Investigation on the shape optimization of wide-envelop air-breathing hypersonic vehicle
-
摘要: 针对吸气式宽包线高超声速飞行器的气动优化问题,基于任务要求建立了基于多点权重分配的气动外形优化模型,并采用“CFD+准一维流”方法开展了气动性能分析。为兼顾气动外形优化的效率与精度,通过改进现有的并行加点策略,发展了一套基于代理模型与梯度算法的分层优化框架,并采用函数算例对改进后的加点策略进行了验证。对吸气式高超声速飞行器的气动外形进行了分层优化,在满足各学科约束的情况下使飞行器在各个优化评估点处的气动性能均有所提升。Abstract: Aimed at the aerodynamic optimization problem of the wide-envelope air-breathing hypersonic vehicle, an aerodynamic shape optimization model based on multi-point weight distribution is established according to mission requirements. The aerodynamic performance analysis is based on "CFD+ quasi-one-dimensional flow" method. A set of layered optimization frameworks based on the proxy model and the gradient algorithm is developed by improving the existing parallel point addition strategy to consider both the efficiency and the accuracy during the aerodynamic shape optimization. A function calculation example is used to verify the improved point addition strategy. The aerodynamic shape of the air-breathing hypersonic vehicle is optimized in the current layered optimization framework. It shows that the vehicle's aerodynamic performances at all evaluation points are improved while meeting the constraints of various disciplines.
-
表 1 机身优化评估点权重系数
Table 1. Weight coefficients of the airframe optimization evaluation points
优化点 马赫数 权重系数 1 1.2 0.72 2 2.5 0.46 3 5.5 1.00 4 8.0 0.37 表 2 机翼优化评估点计算状态与权重
Table 2. Computational conditions and weights for the wing optimization evaluation points
优化点 马赫数 高度/km 迎角/(°) 权重系数 1 0.4 0 15 0.52 2 2.5 11.7 4 0.46 3 5.5 22.5 4 1.0 4 8.0 28 4 0.37 表 3 机身约束变量及约束范围
Table 3. Airframe constraint variables and ranges
变量 取值范围 物理描述 ${\bar x_F}$ [0.65, 0.75] 静稳定性约束 ${\eta _{{\rm{body}}} }$ >0.28 飞行器机身的容积率 ${\sigma _{Ma = 1.2}}$ >0.945 总压恢复系数(Ma = 1.2) ${\sigma _{Ma = 2.5}}$ >0.78 总压恢复系数(Ma = 2.5) ${\sigma _{Ma = 5.5}}$ >0.38 总压恢复系数(Ma = 5.5) ${\sigma _{Ma = 8.0}}$ >0.18 总压恢复系数(Ma = 8.0) ${\varphi _{Ma = 1.2}}$ >0.3 Ma = 1.2时的流量系数 ${\varphi _{Ma = 2.5}}$ >0.45 Ma = 2.5时的流量系数 ${\varphi _{Ma = 5.5}}$ >0.9 Ma = 5.5时的流量系数 ${\varphi _{Ma = 8.0}}$ >0.98 Ma = 8.0时的流量系数 ${r_{{\rm{tip}}} }$ 10 mm 前缘半径 表 4 机翼约束变量及约束范围
Table 4. Wing constraint variables and ranges
变量 取值范围 物理描述 ${C_{Lw} }_{,Ma = 0.4}$ >0.5 机翼升力系数(Ma = 0.4) ${\eta _{{\rm{wing}}} }$ >0.1 机翼容积率 表 5 机身设计变量与范围
Table 5. Body design variables and ranges
变量 基准值 取值范围 物理描述 ${r_{{\rm{tip}}} }$/mm 10 [5,15] 飞行器前缘中点处半径 ${L_{{\rm{body}}} }$/mm 32000 [31000,33000] 飞行器机身长度 ${W_{{\rm{engine}}} }$/mm 5000 [4800,5200] 发动机宽度 ${\theta _{{\rm{exp}}} }$/(°) 15 [14,17] 上表面起始扩张角 ${H_{{\rm{body}}} }$/mm 4100 [4050,4200] 飞行器机身高度 $ n $ 0.2 [0.05,0.3] 飞行器头部形状参数 ${\theta }_{1,2,3,4}$/(°) 80 [75,85] 截面一、二、三、四底部
