[1] |
BURGMANN S, BRÜCKER C, SCHRÖDER W. Scanning PIV measurements of a laminar separation bubble[J]. Experiments in Fluids, 2006, 41(2): 319-326. . DOI: 10.1007/s00348-006-0153-6
|
[2] |
朱志斌, 刘强, 白鹏. 低雷诺数翼型层流分离现象大涡模拟方法[J]. 空气动力学学报, 2019, 37(06): 915-923. doi: 10.7638/kqdlxxb-2018.0025ZHU Z B, LIU Q, BAI P. Large eddy simulation method for the laminar separation phenomenon on low Reynolds number airfoils[J]. Acta Aerodynamica Sinica, 2019, 37(6): 915-923. (in Chinese) doi: 10.7638/kqdlxxb-2018.0025
|
[3] |
王皓田, 朱杨柱, 车学科, 等. S1223翼型低雷诺数下分离泡及气动特性[J]. 空气动力学学报, 2021, 39(3): 90-98. doi: 10.7638/kqdlxxb-2020.0075WANG H T, ZHU Y Z, CHE X K, et al. Separation bubble and aerodynamic characteristics of S1223 airfoil at low Reynolds numbers[J]. Acta Aerodynamica Sinica, 2021, 39(3): 90-98. (in Chinese) doi: 10.7638/kqdlxxb-2020.0075
|
[4] |
PRÖBSTING S, YARUSEVYCH S. Laminar separation bubble development on an airfoil emitting tonal noise[J]. Journal of Fluid Mechanics, 2015, 780: 167-191. DOI: 10.1017/jfm.2015.427
|
[5] |
PRÖBSTING S, SCARANO F, MORRIS S C. Regimes of tonal noise on an airfoil at moderate Reynolds number[J]. Journal of Fluid Mechanics, 2015, 780: 407-438. DOI: 10.1017/jfm.2015.475
|
[6] |
BROOKS T F, HUMPHREYS W M. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays[J]. Journal of Sound and Vibration, 2006, 294(4-5): 856-879. DOI: 10.1016/j.jsv.2005.12.046
|
[7] |
PATERSON R W, VOGT P G, FINK M R, et al. Vortex noise of isolated airfoils[J]. Journal of Aircraft, 1973, 10(5): 296-302. DOI: 10.2514/3.60229
|
[8] |
TAM C K W. Discrete tones of isolated airfoils[J]. The Journal of the Acoustical Society of America, 1974, 55(6): 1173-1177. DOI: 10.1121/1.1914682
|
[9] |
LOWSON M, FIDDES S, NASH E. Laminar boundary layer aero-acoustic instabilities[C]// 32nd Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. Reston, Virigina: AIAA, 1994: 358. doi: 10.2514/6.1994-358
|
[10] |
NASH E C, LOWSON M V, MCALPINE A. Boundary-layer instability noise on aerofoils[J]. Journal of Fluid Mechanics, 1999, 382: 27-61. DOI: 10.1017/s002211209800367x
|
[11] |
MCALPINE A, NASH E C, LOWSON M V. On the generation of discrete frequency tones by the flow around an aerofoil[J]. Journal of Sound and Vibration, 1999, 222(5): 753-779. DOI: 10.1006/jsvi.1998.2085
|
[12] |
BROOKS T F, HODGSON T H. Trailing edge noise prediction from measured surface pressures[J]. Journal of Sound and Vibration, 1981, 78(1): 69-117. DOI: 10.1016/S0022-460X(81)80158-7
|
[13] |
PLOGMANN B, HERRIG A, WÜRZ W. Experimental investigations of a trailing edge noise feedback mechanism on a NACA 0012 airfoil[J]. Experiments in Fluids, 2013, 54(5): 1-14. DOI: 10.1007/s00348-013-1480-z
|
[14] |
马致遥, 单锋, 章东. 格子玻尔兹曼方法对不同张角聚焦声束的建模[J]. 声学学报, 2018, 43(2): 217-223.MA Z Y, SHAN F, ZHANG D. Lattice Boltzmann method for modeling focused acoustic beams at different opening angles [J]. Acta Acustica, 2018, 43(2): 217-223. (in Chinese)
|
[15] |
CHEN S Y, DOOLEN G D. Lattice boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 329-364. DOI: 10.1146/annurev.fluid.30.1.329
|
[16] |
AIDUN C K, CLAUSEN J R. Lattice-boltzmann method for complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 439-472. DOI: 10.1146/annurev-fluid-121108-145519
|
[17] |
LEW P T, GOPALAKRISHNAN P, CASALINO D, et al. An extended lattice Boltzmann methodology for high subsonic jet noise prediction[C]// 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA. Reston, Virginia: AIAA, 2014 doi: 10.2514/6.2014-2755
|
[18] |
CASALINO D, HAZIR A, MANN A. Turbofan broadband noise prediction using the lattice Boltzmann method[J]. AIAA Journal, 2017, 56(2): 609-628. DOI: 10.2514/1.J055674
|
[19] |
冯欢欢, 刘勇, 王琦, 等. 基于LBM-LES方法翼型纯音噪声数值研究[J]. 计算力学学报, 2019, 36(5): 678-686. doi: 10.7511/jslx20180826002FENG H H, LIU Y, WANG Q, et al. Numerical study of airfoil tonal noise based on LBM-LES[J]. Chinese Journal of Computational Mechanics, 2019, 36(5): 678-686. (in Chinese) doi: 10.7511/jslx20180826002
|
[20] |
DESQUESNES G, TERRACOL M, SAGAUT P. Numerical investigation of the tone noise mechanism over laminar airfoils[J]. Journal of Fluid Mechanics, 2007, 591: 155-182. DOI: 10.1017/s0022112007007896
|
[21] |
何雅玲, 李庆, 王勇, 等. 格子Boltzmann方法的工程热物理应用[J]. 科学通报, 2009, 54(18): 2638-2656. doi: 10.1360/csb2009-54-18-2638HE Y L, LI Q, WANG Y, et al. Lattice Boltzmann method and its applications in engineering thermophysics[J]. Chinese Science Bulletin, 2009, 54(18): 2638-2656. (in Chinese) doi: 10.1360/csb2009-54-18-2638
|
[22] |
SANDBERG R D, JONES L E, SANDHAM N D, et al. Direct numerical simulations of tonal noise generated by laminar flow past airfoils[J]. Journal of Sound and Vibration, 2009, 320(4-5): 838-858. DOI: 10.1016/j.jsv.2008.09.003
|
[23] |
BRIONNAUD R, MODENA M C, TRAPANI G, et al. Direct noise computation with a lattice-Boltzmann method and application to industrial test cases[C]// 22nd AIAA/CEAS Aeroacoustics Conference, Lyon, France. Reston, Virginia: AIAA, 2016 doi: 10.2514/6.2016-2969
|
[24] |
MCKEE M W. An exploratory investigation of airfoil sections in low Reynolds number subsonic compressible flows[M]. The Ohio State University, 1998.
|
[25] |
KURELEK J W, KOTSONIS M, YARUSEVYCH S. Transition in a separation bubble under tonal and broadband acoustic excitation[J]. Journal of Fluid Mechanics, 2018, 853: 1-36. DOI: 10.1017/jfm.2018.546
|