留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

输电塔钢管涡激振动控制措施的风洞试验研究

夏谦 杜海 冯衡 高彬 黄铭枫

夏谦, 杜海, 冯衡, 等. 输电塔钢管涡激振动控制措施的风洞试验研究[J]. 空气动力学学报, 2023, 41(2): 90−97 doi: 10.7638/kqdlxxb-2021.0377
引用本文: 夏谦, 杜海, 冯衡, 等. 输电塔钢管涡激振动控制措施的风洞试验研究[J]. 空气动力学学报, 2023, 41(2): 90−97 doi: 10.7638/kqdlxxb-2021.0377
XIA Q, DU H, FENG H, et al. Wind tunnel test on suppressing vortex-induced vibrations of steel tubes in power transmission towers[J]. Acta Aerodynamica Sinica, 2023, 41(2): 90−97 doi: 10.7638/kqdlxxb-2021.0377
Citation: XIA Q, DU H, FENG H, et al. Wind tunnel test on suppressing vortex-induced vibrations of steel tubes in power transmission towers[J]. Acta Aerodynamica Sinica, 2023, 41(2): 90−97 doi: 10.7638/kqdlxxb-2021.0377

输电塔钢管涡激振动控制措施的风洞试验研究

doi: 10.7638/kqdlxxb-2021.0377
基金项目: 国家自然科学基金(52178512)
详细信息
    作者简介:

    夏谦(1986-),男,湖北通山人,高级工程师,研究方向:输电线路结构设计. E-mail:xiaqian@csepdi.com

    通讯作者:

    黄铭枫*,教授,研究方向:结构风工程. E-mail:mfhuang@zju.edu.cn

  • 中图分类号: TU392.3

Wind tunnel test on suppressing vortex-induced vibrations of steel tubes in power transmission towers

  • 摘要: 为了深入研究输电塔钢管的涡激振动特性,对安装不同设计参数扰流板的输电塔钢管进行了风洞试验。验证了输电塔钢管涡激振动临界风速和最大振幅的预测公式,并得到了扰流板外形、间距、长度、肋高等参数对输电塔钢管涡激振动抑振率的影响规律。在此基础上综合考虑材料成本、制作安装成本和抑振效果对不同设计参数下扰流板的抑振性价比进行了评估,最后基于帕累托最优解法选取了考虑成本后的扰流板最优设计方案,研究结果为扰流板设计参数的取值提供参考。
  • 图  1  钢管模型风洞试验

    Figure  1.  Experimental setup of the wind tunnel test

    图  2  基于计算机视觉技术的位移测量

    Figure  2.  Displacement measurement based on computer vision-based method

    图  3  不同型式的扰流板的设计与试验布置

    Figure  3.  Design and experimental setups of different types of spoilers

    图  4  不同风速下钢管的最大位移

    Figure  4.  Maximum displacement of steel tube under different wind speeds

    图  5  钢管试件在临界风速下的位移时程(6 m/s)

    Figure  5.  Displacement time history of the steel tube at VIV critical wind speed 6 m/s

    图  6  不同外形扰流板的抑振率

    Figure  6.  VIV suppression rate of spoilers with different configurations

    图  7  不同扰流板长度下的抑振率

    Figure  7.  VIV suppression rate of spoilers with different lengths

    图  8  帕累托最优方案

    Figure  8.  Pareto Optimal Solution

    表  1  扰流板参数与风洞试验工况

    Table  1.   Design parameters of spoilers and conditions of wind tunnel test

    工况扰流板
    间距/mm
    扰流板
    长度/mm
    扰流板
    肋高/mm
    扰流板
    型式
    对比因素
    0 空钢管
    1 4D D 0.3D 型式1 外形
    2 4D D 0.3D 型式2
    3 4D D 0.3D 型式3
    4 4D D 0.3D 型式7
    5 4D D 0.3D 型式8
    2 4D D 0.3D 型式2 间距
    6 6D D 0.3D 型式2
    7 8D D 0.3D 型式2
    7 8D D 0.3D 型式2 长度
    8 8D 1.5D 0.3D 型式6
    9 8D 2D 0.3D 型式2+型式2
    10 8D 2.5D 0.3D 型式2+型式6
    11 8D 3D 0.3D 型式6+型式6
    2 4D D 0.3D 型式2 肋高
    12 4D D 0.6D 型式4
    13 4D 1.5D 0.6D 型式5
    14 4D 1.5D 0.3D 型式6
    下载: 导出CSV