切线与水平面夹角$ {H_1} $/mm 1950 [1900,2000] 截面一控制点相对高度 $ {H_2} $/mm 2700 [2600,2750] 截面二控制点相对高度 $ {H_{3,4,5}} $/mm 3150 [3100,3250] 截面三、四、五控制点相对高度 ${L_{{\rm{nozzle}}} }$/mm 11000 [10000,12000] 尾喷管长度 表 6 机翼设计变量与范围
Table 6. Wing design variables and ranges
参数 基准值 取值范围 ${\alpha _1}$/(°) 71 [70,75] ${\alpha _2}$/(°) 55 [50,60] ${\alpha _3}$/(°) 10 [5,15] ${C_1}$/mm 500 [400,600] ${C_2}$/mm 300 [200,400] ${L_1}$/mm 18000 [16000,20000] ${L_2}$/mm 5000 [4000,6000] $R$/mm 5000 [4500,6000] ${Z_w}$/mm 7000 [6000,8000] ${C_3}$/mm 250 [200,300] ${L_3}$/mm 2000 [1500,2500] ${H_{{\rm{cw}}} }$/mm 4000 [3000,5000] 表 7 两种方法的梯度计算结果对比
Table 7. Comparison of the gradient calculation results between the two methods
控制参数 有限差分法 离散伴随法 相差百分比/% 上表面 下表面 上表面 下表面 上表面 下表面 a1 0.0373 0.0260 0.0378 0.0267 1.32 2.62 a2 0.0258 0.0169 0.0261 0.0172 1.15 1.74 a3 0.2224 0.0035 0.0227 0.0036 2.20 2.78 a4 0.0142 –0.0031 0.0143 –0.0030 0.70 3.33 a5 0.0101 –0.0070 0.0104 –0.0068 2.88 2.94 a6 0.0079 –0.0093 0.0080 –0.0090 1.25 3.33 a7 0.0047 –0.0118 0.0048 –0.0115 2.08 2.61 表 8 G9函数优化结果及调用高精度模型次数对比
Table 8. Comparison of the G9 function optimization results and the times of calling high-precision models
自适应加点策略 优化结果 迭代调用高精度模型次数 最优理论解 680.63 EI单一加点法 722.79 200 混合加点法 681.60 600 Kriging信任法 695.49 600 多点EI加点法 683.04 600 改进的Kriging信任法 681.61 600 改进的多点EI加点法 680.98 600 表 9 机身第一层优化结果
Table 9. First layer optimization results of the fuselage
参数符号 基准值 优化值 rtip/mm 10 10 Lbody/mm 32000 31101 Wengine/mm 5000 4853.3 θexp/(°) 15 14.01 Hbody/mm 4100 4087.8 n 0.2 0.07 H1/mm 1950 1931.4 θ3,4/(°) 80 83.8 H3,4,5/mm 3150 3203.3 Lnozzle/mm 11000 11821.6 ${\eta _{{\rm{body}}} }$ 0.282 0.2811 $ {\bar x_{F,Ma = 1.2}} $ 0.672 0.732 $ {\bar x_{F,Ma = 2.5}} $ 0.739 0.749 $ {\bar x_{F,Ma = 5.5}} $ 0.743 0.719 $ {\bar x_{F,Ma = 8.0}} $ 0.718 0.690 ${\sigma _{Ma = 1.2}}$ 0.947 0.947 ${\sigma _{Ma = 2.5}}$ 0.795 0.804 ${\sigma _{Ma = 5.5}}$ 0.384 0.390 ${\sigma _{Ma = 8.0}}$ 0.183 0.190 ${J_{{\rm{body}}} }$ 1.478 0.323 表 10 机翼外形优化结果
Table 10. Wing shape optimization results
参数符号 基准值 优化值 ${\alpha _1}$/(°) 71 71.48 ${\alpha _2}$/(°) 55 50.85 ${\alpha _3}$/(°) 10 8.29 ${C_1}$/mm 500 405.5 ${C_2}$/mm 300 242.2 ${L_1}$/mm 18000 17588 ${L_2}$/mm 5000 5499 $R$/mm 5000 5231.3 ${Z_w}$/mm 7000 6710.5 ${C_3}$/mm 250 218.9 ${L_3}$/mm 2000 2388.3 ${H_{{\rm{cw}}} }$/mm 4000 3077.6 ${J_{{\rm{wing}}} }$ 2.312 0.971 ${C_{Dw,Ma = 0.4} }$ 0.144 0.135 ${C_{Dw,Ma = 2.5} }$ 0.00919 0.00654 ${C_{Dw,Ma = 5.5} }$ 0.00741 0.00616 ${C_{Dw,Ma = 8.0} }$ 0.00575 0.00478 ${C_{Lw,Ma = 0.4} }$ 0.5357 0.5038 ${\eta _{{\rm{wing}}} }$ 0.1106 0.1004 表 11 翼身组合体优化前后参数对比
Table 11. Comparison of parameters before and after optimization of the wing body assembly
