留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PHengLEI的非稳态电热除冰过程仿真

刘宗辉 卜雪琴 林贵平 李伟斌

刘宗辉, 卜雪琴, 林贵平, 等. 基于PHengLEI的非稳态电热除冰过程仿真[J]. 空气动力学学报, 2023, 41(2): 53−63 doi: 10.7638/kqdlxxb-2021.0353
引用本文: 刘宗辉, 卜雪琴, 林贵平, 等. 基于PHengLEI的非稳态电热除冰过程仿真[J]. 空气动力学学报, 2023, 41(2): 53−63 doi: 10.7638/kqdlxxb-2021.0353
LIU Z H, BU X Q, LIN G P, et al. Simulation of unsteady electrothermal deicing process based on PHengLEI[J]. Acta Aerodynamica Sinica, 2023, 41(2): 53−63 doi: 10.7638/kqdlxxb-2021.0353
Citation: LIU Z H, BU X Q, LIN G P, et al. Simulation of unsteady electrothermal deicing process based on PHengLEI[J]. Acta Aerodynamica Sinica, 2023, 41(2): 53−63 doi: 10.7638/kqdlxxb-2021.0353

基于PHengLEI的非稳态电热除冰过程仿真

doi: 10.7638/kqdlxxb-2021.0353
基金项目: 国家数值风洞工程(NNW)
详细信息
    作者简介:

    刘宗辉(1998-),男,湖北恩施人,硕士研究生,研究方向:飞机防/除冰技术. E-mail:lzh2677@buaa.edu.cn

    通讯作者:

    卜雪琴*,副教授,研究方向:飞机和发动机结冰与防除冰技术. E-mail:buxueqin@buaa.edu.cn

  • 中图分类号: V321.2+29;V211.3

Simulation of unsteady electrothermal deicing process based on PHengLEI

  • 摘要: 为了填补国产自主可控CFD软件风雷平台的防除冰功能开发的空白,本文建立了电热除冰计算模型、计算方法和非稳态导热模型,并在国家数值风洞风雷平台(PHengLEI)基础上,集成了非稳态电热除冰计算和非稳态导热计算功能。通过与主流商业CFD软件仿真结果和实验数据的对比,验证了导热和非稳态电热除冰程序的准确性。针对某飞行工况进行了电热除冰计算,通过对表面溢流水、表面温度、结冰量的计算结果分析,发现合理布局加热片、设计加热热流密度和电热除冰控制率,可实现电热除冰系统的安全运行和能源的高效利用。
  • 图  1  电热除冰涉及到的物理现象

    Figure  1.  Physical phenomena involved in electrothermal deicing

    图  2  表面控制容积的质量与能量守恒示意图

    Figure  2.  Schematic diagram of the mass and energy conservation of the surface control volume

    图  3  导热计算的控制体单元

    Figure  3.  Control volume for the heat conduction calculation

    图  4  边界条件示意图

    Figure  4.  Schematic diagram of the boundary conditions

    图  5  电热除冰的求解流程图

    Figure  5.  Flow chart of the electrothermal deicing solver

    图  6  导热验证蒙皮模型

    Figure  6.  Skin model for the thermal conductivity verification

    图  7  导热验证蒙皮网格

    Figure  7.  Skin mesh for the thermal conductivity verification

    图  8  导热计算结果及对比

    Figure  8.  Heat conduction calculation results and comparison

    图  9  验证模型示意图

    Figure  9.  Schematic diagram of the validation model

    图  10  NASA实验加热规律(功率单位:W/m2

    Figure  10.  Heating law of the NASA experiment(power in W/m2

    图  11  加热区1温度曲线

    Figure  11.  Temperature curve of heating zone 1

    图  12  电加热分区示意图

    Figure  12.  Schematic diagram of the electric heating zone

    图  13  除冰周期部分时刻的温度分布云图

    Figure  13.  Temperature contours at different time instances of the deicing cycle

    图  14  加热周期各区域温度曲线

    Figure  14.  Temperature curve of each heater during the heating cycle

    图  15  除冰周期各时刻的温度分布云图

    Figure  15.  Temperature contours at different time instances of the deicing cycle

    图  16  结冰厚度变化曲线

    Figure  16.  Ice thickness variation curve

    图  17  加热片的新布局

    Figure  17.  New layout of the heating zone

    图  18  2 s时刻表面温度曲线

    Figure  18.  Surface temperature curves at 2 s

    图  19  优化后加热周期各区域温度曲线

    Figure  19.  Temperature curve of each region in the optimized heating cycle

    图  20  结冰厚度随时间变化曲线

    Figure  20.  Variation curve of the icing thickness with time

    图  21  11 s时刻溢流水量和结冰厚度云图

    Figure  21.  Contours of the overflow water volume and the icing thickness at 11 s