    表  2  钢管涡激振动的预测值与试验值

    Table  2.   Predicted value and experimental value of VIV

    临界风速/(m·s–1)最大位移
    /mm
    预测值6.0180.987
    试验值6.0000.803
    下载: 导出CSV

    表  3  不同扰流板间距下的抑振率

    Table  3.   VIV suppression rate of spoilers with different spacings

    工况扰流板
    间距
    试验值抑振率
    加速度/(m·s–2)位移/mm加速度位移
    0 5.082 0.370
    2 4D 0.100 0.012 98.03% 96.81%
    6 6D 0.184 0.016 96.39% 95.74%
    7 8D 0.443 0.038 91.29% 89.80%
    下载: 导出CSV

    表  4  不同扰流板肋高下的抑振率

    Table  4.   VIV suppression rate of spoilers with different heights

    工况肋高试验值抑振率
    加速度/(m·s–2)位移/mm加速度位移
    0 5.082 0.370
    2 0.3D 0.100 0.012 98.03% 96.81%
    12 0.6D 0.141 0.015 97.23% 95.90%
    13 0.6D 0.136 0.014 97.32% 96.10%
    14 0.3D 0.605 0.010 88.11% 97.21%
    下载: 导出CSV

    表  5  扰流板基本信息

    Table  5.   Basic information of spoilers

    方案工况型式个数总体积/cm3总质量/g
    方案12型式210333.502617.9
    方案26型式26200.101570.8
    方案37型式26200.101570.8
    方案48型式64200.101570.8
    方案59型式2+型式24266.802094.4
    方案610型式2+型式64333.502617.9
    方案711型式6+型式64400.203141.5
    方案812型式410425.673341.5
    方案913型式58510.814009.8
    方案1014型式68400.203141.5
    下载: 导出CSV

    表  6  10种方案的成本与效益

    Table  6.   Costs and benefits of 10 options

    方案材料成本
    /元
    安装成本
    /元
    总成本
    /元
    平均抑振率
    方案113.09500513.0997.42%
    方案27.85300307.8596.07%
    方案37.85300307.8590.55%
    方案47.85200207.8596.52%
    方案510.47400410.4796.75%
    方案613.09400413.0996.95%
    方案715.71400415.7195.74%
    方案816.71500516.7196.57%
    方案920.05400420.0596.71%
    方案1015.71400415.7192.66%
    下载: 导出CSV
  • [1] DENG H Z, JIANG Q, LI F, et al. Vortex-induced vibration tests of circular cylinders connected with typical joints in transmission towers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(10): 1069-1078. DOI: 10.1016/j.jweia.2011.07.005
    [2] 杨靖波, 李喜来, 段松涛, 等. 输电塔钢管构件涡激风振防振锤抑制方法研究[J]. 建筑结构, 2016, 46(14): 30-35. doi: 10.19701/j.jzjg.2016.14.007

    YANG J B, LI X L, DUAN S T, et al. Study on suppression method with dampers against vortex-shedding induced wind vibration of transmission steel tubular tower members[J]. Building Structure, 2016, 46(14): 30-35. (in Chinese) doi: 10.19701/j.jzjg.2016.14.007
    [3] 汤爱平, 陶仕博. 吸气作用下圆柱涡激振动特性试验研究[J]. 华中科技大学学报(自然科学版), 2016, 44(2): 97-101. doi: 10.13245/j.hust.160220