参数符号 优化前 优化后 设计变量 ${r_{{\rm{tip}}} }$/mm 10 10 ${L_{{\rm{body}}} }$/mm 31101 31078.3 ${W_{{\rm{engine}}} }$/mm 4853.3 4816.4 ${\theta _{{\rm{exp}}} }$/(°) 14.01 14 ${H_{{\rm{body}}} }$/mm 4087.8 4078.6 n 0.07 0.0683 $ {H_1} $/mm 1931.4 1924.3 $ {\theta _{3,4}} $/(°) 83.8 83.9 $ {H_{3,4,5}} $/mm 3203.3 3210.2 ${L_{{\rm{nozzle}}} }$/mm 11821.6 11836.8 ${\alpha _1}$/(°) 71.48 71.56 ${\alpha _2}$/(°) 50.85 51.22 ${\alpha _3}$/(°) 8.29 7.92 ${C_1}$/mm 405.5 401.6 ${C_2}$/mm 282.2 274.7 ${L_1}$/mm 17588 17462.8 ${L_2}$/mm 5499 5361.2 $R$/mm 5231.3 5334.5 ${Z_w}$/mm 6710.5 6642 ${C_3}$/mm 218.9 213.8 ${L_3}$/mm 2388.3 2452.1 ${H_{cw}}$/mm 3077.6 3080.6 $ {H_w} $/mm 600 521.4 ${L_w}$/mm 3500 3842 约束条件 $ {\bar x_{F,Ma = 1.2}} $ 0.709 0.723 $ {\bar x_{F,Ma = 2.5}} $ 0.676 0.681 $ {\bar x_{F,Ma = 5.5}} $ 0.711 0.704 $ {\bar x_{F,Ma = 8.0}} $ 0.727 0.721 ${\eta _{{\rm{body}}} }$ 0.2811 0.2812 ${\sigma _{Ma = 1.2}}$ 0.947 0.946 ${\sigma _{Ma = 2.5}}$ 0.804 0.802 ${\sigma _{Ma = 5.5}}$ 0.390 0.392 ${\sigma _{Ma = 8.0}}$ 0.190 0.192 ${\varphi _{Ma = 1.2}}$ 0.3052 0.3048 ${\varphi _{Ma = 2.5}}$ 0.460 0.460 ${\varphi _{Ma = 5.5}}$ 0.912 0.913 ${\varphi _{Ma = 8.0}}$ 0.998 0.999 ${\eta _{{\rm{wing}}} }$ 0.1004 0.10003 目标函数 ${C_{Lo, Ma = 0.4} }$ 0.7720 0.7649 ${C_{Do,Ma = 1.2} }$ 0.07202 0.07125 ${C_{ Do, Ma = 2.5} }$ 0.03688 0.03659 ${C_{Do, Ma = 5.5} }$ 0.004072 0.003864 ${C_{ Do, Ma = 8.0} }$ 0.006381 0.006179 ${J_{{\rm{com}}} }$ 0.362 0.291 -
[1] BOWCUTT K G. Multidisciplinary optimization of airbreathing hypersonic vehicles[J]. Journal of Propulsion and Power, 2001, 17(6): 1184-1190. DOI: 10.2514/2.5893 [2] 王国辉, 王小军, 杨勇, 等. 火箭基组合循环(RBCC)推进系统研究现状[J]. 固体火箭技术, 2003, 26(3): 1-3, 6. doi: 10.3969/j.issn.1006-2793.2003.03.001WANG G H, WANG X J, YANG Y, et al. Research status about rocket based combined cycle (RBCC) propulsion system[J]. Journal of Solid Rocket Technology, 2003, 26(3): 1-3, 6. (in Chinese) doi: 10.3969/j.issn.1006-2793.2003.03.001 [3] 尹泽勇, 蔚夺魁, 徐雪. 高马赫数涡轮基推进系统的发展及挑战[J]. 航空发动机, 2021, 47(4): 1-7.YIN Z Y, YU D K, XU X. Development trend and technical challenge of high Mach number turbine based propulsion system[J]. Aeroengine, 2021, 47(4): 1-7. (in Chinese) [4] 南向谊, 王拴虎, 李平. 空气涡轮火箭发动机研究的进展及展望[J]. 火箭推进, 2008, 34(6): 31-35. doi: 10.3969/j.issn.1672-9374.2008.06.007NAN X Y, WANG S H, LI P. Investigation on status and prospect of air turbine rocket[J]. Journal of Rocket Propulsion, 2008, 34(6): 31-35(in Chinese) . doi: 10.3969/j.issn.1672-9374.2008.06.007 [5] 韦宝禧, 凌文辉, 冮强, 等. TRRE发动机关键技术分析及推进性能探索研究[J]. 推进技术, 2017, 38(2): 298-305.WEI B X, LING W H, GANG Q, et al. Analysis of key technologies and propulsion performance research of TRRE engine[J]. Journal of Propulsion Technology, 2017, 38(2): 298-305 (in Chinese) . [6] 左林玄, 张辰琳, 王霄, 等. 