    图  22  15 s时刻溢流水量和结冰厚度云图

    Figure  22.  Contours of the overflow water volume and the icing thickness at 15 s

    表  1  实验环境条件

    Table  1.   Experimental conditions

    T/KV/(m·s–1)LWC/(g·m–3)MVD/μm$\alpha $/(°)
    266.4844.70.78200
    下载: 导出CSV

    表  2  实验材料物性参数

    Table  2.   Physical parameters of the experimental materials

    Material$\;\rho $/(kg·m–3)λ/(W·m–1·K–1)Cp/(J·kg–1·K–1)
    Erosion shield 8025.25 16.26 502.4
    Elastomer 1383.96 0.2561 1256.0
    Fiberglass 1794 0.294 1570.1
    Silicone foam 648.75 0.121 1130.4
    下载: 导出CSV

    表  3  计算条件

    Table  3.   Calculation conditions

    H/mp/Pa$\alpha $/(°)MaT/℃MVD/μmLWC/m3
    4572572089.510.35–10250.3
    下载: 导出CSV

    表  4  电加热初步控制率

    Table  4.   Preliminary control law of the electric heating

    Heater
    index
    Heat time
    /s
    Heater length
    /cm
    Heat power
    /(W·cm–2
    Heater1 0~3 0.40 4
    Heater2 2~5 0.40 4
    Heater3 1~11 0.35 5
    Heater4 2~2 0.43 5
    Heater5 9~11 0.40 4
    下载: 导出CSV

    表  5  改进的电加热控制率

    Table  5.   Improved control law for the electric heating

    Heater indexHeat time
    /s
    Heater length
    /cm
    Heat power
    /(W·cm–2
    Heater1 6~12 0.40 4
    Heater2 3~9 0.40 4
    Heater3 0~6 0.25 3
    Heater4 0~12 0.22 2
    Heater5 0~6 0.32 3
    Heater6 6~12 0.40 3
    下载: 导出CSV
  • [1] CHAUVIN R, VILLEDIEU P, TRONTIN P, et al. A robust coupling algorithm applied to thermal ice protection system unsteady modeling[C]// 6th AIAA Atmospheric and Space Environments Conference, Atlanta, GA. Reston, Virginia: AIAA, 2014. doi: 10.2514/6.2014-2061
    [2] FOSSATI M, HABASHI W G, BARUZZI G S. Simulation of supercooled large droplet impingement via reduced order technology[J]. Journal of Aircraft, 2012, 49(2): 600-610. DOI: 10.2514/1.c031608
    [3] POURBAGIAN M, HABASHI W. CFD-based optimization of electro-thermal wing ice protection systems in de-icing mode[C]// 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas. Reston, Virigina: AIAA, 2013. doi: 10.2514/6.2013-654
    [4] BOTURA G, FLOSDORF D, SWEET D. Concept development of low power electrothermal de-icing system[C]// 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virigina: AIAA, 2006. doi: 10.2514/6.2006-864
    [5] 陈维建, 张大林. 瘤状冰结冰过程的数值模拟[J]. 航空动力学报, 2005, 20(3): 472-476. doi: 10.3969/j.issn.1000-8055.2005.03.025

    CHEN W J, ZHANG D L. Numerical simulation of glaze ice accretion process[J]. Journal of Aerospace Power, 2005, 20(3): 472-476. (in Chinese) doi: 10.3969/j.issn.1000-8055.2005.03.025
    [6] BENNANI L, VILLEDIEU P, SALAUN M. Two dimensional model of an electro-thermal ice protection system[C]// 5th AIAA Atmospheric and Space Environments Conference, San Diego, CA. Reston, Virginia: AIAA, 2013. doi: 10.2514/6.2013-2936
    [7] 艾剑波, 邓景辉, 刘达经. 直升机旋翼桨叶除冰结构设计[J]. 直升机技术, 2005(2): 12-15. doi: 10.3969/j.issn.1673-1220.2005.02.003

    AI J B, DENG J H, LIU D J. Deicing structure design of helicopter rotor blade[J]. Helicopter Technique, 2005(2): 12-15. (in Chinese) doi: 10.3969/j.issn.1673-1220.2005.02.003
    [8] 常士楠, 刘达经, 袁修干. 直升机旋翼桨叶防/除冰系统防护范围研究[J]. 航空动力学报, 2007, 22(3): 360-364. doi: 10.3969/j.issn.1000-8055.2007.03.005

    CHANG S N, LIU D J, YUAN X G. Research on protected range of the anti-icing/deicing system for helicopter rotor[J]. Journal of Aerospace Power, 2007, 22(3): 360-364. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.03.005
    [9] 常士楠, 候雅琴, 袁修干. 周期电加热控制律对除冰表面温度的影响[J]. 航空动力学报, 2007, 22(8): 1247-1251. doi: 10.3969/j.issn.1000-8055.2007.08.007

    CHANG S N, HOU Y Q, YUAN X G. Influence of periodic electro-heating pulse on deicing surface temperature[J]. Journal of Aerospace Power, 2007, 22(8): 1247-1251. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.08.007
    [10] 常士楠, 艾素霄, 霍西恒, 等. 改进的电热除冰系统仿真[J]. 航空动力学报, 2008, 23(10): 1753-1758.

