Simulation of unsteady electrothermal deicing process based on PHengLEI
-
摘要: 为了填补国产自主可控CFD软件风雷平台的防除冰功能开发的空白,本文建立了电热除冰计算模型、计算方法和非稳态导热模型,并在国家数值风洞风雷平台(PHengLEI)基础上,集成了非稳态电热除冰计算和非稳态导热计算功能。通过与主流商业CFD软件仿真结果和实验数据的对比,验证了导热和非稳态电热除冰程序的准确性。针对某飞行工况进行了电热除冰计算,通过对表面溢流水、表面温度、结冰量的计算结果分析,发现合理布局加热片、设计加热热流密度和电热除冰控制率,可实现电热除冰系统的安全运行和能源的高效利用。
-
关键词:
- 电热除冰 /
- 溢流水相变 /
- 非稳态导热 /
- 电热控制率 /
- 风雷(PHengLEI)
Abstract: Aircraft can encounter ice accretion on the windward surface as they fly through clouds that contain sub-cooled water droplet, which can then affect the aircraft performance and pose extremely serious threats to the flight safety. Electrothermal deicing is an important measure for aircraft icing protection. In this study, the numerical model and method for electrothermal deicing together with an unsteady heat conduction model have been established. Based on the “National Numerical Windtunnel” PHengLEI platform, the newly proposed model for unsteady electrothermal deicing is integrated. By comparing with the simulation results of widely used commercial CFD software and experimental data, the accuracy of the integrated unsteady electrothermal deicing program is verified. Simulations for electrothermal deicing under certain working conditions are carried out. Through analyses of the calculated surface overflow water, surface temperature and icing volume, it is found that a reasonable design of the heater layout, the heating heat flux and the electric heating deicing control rate, can help achieve the safe operation of the electrothermal deicing system and improve the efficient use of energy. -
表 1 实验环境条件
Table 1. Experimental conditions
T/K V/(m·s–1) LWC/(g·m–3) MVD/μm $\alpha $/(°) 266.48 44.7 0.78 20 0 表 2 实验材料物性参数
Table 2. Physical parameters of the experimental materials
Material $\;\rho $/(kg·m–3) λ/(W·m–1·K–1) Cp/(J·kg–1·K–1) Erosion shield 8025.25 16.26 502.4 Elastomer 1383.96 0.2561 1256.0 Fiberglass 1794 0.294 1570.1 Silicone foam 648.75 0.121 1130.4 表 3 计算条件
Table 3. Calculation conditions
H/m p/Pa $\alpha $/(°) Ma T/℃ MVD/μm LWC/m3 4572 57208 9.51 0.35 –10 25 0.3 表 4 电加热初步控制率
Table 4. Preliminary control law of the electric heating
Heater
indexHeat time
/sHeater length
/cmHeat power
/(W·cm–2)Heater1 0~3 0.40 4 Heater2 2~5 0.40 4 Heater3 1~11 0.35 5 Heater4 2~2 0.43 5 Heater5 9~11 0.40 4 表 5 改进的电加热控制率
Table 5. Improved control law for the electric heating
Heater index Heat time
/sHeater length
/cmHeat power
/(W·cm–2)Heater1 6~12 0.40 4 Heater2 3~9 0.40 4 Heater3 0~6 0.25 3 Heater4 0~12 0.22 2 Heater5 0~6 0.32 3 Heater6 6~12 0.40 3 -
[1] CHAUVIN R, VILLEDIEU P, TRONTIN P, et al. A robust coupling algorithm applied to thermal ice protection system unsteady modeling[C]// 6th AIAA Atmospheric and Space Environments Conference, Atlanta, GA. Reston, Virginia: AIAA, 2014. doi: 10.2514/6.2014-2061 [2] FOSSATI M, HABASHI W G, BARUZZI G S. Simulation of supercooled large droplet impingement via reduced order technology[J]. Journal of Aircraft, 2012, 49(2): 600-610. DOI: 10.2514/1.c031608 [3] POURBAGIAN M, HABASHI W. CFD-based optimization of electro-thermal wing ice protection systems in de-icing mode[C]// 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas. Reston, Virigina: AIAA, 2013. doi: 10.2514/6.2013-654 [4] BOTURA G, FLOSDORF D, SWEET D. Concept development of low power electrothermal de-icing system[C]// 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virigina: AIAA, 2006. doi: 10.2514/6.2006-864 [5] 陈维建, 张大林. 瘤状冰结冰过程的数值模拟[J]. 航空动力学报, 2005, 20(3): 472-476. doi: 10.3969/j.issn.1000-8055.2005.03.025CHEN W J, ZHANG D L. Numerical simulation of glaze ice accretion process[J]. Journal of Aerospace Power, 2005, 20(3): 472-476. (in Chinese) doi: 10.3969/j.issn.1000-8055.2005.03.025 [6] BENNANI L, VILLEDIEU P, SALAUN M. Two dimensional model of an electro-thermal ice protection system[C]// 5th AIAA Atmospheric and Space Environments Conference, San Diego, CA. Reston, Virginia: AIAA, 2013. doi: 10.2514/6.2013-2936 [7] 艾剑波, 邓景辉, 刘达经. 