高超声速飞机动力需求探讨[J]. 航空学报, 2021, 42(8): 525798.ZUO L X, ZHANG C L, WANG X, et al. Requirement of hypersonic aircraft power[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525798. (in Chinese) [7] FUJIKAWA T, TSUCHIYA T, TOMIOKA S. Multi-objective, multidisciplinary design optimization of TSTO space planes with RBCC engines[C]//Proc of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, Florida. Reston, Virginia: AIAA, 2015. doi: 10.2514/6.2015-0650 [8] ATSUSHI U, HIDEYUKI T, KOJIRO S. Aerodynamic shape optimization of hypersonic airlines considering multi-design-point, 2010[C]. //27th Congress of International Council of the Aeronautical Sciences, 19 - 24 September 2010, Nice, France Paper ICAS 2010-2.8. 3 [9] AHUJA V, HARTFIELD R. Optimization of air-breathing hypersonic aircraft design for maximum cruise speeds using genetic algorithms[C]//Proc of the 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, Germany. Reston, Virigina: AIAA, 2009. doi: 10.2514/6.2009-7323 [10] 车竞. 高超声速飞行器乘波布局优化设计研究[D]. 西安: 西北工业大学, 2007.CHE J. Optimization design of waverider-hypersonic cruise vehicle[D]. Xi'an: Northwestern Polytechnical University, 2007 (in Chinese) . [11] 李晓宇, 欧海英, 丁国昊, 等. 基于响应面方法的高超声速飞行器一体化布局气动设计与优化[J]. 导弹与航天运载技术, 2010(2): 8-11. doi: 10.3969/j.issn.1004-7182.2010.02.003LI X Y, OU H Y, DING G H, et al. Integrative aerodynamic design and optimization of hypersonic vehicle configurations based on response surface methodology[J]. Missiles and Space Vehicles, 2010(2): 8-11. (in Chinese) doi: 10.3969/j.issn.1004-7182.2010.02.003 [12] 陈兵. 宽包线吸气式运载器机体/推进一体化耦合设计与分析[D]. 西安: 西北工业大学, 2018.CHEN B. The coupling design and analysis of airframe-propulsion integration for air-breathing launch vehicle in wide envelope[D]. Xi'an: Northwestern Polytechnical University, 2018 (in Chinese) . [13] 刘峰博, 郝海兵, 李典, 等. 离散伴随方法在气动优化设计中的应用[J]. 航空计算技术, 2017, 47(2): 33-36, 40. doi: 10.3969/j.issn.1671-654X.2017.02.009LIU F B, HAO H B, LI D, et al. Application of discrete adjoint method in aerodynamic shape optimization design[J]. Aeronautical Computing Technique, 2017, 47(2): 33-36, 40. (in Chinese) doi: 10.3969/j.issn.1671-654X.2017.02.009 [14] RUDER S. An overview of gradient descent optimization algorithms[R]. ArXiv abs/1609.04747, 2016. [15] 鞠胜军, 阎超, 叶志飞. 吸气式高超声速飞行器多参数灵敏度分析[J]. 北京航空航天大学学报, 2017, 43(5): 927-934.JU S J, YAN C, YE Z F. Multi-parametric sensitivity analysis of air-breathing hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 927-934. (in Chinese) [16] NUMBERS K. Hypersonic propulsion system force accounting[C]//Proc of the 29th Aerospace Sciences Meeting, Reno, NV, USA. Reston, Virigina: AIAA, 1991. doi: 10.2514/6.1991-228 [17] LIU J, SONG W P, HAN Z H, et al. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models[J]. Structural and Multidisciplinary Optimization, 2017, 55(3): 925-943. DOI: 10.1007/s00158-016-1546-7 [18] ZHANG Y, HAN Z H, ZHANG K S. Variable-fidelity expected improvement method for efficient global optimization of expensive functions[J]. Structural and Multidisciplinary Optimization, 2018, 58(4): 1431-1451. DOI: 10.1007/s00158-018-1971-x [19] 段焰辉, 蔡晋生, 刘秋洪. 基于代理模型方法的翼型优化设计[J]. 航空学报, 2011, 32(4): 617-627.DUAN Y H, CAI J S, LIU Q H. Surrogate model based optimization for airfoil design[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(4): 617-627. (in Chinese) [20] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.HAN Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225. (in Chinese) [21] 孙美建, 詹浩. Kriging模型在机翼气动外形优化中的应用[J]. 空气动力学学报, 2011, 29(6): 759-764. doi: 10.3969/j.issn.0258-1825.2011.06.012SUN M J, ZHAN H. Application of Kriging surrogate model for aerodynamic shape optimization of wing[J]. Acta Aerodynamica Sinica, 2011, 29(6): 759-764. (in Chinese) doi: 10.3969/j.issn.0258-1825.2011.06.012 [22] 马洋. 基于代理模型和MOEA/D的飞行器气动外形优化设计研究[D]. 长沙: 国防科学技术大学, 2015.MA Y. Research on the aerodynamic shape optimization of vehicle based on surrogate model and MOEA/D[D]. Changsha: National University of Defense Technology, 2015. (in Chinese) [23] 陈晓东. 基于遗传算法的翼型优化设计[D]. 哈尔滨: 哈尔滨工程大学, 2017.CHEN X D. Airfoil optimization design based on genetic algorithm[D]. Harbin: Harbin Engineering University, 2017. (in Chinese) [24] COAKLEY T. Numerical simulation of viscous transonic airfoil flows[C]//Proc of the 25th AIAA Aerospace Sciences Meeting, Reno, NV, USA. Reston, Virigina: AIAA, 1987. doi: 10.2514/6.1987-416 [25] GINSBOURGER D, RICHE R L, CARRARO L. Kriging is well-suited to parallelize optimization[M]// TENNE Y, GOH C K. Computational Intelligence in Expensive Optimization Problems, 2010: 131-162. doi: 10.1007/978-3-642-10701-6_6 [26] 柳斐. 一种基于多点EI的高效全局气动优化设计方法[C]// 第三届中国航空科学技术大会论文集. 北京: 中国航空学会, 2017: 7.LIU F. An Efficient Global Aerodynamic Shape Optimization Method based on Multi-point EI[C]//Proc. of the 5th Chinese Aeronautics Science and Technology Conference. Beijing: Chinese Society of Aeronautics and Astronautics, 2017: 7 (in Chinese). [27] MICHALEWICZ Z. Genetic Algorithms Numerical Optimization and Constraints[C]//International Conference on Genetic Algorithms, Morgan Kaufmann Publishers Inc. 2002: 151-158. [28] 黄江涛, 刘刚, 周铸, 等. 基于离散伴随方程求解梯度信息的若干问题研究[J]. 空气动力学学报, 2017, 35(4): 554-562. doi: 10.7638/kqdlxxb-2017.0064HUANG J T, LIU G, ZHOU Z, et al. Investigation of gradient computation based on discrete adjoint method[J]. Acta Aerodynamica Sinica, 2017, 35(4): 554-562 (in Chinese). doi: 10.7638/kqdlxxb-2017.0064 -