Wind tunnel test on suppressing vortex-induced vibrations of steel tubes in power transmission towers
-
摘要: 为了深入研究输电塔钢管的涡激振动特性,对安装不同设计参数扰流板的输电塔钢管进行了风洞试验。验证了输电塔钢管涡激振动临界风速和最大振幅的预测公式,并得到了扰流板外形、间距、长度、肋高等参数对输电塔钢管涡激振动抑振率的影响规律。在此基础上综合考虑材料成本、制作安装成本和抑振效果对不同设计参数下扰流板的抑振性价比进行了评估,最后基于帕累托最优解法选取了考虑成本后的扰流板最优设计方案,研究结果为扰流板设计参数的取值提供参考。Abstract: To investigate the effects of spoilers for mitigating vortex-induced vibration (VIV) of steel tubes in transmission towers, a series of wind tunnel tests on steel tubes with various design parameters of spoilers are carried out. The well established formula for predicting the VIV critical wind speed and the VIV maximum amplitude of steel tubes are verified, and the influence of configuration, spacing, length, and height of spoilers on VIV suppression rate are systematically studied. In addition, the material cost, installation cost and vibration suppression rate are taken into consideration for evaluating the cost performance of the spoiler with different design parameters. And the optimal design plan of the spoiler in considering the cost is selected based on the Pareto optimal solution method. Finally, corresponding suggestions on the value of the spoiler design parameters are given for the best control of vortex-induced vibrations of the steel tubes in transmission towers.
-
表 1 扰流板参数与风洞试验工况
Table 1. Design parameters of spoilers and conditions of wind tunnel test
工况 扰流板
间距/mm扰流板
长度/mm扰流板
肋高/mm扰流板
型式对比因素 0 — — — — 空钢管 1 4D D 0.3D 型式1 外形 2 4D D 0.3D 型式2 3 4D D 0.3D 型式3 4 4D D 0.3D 型式7 5 4D D 0.3D 型式8 2 4D D 0.3D 型式2 间距 6 6D D 0.3D 型式2 7 8D D 0.3D 型式2 7 8D D 0.3D 型式2 长度 8 8D 1.5D 0.3D 型式6 9 8D 2D 0.3D 型式2+型式2 10 8D 2.5D 0.3D 型式2+型式6 11 8D 3D 0.3D 型式6+型式6 2 4D D 0.3D 型式2 肋高 12 4D D 0.6D 型式4 13 4D 1.5D 0.6D 型式5 14 4D 1.5D 0.3D 型式6 表 2 钢管涡激振动的预测值与试验值
Table 2. Predicted value and experimental value of VIV
临界风速/(m·s–1) 最大位移
/mm预测值 6.018 0.987 试验值 6.000 0.803 表 3 不同扰流板间距下的抑振率
Table 3. VIV suppression rate of spoilers with different spacings
工况 扰流板
间距试验值 抑振率 加速度/(m·s–2) 位移/mm 加速度 位移 0 — 5.082 0.370 — — 2 4D 0.100 0.012 98.03% 96.81% 6 6D 0.184 0.016 96.39% 95.74% 7 8D 0.443 0.038 91.29% 89.80% 表 4 不同扰流板肋高下的抑振率
Table 4. VIV suppression rate of spoilers with different heights
工况 肋高 试验值 抑振率 加速度/(m·s–2) 位移/mm 加速度 位移 0 — 5.082 0.370 — — 2 0.3D 0.100 0.012 98.03% 96.81% 12 0.6D 0.141 0.015 97.23% 95.90% 13 0.6D 0.136 0.014 97.32% 96.10% 14 0.3D 0.605 0.010 88.11% 97.21% 表 5 扰流板基本信息
Table 5. Basic information of spoilers
方案 工况 型式 个数 总体积/cm3 总质量/g 方案1 2 型式2 10 333.50 2617.9 方案2 6 型式2 6 200.10 1570.8 方案3 7 型式2 6 200.10 1570.8 方案4 8 型式6 4 200.10 1570.8 方案5 9 型式2+型式2 4 266.80 2094.4 方案6 10 型式2+型式6 4 333.50 2617.9 方案7 11 型式6+型式6 4 400.20 3141.5 方案8 12 型式4 10 425.67 3341.5 方案9 13 型式5 8 510.81 4009.8 方案10 14 型式6 8 400.20 3141.5 表 6 10种方案的成本与效益
Table 6. Costs and benefits of 10 options
方案 材料成本
/元安装成本
/元总成本
/元平均抑振率 方案1 13.09 500 513.09 97.42% 方案2 7.85 300 307.85 96.07% 方案3 7.85 300 307.85 90.55% 方案4 7.85 200 207.85 96.52% 方案5 10.47 400 410.47 96.75% 方案6 13.09 400 413.09 96.95% 方案7 15.71 400 415.71 95.74% 方案8 16.71 500 516.71 96.57% 方案9 20.05 400 420.05 96.71% 方案10 15.71 400 415.71 92.66% -