直升机旋翼桨叶除冰结构设计[J]. 直升机技术, 2005(2): 12-15. doi: 10.3969/j.issn.1673-1220.2005.02.003AI J B, DENG J H, LIU D J. Deicing structure design of helicopter rotor blade[J]. Helicopter Technique, 2005(2): 12-15. (in Chinese) doi: 10.3969/j.issn.1673-1220.2005.02.003 [8] 常士楠, 刘达经, 袁修干. 直升机旋翼桨叶防/除冰系统防护范围研究[J]. 航空动力学报, 2007, 22(3): 360-364. doi: 10.3969/j.issn.1000-8055.2007.03.005CHANG S N, LIU D J, YUAN X G. Research on protected range of the anti-icing/deicing system for helicopter rotor[J]. Journal of Aerospace Power, 2007, 22(3): 360-364. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.03.005 [9] 常士楠, 候雅琴, 袁修干. 周期电加热控制律对除冰表面温度的影响[J]. 航空动力学报, 2007, 22(8): 1247-1251. doi: 10.3969/j.issn.1000-8055.2007.08.007CHANG S N, HOU Y Q, YUAN X G. Influence of periodic electro-heating pulse on deicing surface temperature[J]. Journal of Aerospace Power, 2007, 22(8): 1247-1251. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.08.007 [10] 常士楠, 艾素霄, 霍西恒, 等. 改进的电热除冰系统仿真[J]. 航空动力学报, 2008, 23(10): 1753-1758.CHANG S N, AI S X, HUO X H, et al. Improved simulation of electrothermal de-icing system[J]. Journal of Aerospace Power, 2008, 23(10): 1753-1758. (in Chinese) [11] 卜雪琴. 热气防冰系统数值仿真研究[D]. 北京: 北京航空航天大学, 2010.BU X Q. Numerical simulation of the hot-air anti-icing system[D]. Beijing: Beihang University 2010. (in Chinese) [12] 肖春华. 飞机电热除冰过程的传热特性及其影响研究[D]. 绵阳: 中国空气动力研究与发展中心, 2010.XIAO C H. Study on heat transfer characteristics and effects of electrothermal aircraft deicing[D]. Mianyang: China Aerodynamics Research and Development Center, 2010 (in Chinese) . [13] SHEN X B, LIN G P, YU J, et al. Three-dimensional numerical simulation of ice accretion at the engine inlet[J]. Journal of Aircraft, 2013, 50(2): 635-642. DOI: 10.2514/1.c031992 [14] 傅见平, 庄伟亮, 杨波, 等. 直升机旋翼防/除冰电加热控制律仿真[J]. 北京航空航天大学学报, 2014, 40(9): 1200-1207.FU J P, ZHUANG W L, YANG B, et al. Simulation of heating control law of electro-thermal deicing of helicopter rotor blade[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9): 1200-1207. (in Chinese) [15] 杨诗雨, 常士楠, 高艳欣, 等. 旋转帽罩电加热防冰瞬态过程研究[J]. 空气动力学学报, 2016, 34(3): 289-294, 307.YANG S Y, CHANG S N, GAO Y X, et al. Investigation of rotary cone electric heating anti-icing transient process[J]. Acta Aerodynamica Sinica, 2016, 34(3): 289-294, 307. (in Chinese) [16] MU Z D, LIN G P, SHEN X B, et al. Numerical simulation of unsteady conjugate heat transfer of electrothermal deicing process[J]. International Journal of Aerospace Engineering, 2018, 2018: 5362541. DOI: 10.1155/2018/5362541 [17] SHEN X B, WANG H F, LIN G P, et al. Unsteady simulation of aircraft electro-thermal deicing process with temperature-based method[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234(2): 388-400. DOI: 10.1177/0954410019866066 [18] 赵钟, 何磊, 何先耀. 风雷(PHengLEI)通用CFD软件设计[J]. 计算机工程与科学, 2020, 42(2): 210-219. doi: 10.3969/j.issn.1007-130X.2020.02.004ZHAO Z, HE L, HE X Y. Design of general CFD software PHengLEI[J]. Computer Engineering and Science, 2020, 42(2): 210-219. (in Chinese) doi: 10.3969/j.issn.1007-130X.2020.02.004 [19] 赵钟, 张来平, 何磊, 等. 适用于任意网格的大规模并行CFD计算框架PHengLEI[J]. 计算机学报, 2019, 42(11): 2368-2383. doi: 10.11897/SP.J.1016.2019.02368ZHAO Z, ZHANG L P, HE L, et al. PHengLEI: a large scale parallel CFD framework for arbitrary grids[J]. Chinese Journal of Computers, 2019, 42(11): 2368-2383. (in Chinese) doi: 10.11897/SP.J.1016.2019.02368 [20] 穆作栋. 飞机结冰及电热除冰过程研究[D]. 北京: 北京航空航天大学, 2018.MU Z D. Study on aircraft icing and electrothermal deicing process [D]. Beijing: Beihang University 2018 (in Chinese). [21] MILLER D, BOND T, SHELDON D, et al. Validation of NASA thermal ice protection computer codes. I - Program overview[C]// 35th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. Reston, Virigina: AIAA, 1997. doi: 10.2514/6.1997-49 -