.s@foxmail.com

    通讯作者:

    刘勇*(1979-),男,副教授,研究方向:气动噪声与计算流体力学. E-mail:liuyong@nchu.edu.cn

  • 中图分类号: O357.5+2

Hydrodynamic characteristics in separation bubbles of airfoil under acoustic vortex interaction

  • 摘要: 基于LBM-LES方法对中等雷诺数下NACA0012翼型气动噪声进行了直接模拟,得到了声涡相互作用下气动噪声声场和流场,分析了剪切层内流体动力学特征。结果表明:翼型壁面附近剪切层内,扰动从分离前 T-S不稳定分离后向K-H不稳定转变,K-H不稳定对扰动的增长起重要作用;分离泡内湍流强度显著增长直至转捩成湍流,但流动再附后,湍流强度有所降低;750 Hz的大尺度旋涡结构是在分离泡内形成并发展成稳定结构,而2次和3次谐波频率对应的旋涡结构形成于流动转捩后,在分离泡外发展成稳定结构,说明远场2次及3次谐波纯音噪声和750 Hz主纯音噪声生成机理不同。
  • 图  1  NACA0012翼型格子分布网格

    Figure  1.  Grid distribution of the NACA0012 airfoil enlarged view

    图  2  翼型吸力面时均压强系数分布和点(1C,0.5C)处声压级频谱图

    Figure  2.  Mean pressure coefficient distribution on the suction side of the airfoil and SPL spectrum at the point (1C, 0.5C)

    图  3  边界层内压强及远场声压PSD图

    Figure  3.  PSD diagram of pressure in the boundary layer and sound pressure in the far field

    图  4  翼型时均流线图

    Figure  4.  Time averaged streamlines around the airfoil

    图  5  时均压强系数和时均湍流强度分布

    Figure  5.  Distributions of the time averaged pressure coefficient and turbulence intensity

    图  6  翼型边界层内750 Hz压强声压级分布

    Figure  6.  Distribution of pressure SPL at 750 Hz in the airfoil boundary layer

    图  7  翼型吸力面离散纯音压强脉动均方根分布

    Figure  7.  RMS distribution of the discrete tonal pressure fluctuation on the suction side of the airfoil

    图  8  分离前边界层流向速度脉动均方根

    Figure  8.  RMS of the streamwise velocity fluctuation in the boundary layer before separation

    图  9  分离后边界层内脉动分布

    Figure  9.  fluctuation distribution in the boundary layer after separation

    图  10  流动分离前后流向速度脉动分布

    Figure  10.  Streamwise velocity fluctuation distributions before and after the flow separation

    图  11  0.6C边界层内速度及脉动均方根分布

    Figure  11.  Distributions of the velocity and fluctuation RMS in the boundary layer at 0.6C

    图  12  不同时间分离泡内涡量的分布(等值线为Q值)和0.65C 表面压力系数

    Figure  12.  Vorticity distribution in the separation bubbles at different time instances (contour lines are for Q values) and pressure coefficient

    图  13  分离泡内归一化压强波形图

    Figure  13.  Normalized pressure waveform in the separation bubble

  • [1] BURGMANN S, BRÜCKER C, SCHRÖDER W. Scanning PIV measurements of a laminar separation bubble[J]. Experiments in Fluids, 2006, 41(2): 319-326. . DOI: 10.1007/s00348-006-0153-6
    [2] 朱志斌, 刘强, 白鹏. 低雷诺数翼型层流分离现象大涡模拟方法[J]. 空气动力学学报, 2019, 37(06): 915-923. doi: 10.7638/kqdlxxb-2018.0025

    ZHU Z B, LIU Q, BAI P. Large eddy simulation method for the laminar separation phenomenon on low Reynolds number airfoils[J]. Acta Aerodynamica Sinica, 2019, 37(6): 915-923. (in Chinese) doi: 10.7638/kqdlxxb-2018.0025
    [3] 王皓田, 朱杨柱, 车学科, 等. S1223翼型低雷诺数下分离泡及气动特性[J]. 空气动力学学报, 2021, 39(3): 90-98. doi: 10.7638/kqdlxxb-2020.0075