    CHANG S N, AI S X, HUO X H, et al. Improved simulation of electrothermal de-icing system[J]. Journal of Aerospace Power, 2008, 23(10): 1753-1758. (in Chinese)
    [11] 卜雪琴. 热气防冰系统数值仿真研究[D]. 北京: 北京航空航天大学, 2010.

    BU X Q. Numerical simulation of the hot-air anti-icing system[D]. Beijing: Beihang University 2010. (in Chinese)
    [12] 肖春华. 飞机电热除冰过程的传热特性及其影响研究[D]. 绵阳: 中国空气动力研究与发展中心, 2010.

    XIAO C H. Study on heat transfer characteristics and effects of electrothermal aircraft deicing[D]. Mianyang: China Aerodynamics Research and Development Center, 2010 (in Chinese) .
    [13] SHEN X B, LIN G P, YU J, et al. Three-dimensional numerical simulation of ice accretion at the engine inlet[J]. Journal of Aircraft, 2013, 50(2): 635-642. DOI: 10.2514/1.c031992
    [14] 傅见平, 庄伟亮, 杨波, 等. 直升机旋翼防/除冰电加热控制律仿真[J]. 北京航空航天大学学报, 2014, 40(9): 1200-1207.

    FU J P, ZHUANG W L, YANG B, et al. Simulation of heating control law of electro-thermal deicing of helicopter rotor blade[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9): 1200-1207. (in Chinese)
    [15] 杨诗雨, 常士楠, 高艳欣, 等. 旋转帽罩电加热防冰瞬态过程研究[J]. 空气动力学学报, 2016, 34(3): 289-294, 307.

    YANG S Y, CHANG S N, GAO Y X, et al. Investigation of rotary cone electric heating anti-icing transient process[J]. Acta Aerodynamica Sinica, 2016, 34(3): 289-294, 307. (in Chinese)
    [16] MU Z D, LIN G P, SHEN X B, et al. Numerical simulation of unsteady conjugate heat transfer of electrothermal deicing process[J]. International Journal of Aerospace Engineering, 2018, 2018: 5362541. DOI: 10.1155/2018/5362541
    [17] SHEN X B, WANG H F, LIN G P, et al. Unsteady simulation of aircraft electro-thermal deicing process with temperature-based method[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234(2): 388-400. DOI: 10.1177/0954410019866066
    [18] 赵钟, 何磊, 何先耀. 风雷(PHengLEI)通用CFD软件设计[J]. 计算机工程与科学, 2020, 42(2): 210-219. doi: 10.3969/j.issn.1007-130X.2020.02.004

    ZHAO Z, HE L, HE X Y. Design of general CFD software PHengLEI[J]. Computer Engineering and Science, 2020, 42(2): 210-219. (in Chinese) doi: 10.3969/j.issn.1007-130X.2020.02.004
    [19] 赵钟, 张来平, 何磊, 等. 适用于任意网格的大规模并行CFD计算框架PHengLEI[J]. 计算机学报, 2019, 42(11): 2368-2383. doi: 10.11897/SP.J.1016.2019.02368

    ZHAO Z, ZHANG L P, HE L, et al. PHengLEI: a large scale parallel CFD framework for arbitrary grids[J]. Chinese Journal of Computers, 2019, 42(11): 2368-2383. (in Chinese) doi: 10.11897/SP.J.1016.2019.02368
    [20] 穆作栋. 飞机结冰及电热除冰过程研究[D]. 北京: 北京航空航天大学, 2018.

    MU Z D. Study on aircraft icing and electrothermal deicing process [D]. Beijing: Beihang University 2018 (in Chinese).
    [21] MILLER D, BOND T, SHELDON D, et al. Validation of NASA thermal ice protection computer codes. I - Program overview[C]// 35th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. Reston, Virigina: AIAA, 1997. doi: 10.2514/6.1997-49
  • 加载中
图(24) / 表(5)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  72
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-05
  • 录用日期:  2022-01-10
  • 修回日期:  2021-12-25
  • 网络出版日期:  2022-04-28
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回