    TANG A P, TAO S B. Experimental research on properties of vortex-induced vibration for cylinders with suction[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(2): 97-101. (in Chinese) doi: 10.13245/j.hust.160220
    [4] WANG C L, TANG H, DUAN F, et al. Control of wakes and vortex-induced vibrations of a single circular cylinder using synthetic jets[J]. Journal of Fluids and Structures, 2016, 60: 160-179. DOI: 10.1016/j.jfluidstructs.2015.11.003
    [5] 陈威霖, 及春宁, 许栋, 等. 小直径附加圆柱对圆柱涡激振动抑制的参数优化[J]. 振动与冲击, 2020, 39(3): 24-29, 87. doi: 10.13465/j.cnki.jvs.2020.03.004

    CHEN W L, JI C N, XU D, et al. Parametric optimization for vortex-induced vibration suppression of a single cylinder with two small cylinders symmetrically arranged in rear[J]. Journal of Vibration and Shock, 2020, 39(3): 24-29, 87. (in Chinese) doi: 10.13465/j.cnki.jvs.2020.03.004
    [6] YU Y, XIE F F, YAN H M, et al. Suppression of vortex-induced vibrations by fairings: a numerical study[J]. Journal of Fluids and Structures, 2015, 54: 679-700. DOI: 10.1016/j.jfluidstructs.2015.01.007
    [7] KHORASANCHI M, HUANG S. Instability analysis of deepwater riser with fairings[J]. Ocean Engineering, 2014, 79: 26-34. DOI: 10.1016/j.oceaneng.2014.01.003
    [8] 陈雯煜, 梁盛平, 王嘉松. 圆柱固结刚性分离盘结构振动风洞实验研究[J]. 实验力学, 2020, 35(4): 567-576. doi: 10.7520/1001-4888-19-072

    CHEN W Y, LIANG S P, WANG J S. Wind tunnel experiments of the vibration response for the circular cylinder fixed connection with rigid splitter plates[J]. Journal of Experimental Mechanics, 2020, 35(4): 567-576. (in Chinese) doi: 10.7520/1001-4888-19-072
    [9] 睢娟, 王嘉松, 田启龙. 分离盘控制圆柱涡激振动的数值模拟研究[J]. 海洋技术学报, 2015, 34(4): 86-91.

    SUI J, WANG J S, TIAN Q L. Study on the numerical simulation of cylinder vortex-induced vibration controlled by separating plate[J]. Journal of Ocean Technology, 2015, 34(4): 86-91. (in Chinese)
    [10] ASSI G R S, BEARMAN P W. Transverse galloping of circular cylinders fitted with solid and slotted splitter plates[J]. Journal of Fluids and Structures, 2015, 54: 263-280. DOI: 10.1016/j.jfluidstructs.2014.11.005
    [11] LOU M, CHEN Z W, CHEN P. Experimental investigation of the suppression of vortex induced vibration of two interfering risers with splitter plates[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 736-752. DOI: 10.1016/j.jngse.2016.09.012
    [12] FANG S M, NIEDZWECKI J M, FU S X, et al. VIV response of a flexible cylinder with varied coverage by buoyancy elements and helical strakes[J]. Marine Structures, 2014, 39: 70-89. DOI: 10.1016/j.marstruc.2014.06.004
    [13] ZHOU T, RAZALI S F M, HAO Z, et al. On the study of vortex-induced vibration of a cylinder with helical strakes[J]. Journal of Fluids and Structures, 2011, 27(7): 903-917. DOI: 10.1016/j.jfluidstructs.2011.04.014
    [14] SONG Z H, DUAN M L, GU J J. Numerical investigation on the suppression of VIV for a circular cylinder by three small control rods[J]. Applied Ocean Research, 2017, 64: 169-183. DOI: 10.1016/j.apor.2017.03.001
    [15] WU H, SUN D P, LU L, et al. Experimental investigation on the suppression of vortex-induced vibration of long flexible riser by multiple control rods[J]. Journal of Fluids and Structures, 2012, 30: 115-132. DOI: 10.1016/j.jfluidstructs.2012.02.004
    [16] ZHANG Y B, GUO H Y, LIU X C, et al. Investigation of a new vortex-induced vibration suppression device in laboratory experiments[J]. Journal of Ocean University of China, 2012, 11(2): 129-136. DOI: 10.1007/s11802-012-1805-1
    [17] GU F, WANG J S, QIAO X Q, et al. Pressure distribution, fluctuating forces and vortex shedding behavior of circular cylinder with rotatable splitter plates[J]. Journal of Fluids and Structures, 2012, 28: 263-278. DOI: 10.1016/j.jfluidstructs.2011.11.005
    [18] LIANG S P, WANG J S, XU B H, et al. Vortex-induced vibration and structure instability for a circular cylinder with flexible splitter plates[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 174: 200-209. DOI: 10.1016/j.jweia.2017.12.030
    [19] 秦力, 黄越, 丁皓姝. 不同节点连接钢管塔杆件微风振动分析[J]. 电力学报, 2014, 29(1): 87-90. doi: 10.13357/j.cnki.jep.000003