[1] DENG H Z, JIANG Q, LI F, et al. Vortex-induced vibration tests of circular cylinders connected with typical joints in transmission towers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(10): 1069-1078. DOI: 10.1016/j.jweia.2011.07.005 [2] 杨靖波, 李喜来, 段松涛, 等. 输电塔钢管构件涡激风振防振锤抑制方法研究[J]. 建筑结构, 2016, 46(14): 30-35. doi: 10.19701/j.jzjg.2016.14.007YANG J B, LI X L, DUAN S T, et al. Study on suppression method with dampers against vortex-shedding induced wind vibration of transmission steel tubular tower members[J]. Building Structure, 2016, 46(14): 30-35. (in Chinese) doi: 10.19701/j.jzjg.2016.14.007 [3] 汤爱平, 陶仕博. 吸气作用下圆柱涡激振动特性试验研究[J]. 华中科技大学学报(自然科学版), 2016, 44(2): 97-101. doi: 10.13245/j.hust.160220TANG A P, TAO S B. Experimental research on properties of vortex-induced vibration for cylinders with suction[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(2): 97-101. (in Chinese) doi: 10.13245/j.hust.160220 [4] WANG C L, TANG H, DUAN F, et al. Control of wakes and vortex-induced vibrations of a single circular cylinder using synthetic jets[J]. Journal of Fluids and Structures, 2016, 60: 160-179. DOI: 10.1016/j.jfluidstructs.2015.11.003 [5] 陈威霖, 及春宁, 许栋, 等. 小直径附加圆柱对圆柱涡激振动抑制的参数优化[J]. 振动与冲击, 2020, 39(3): 24-29, 87. doi: 10.13465/j.cnki.jvs.2020.03.004CHEN W L, JI C N, XU D, et al. Parametric optimization for vortex-induced vibration suppression of a single cylinder with two small cylinders symmetrically arranged in rear[J]. Journal of Vibration and Shock, 2020, 39(3): 24-29, 87. (in Chinese) doi: 10.13465/j.cnki.jvs.2020.03.004 [6] YU Y, XIE F F, YAN H M, et al. Suppression of vortex-induced vibrations by fairings: a numerical study[J]. Journal of Fluids and Structures, 2015, 54: 679-700. DOI: 10.1016/j.jfluidstructs.2015.01.007 [7] KHORASANCHI M, HUANG S. Instability analysis of deepwater riser with fairings[J]. Ocean Engineering, 2014, 79: 26-34. DOI: 10.1016/j.oceaneng.2014.01.003 [8] 陈雯煜, 梁盛平, 王嘉松. 圆柱固结刚性分离盘结构振动风洞实验研究[J]. 实验力学, 2020, 35(4): 567-576. doi: 10.7520/1001-4888-19-072CHEN W Y, LIANG S P, WANG J S. Wind tunnel experiments of the vibration response for the circular cylinder fixed connection with rigid splitter plates[J]. Journal of Experimental Mechanics, 2020, 35(4): 567-576. (in Chinese) doi: 10.7520/1001-4888-19-072 [9] 睢娟, 王嘉松, 田启龙. 分离盘控制圆柱涡激振动的数值模拟研究[J]. 海洋技术学报, 2015, 34(4): 86-91.SUI J, WANG J S, TIAN Q L. Study on the numerical simulation of cylinder vortex-induced vibration controlled by separating plate[J]. Journal of Ocean Technology, 2015, 34(4): 86-91. (in Chinese) [10] ASSI G R S, BEARMAN P W. Transverse galloping of circular cylinders fitted with solid and slotted splitter plates[J]. Journal of Fluids and Structures, 2015, 54: 263-280. DOI: 10.1016/j.jfluidstructs.2014.11.005 [11] LOU M, CHEN Z W, CHEN P. Experimental investigation of the suppression of vortex induced vibration of two interfering risers with splitter plates[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 736-752. DOI: 10.1016/j.jngse.2016.09.012 [12] FANG S M, NIEDZWECKI J M, FU S X, et al. VIV response of a flexible cylinder with varied coverage by buoyancy elements and helical strakes[J]. Marine Structures, 2014, 39: 70-89. DOI: 10.1016/j.marstruc.2014.06.004 [13] ZHOU T, RAZALI S F M, HAO Z, et al. On the study of vortex-induced vibration of a cylinder with helical strakes[J]. Journal of Fluids and Structures, 2011, 27(7): 903-917. DOI: 10.1016/j.jfluidstructs.2011.04.014 [14] SONG Z H, DUAN M L, GU J J. Numerical investigation on the suppression of VIV for a circular cylinder