    WANG H T, ZHU Y Z, CHE X K, et al. Separation bubble and aerodynamic characteristics of S1223 airfoil at low Reynolds numbers[J]. Acta Aerodynamica Sinica, 2021, 39(3): 90-98. (in Chinese) doi: 10.7638/kqdlxxb-2020.0075
    [4] PRÖBSTING S, YARUSEVYCH S. Laminar separation bubble development on an airfoil emitting tonal noise[J]. Journal of Fluid Mechanics, 2015, 780: 167-191. DOI: 10.1017/jfm.2015.427
    [5] PRÖBSTING S, SCARANO F, MORRIS S C. Regimes of tonal noise on an airfoil at moderate Reynolds number[J]. Journal of Fluid Mechanics, 2015, 780: 407-438. DOI: 10.1017/jfm.2015.475
    [6] BROOKS T F, HUMPHREYS W M. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays[J]. Journal of Sound and Vibration, 2006, 294(4-5): 856-879. DOI: 10.1016/j.jsv.2005.12.046
    [7] PATERSON R W, VOGT P G, FINK M R, et al. Vortex noise of isolated airfoils[J]. Journal of Aircraft, 1973, 10(5): 296-302. DOI: 10.2514/3.60229
    [8] TAM C K W. Discrete tones of isolated airfoils[J]. The Journal of the Acoustical Society of America, 1974, 55(6): 1173-1177. DOI: 10.1121/1.1914682
    [9] LOWSON M, FIDDES S, NASH E. Laminar boundary layer aero-acoustic instabilities[C]// 32nd Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. Reston, Virigina: AIAA, 1994: 358. doi: 10.2514/6.1994-358
    [10] NASH E C, LOWSON M V, MCALPINE A. Boundary-layer instability noise on aerofoils[J]. Journal of Fluid Mechanics, 1999, 382: 27-61. DOI: 10.1017/s002211209800367x
    [11] MCALPINE A, NASH E C, LOWSON M V. On the generation of discrete frequency tones by the flow around an aerofoil[J]. Journal of Sound and Vibration, 1999, 222(5): 753-779. DOI: 10.1006/jsvi.1998.2085
    [12] BROOKS T F, HODGSON T H. Trailing edge noise prediction from measured surface pressures[J]. Journal of Sound and Vibration, 1981, 78(1): 69-117. DOI: 10.1016/S0022-460X(81)80158-7
    [13] PLOGMANN B, HERRIG A, WÜRZ W. Experimental investigations of a trailing edge noise feedback mechanism on a NACA 0012 airfoil[J]. Experiments in Fluids, 2013, 54(5): 1-14. DOI: 10.1007/s00348-013-1480-z
    [14] 马致遥, 单锋, 章东. 格子玻尔兹曼方法对不同张角聚焦声束的建模[J]. 声学学报, 2018, 43(2): 217-223.

    MA Z Y, SHAN F, ZHANG D. Lattice Boltzmann method for modeling focused acoustic beams at different opening angles [J]. Acta Acustica, 2018, 43(2): 217-223. (in Chinese)
    [15] CHEN S Y, DOOLEN G D. Lattice boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 329-364. DOI: 10.1146/annurev.fluid.30.1.329
    [16] AIDUN C K, CLAUSEN J R. Lattice-boltzmann method for complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 439-472. DOI: 10.1146/annurev-fluid-121108-145519
    [17] LEW P T, GOPALAKRISHNAN P, CASALINO D, et al. An extended lattice Boltzmann methodology for high subsonic jet noise prediction[C]// 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA. Reston, Virginia: AIAA, 2014 doi: 10.2514/6.2014-2755
    [18] CASALINO D, HAZIR A, MANN A. Turbofan broadband noise prediction using the lattice Boltzmann method[J]. AIAA Journal, 2017, 56(2): 609-628. DOI: 10.2514/1.J055674
    [19] 冯欢欢, 刘勇, 王琦, 等. 基于LBM-LES方法翼型纯音噪声数值研究[J]. 计算力学学报, 2019, 36(5): 678-686. doi: 10.7511/jslx20180826002

    FENG H H, LIU Y, WANG Q, et al. Numerical study of airfoil tonal noise based on LBM-LES[J]. Chinese Journal of Computational Mechanics, 2019, 36(5): 678-686. (in Chinese) doi: 10.7511/jslx20180826002
    [20] DESQUESNES G, TERRACOL M, SAGAUT P. Numerical investigation of the tone noise mechanism over laminar airfoils[J]. Journal of Fluid Mechanics, 2007, 591: 155-182. DOI: 10.1017/s0022112007007896
    [21] 何雅玲, 李庆, 王勇, 等. 格子Boltzmann方法的工程热物理应用[J]. 科学通报, 2009, 54(18): 2638-2656. doi: 10.1360/csb2009-54-18-2638

    HE Y L, LI Q, WANG Y, et al. Lattice Boltzmann method and its applications in engineering thermophysics[J]. Chinese Science Bulletin, 2009, 54(18): 2638-2656. (in Chinese) doi: 10.1360/csb2009-54-18-2638
    [22] SANDBERG R D, JONES L E, SANDHAM N D, et al. Direct numerical simulations of tonal noise generated by laminar flow past airfoils[J]. Journal of Sound and Vibration, 2009, 320(4-5): 838-858. DOI: 10.1016/j.jsv.2008.09.003
    [23] BRIONNAUD R, MODENA M C, TRAPANI G, et al. Direct noise computation with a lattice-Boltzmann method and application to industrial test cases[C]// 22nd AIAA/CEAS Aeroacoustics Conference, Lyon, France. Reston, Virginia: AIAA, 2016 doi: 10.2514/6.2016-2969
    [24] MCKEE M W. An exploratory investigation of airfoil sections in low Reynolds number subsonic compressible flows[M]. The Ohio State University, 1998.
    [25] KURELEK J W, KOTSONIS M, YARUSEVYCH S. Transition in a separation bubble under tonal and broadband acoustic excitation[J]. Journal of Fluid Mechanics, 2018, 853: 1-36. DOI: 10.1017/jfm.2018.546
  • 加载中
图(13)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  62
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-14
  • 录用日期:  2021-12-05
  • 修回日期:  2021-12-03
  • 网络出版日期:  2022-01-04
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回