    QIN L, HUANG Y, DING H S. Aeolian vibration analysis of different node connectivity steel rod[J]. Journal of Electric Power, 2014, 29(1): 87-90. (in Chinese) doi: 10.13357/j.cnki.jep.000003
    [20] 杨靖波, 代泽兵, 李清华. 典型节点构造钢管构件的杆端约束与起振临界风速的确定[J]. 电力建设, 2006, 27(4): 37-40. doi: 10.3969/j.issn.1000-7229.2006.04.011

    YANG J B, DAI Z B, LI Q H. Determination of end restrain and vibration critical wind speed for steel tube members of typical node structure[J]. Electric Power Construction, 2006, 27(4): 37-40. (in Chinese) doi: 10.3969/j.issn.1000-7229.2006.04.011
    [21] HUANG M F, ZHANG B Y, GUO Y, et al. Prediction and suppression of vortex-induced vibration for steel tubes with bolted joints in tubular transmission towers[J]. Journal of Structural Engineering, 2021, 147(9): 04021128. DOI: 10.1061/(asce)st.1943-541x.0003100
    [22] SKOP R A, BALASUBRAMANIAN S. A new twist on an old model for vortex-excited vibrations[J]. Journal of Fluids and Structures, 1997, 11(4): 395-412. DOI: 10.1006/jfls.1997.0085
    [23] KAMPHUIS J W. Hydrodynamics around cylindrical structures[J]. Coastal Engineering, 1998, 33(1): 69. DOI: 10.1016/s0378-3839(97)00031-8
    [24] SARPKAYA T. A critical review of the intrinsic nature of vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004, 19(4): 389-447. DOI: 10.1016/j.jfluidstructs.2004.02.005
    [25] GABBAI R D, BENAROYA H. An overview of modeling and experiments of vortex-induced vibration of circular cylinders[J]. Journal of Sound and Vibration, 2005, 282(3-5): 575-616. DOI: 10.1016/j.jsv.2004.04.017
    [26] SARPKAYA T. Vortex-induced oscillations: a selective review[J]. Journal of Applied Mechanics, 1979, 46(2): 241-258. DOI: 10.1115/1.3424537
    [27] HUANG M F, ZHANG B Y, LOU W J. A computer vision-based vibration measurement method for wind tunnel tests of high-rise buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 182: 222-234. DOI: 10.1016/j.jweia.2018.09.022
    [28] STANSBY P K, PINCHBECK J N, HENDERSON T. Spoilers for the suppression of vortex-induced oscillations (Technical note)[J]. Applied Ocean Research, 1986, 8(3): 169-173. DOI: 10.1016/S0141-1187(86)80017-7
    [29] 黄本才. 结构抗风分析原理及应用[M]. 上海: 同济大学出版社, 2001.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  17
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-19
  • 录用日期:  2022-02-25
  • 修回日期:  2022-02-12
  • 网络出版日期:  2022-03-21
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回