by three small control rods[J]. Applied Ocean Research, 2017, 64: 169-183. DOI: 10.1016/j.apor.2017.03.001 [15] WU H, SUN D P, LU L, et al. Experimental investigation on the suppression of vortex-induced vibration of long flexible riser by multiple control rods[J]. Journal of Fluids and Structures, 2012, 30: 115-132. DOI: 10.1016/j.jfluidstructs.2012.02.004 [16] ZHANG Y B, GUO H Y, LIU X C, et al. Investigation of a new vortex-induced vibration suppression device in laboratory experiments[J]. Journal of Ocean University of China, 2012, 11(2): 129-136. DOI: 10.1007/s11802-012-1805-1 [17] GU F, WANG J S, QIAO X Q, et al. Pressure distribution, fluctuating forces and vortex shedding behavior of circular cylinder with rotatable splitter plates[J]. Journal of Fluids and Structures, 2012, 28: 263-278. DOI: 10.1016/j.jfluidstructs.2011.11.005 [18] LIANG S P, WANG J S, XU B H, et al. Vortex-induced vibration and structure instability for a circular cylinder with flexible splitter plates[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 174: 200-209. DOI: 10.1016/j.jweia.2017.12.030 [19] 秦力, 黄越, 丁皓姝. 不同节点连接钢管塔杆件微风振动分析[J]. 电力学报, 2014, 29(1): 87-90. doi: 10.13357/j.cnki.jep.000003QIN L, HUANG Y, DING H S. Aeolian vibration analysis of different node connectivity steel rod[J]. Journal of Electric Power, 2014, 29(1): 87-90. (in Chinese) doi: 10.13357/j.cnki.jep.000003 [20] 杨靖波, 代泽兵, 李清华. 典型节点构造钢管构件的杆端约束与起振临界风速的确定[J]. 电力建设, 2006, 27(4): 37-40. doi: 10.3969/j.issn.1000-7229.2006.04.011YANG J B, DAI Z B, LI Q H. Determination of end restrain and vibration critical wind speed for steel tube members of typical node structure[J]. Electric Power Construction, 2006, 27(4): 37-40. (in Chinese) doi: 10.3969/j.issn.1000-7229.2006.04.011 [21] HUANG M F, ZHANG B Y, GUO Y, et al. Prediction and suppression of vortex-induced vibration for steel tubes with bolted joints in tubular transmission towers[J]. Journal of Structural Engineering, 2021, 147(9): 04021128. DOI: 10.1061/(asce)st.1943-541x.0003100 [22] SKOP R A, BALASUBRAMANIAN S. A new twist on an old model for vortex-excited vibrations[J]. Journal of Fluids and Structures, 1997, 11(4): 395-412. DOI: 10.1006/jfls.1997.0085 [23] KAMPHUIS J W. Hydrodynamics around cylindrical structures[J]. Coastal Engineering, 1998, 33(1): 69. DOI: 10.1016/s0378-3839(97)00031-8 [24] SARPKAYA T. A critical review of the intrinsic nature of vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004, 19(4): 389-447. DOI: 10.1016/j.jfluidstructs.2004.02.005 [25] GABBAI R D, BENAROYA H. An overview of modeling and experiments of vortex-induced vibration of circular cylinders[J]. Journal of Sound and Vibration, 2005, 282(3-5): 575-616. DOI: 10.1016/j.jsv.2004.04.017 [26] SARPKAYA T. Vortex-induced oscillations: a selective review[J]. Journal of Applied Mechanics, 1979, 46(2): 241-258. DOI: 10.1115/1.3424537 [27] HUANG M F, ZHANG B Y, LOU W J. A computer vision-based vibration measurement method for wind tunnel tests of high-rise buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 182: 222-234. DOI: 10.1016/j.jweia.2018.09.022 [28] STANSBY P K, PINCHBECK J N, HENDERSON T. Spoilers for the suppression of vortex-induced oscillations (Technical note)[J]. Applied Ocean Research, 1986, 8(3): 169-173. DOI: 10.1016/S0141-1187(86)80017-7 [29] 黄本才. 结构抗风分析原理及应用[M]. 上海: 同济大学出版社, 2001. -