留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子气体稀薄效应的动理学建模

曾嘉楠 李琪 吴雷

曾嘉楠, 李琪, 吴雷. 分子气体稀薄效应的动理学建模[J]. 空气动力学学报, 2022, 40(2): 1−30 doi: 10.7638/kqdlxxb-2021.0378
引用本文: 曾嘉楠, 李琪, 吴雷. 分子气体稀薄效应的动理学建模[J]. 空气动力学学报, 2022, 40(2): 1−30 doi: 10.7638/kqdlxxb-2021.0378
ZENG J N, LI Q, WU L. Kinetic modeling of rarefied molecular gas dynamics[J]. Acta Aerodynamica Sinica, 2022, 40(2): 1−30 doi: 10.7638/kqdlxxb-2021.0378
Citation: ZENG J N, LI Q, WU L. Kinetic modeling of rarefied molecular gas dynamics[J]. Acta Aerodynamica Sinica, 2022, 40(2): 1−30 doi: 10.7638/kqdlxxb-2021.0378

分子气体稀薄效应的动理学建模

doi: 10.7638/kqdlxxb-2021.0378
基金项目: 国家自然科学基金(12172162)
详细信息
    作者简介:

    曾嘉楠(1996-),男,江西抚州人,博士研究生,研究方向:稀薄气体动力学. E-mail:12031255@mail.sustech.edu.cn

    通讯作者:

    吴雷*,博士,长聘副教授,研究方向:稀薄气体动力学、计算流体动力学. E-mail:wul@sustech.edu.cn

  • 中图分类号: O356;V211.25

Kinetic modeling of rarefied molecular gas dynamics

  • 摘要: 稀薄气体效应,是指气体在特征尺度与其分子平均自由程相当的系统中流动时出现的非平衡效应。相比于单原子气体,分子气体(每个气体分子包含两个及以上原子)流动因同时具有转动、振动等多种自由度的非平衡过程,其稀薄效应更为复杂。分子气体稀薄效应在航空航天、微机电系统和页岩气开采等民生、科技领域广泛存在,而描述该效应的动理学模型与数值模拟方法尚不成熟。本文从单原子气体与玻尔兹曼方程出发,介绍气体动理学建模的相关研究现状,针对分子气体特性详细讨论气体弛豫过程与输运系数的关系。针对典型的稀薄气体流动验证常用的模型方程的精度,并指出直接模拟蒙特卡罗方法在分子气体稀薄流动应用中存在的问题,即在体积黏性确定的情况下无法指定热流弛豫速率及恢复热导率。随后针对此问题,使用吴模型量化研究该弛豫速率在分子气体稀薄流动模拟中导致的宏观量的不确定性,并讨论从分子动力学模拟和瑞利-布里渊散射实验中减小甚至消除不确定性的方法。本文对涉及化学反应的稀薄气体流动建模有指导意义。
  • 图  1  典型稀薄气体流动及纳维-斯托克斯方程的预测误差:第一列图显示,当马赫数大于2时,纳维-斯托克斯方程低估正激波的厚度[15];第二列图显示,当声波振动频率接近气体分子碰撞频率时,纳维-斯托克斯方程低估声波接收器的声强[16-17];第三列图显示,低压下纳维-斯托克斯方程可能远远低估微纳米通道的质量流量[18]

    Figure  1.  Typical rarefied gas flows and the incapability of Navier-Stokes equations. Figures in the first column show that, when the Mach number is larger than 2, the Navier-Stokes equations underpredict the thickness of normal shock wave[15]. Figures in the second column show that the Navier-Stokes equations underpredict the sound pressure at the receiver[16-17]. Figures in the last column show that the Navier-Stokes equations might underestimate the mass flow rate significantly[18]

    图  2  (左)两体碰撞前后的速度分布:由于动量和能量守恒,碰撞前后的相对速度分布在球体上并且通过球心;(右上)中心力场作用下的经典两体碰撞示意图,其中$b$为瞄准距离,$\boldsymbol{k}$为沿两分子间最短距离方向的单位矢量;(右下) 直径为σ的硬球分子的两体碰撞

    Figure  2.  (Left) Velocity redistribution after the binary collision. Due to the conservation of momentum and energy, the pre- and post-collision relative velocities fall in a sphere and pass through the sphere center. (Top right) Classical binary collision between molecules with central force, where $b$ is the aiming distance, and $\boldsymbol{k}$ is the unit vector along the minimum distance between two colliding molecules. (Bottom right) Binary collision between HS molecules of the diameter σ

    图  3  从DSMC模拟中提取热流的弛豫速率:(a)初始状态用于激发平动热流的速度分布函数,横坐标由最概然速率$v_m$归一化; (b)初始状态用于转动热流的转动能分布函数,横坐标由$k_BT_0$归一化;(c, d)氮气平动热流和转动热流的弛豫过程,模拟参数为:式(78)中的非弹性碰撞概率$\varLambda=0.25$,施密特数$Sc=1/1.33$,转动自由度$d_r=2$,温度黏性指数$\omega=0.74$. 图中数据来源于文献[60]

    Figure  3.  Extraction of heat flux relaxation rates from DSMC simulations. The initial distribution of (a) molecular velocity and (b) rotational energy of nitrogen molecules in DSMC, where the abscissas are normalized by $\sqrt{2k_BT_0/m}$ and $k_BT_0$, respectively. (c, d) The evolution of heat fluxes and their time derivatives in Nitrogen. ${\varLambda}=0.25$ in Eq. (78), the Schmidt number is $Sc=1/1.33$, the rotational degree of freedom is $d_r=2$, and the viscosity index is $\omega=0.74$. The figures are modified from figure 1 in Ref. [60]

    图  4  根据理论公式(76)从DSMC模拟中提取的热弛豫速率. 施密特数为$Sc=1/1.33$,转动自由度为$d_r=2$; 对N2和HCl,温度黏性指数ω 分别取0.74和1,图中数据来源于文献[60]

    Figure  4.  The extracted rates $\boldsymbol{A}$ in the relaxation of heat fluxes from the DSMC simulation, as per Eq. (76). The Schmidt number is $Sc=1/1.33$, and the rotational degree of freedom is $d_r=2$; the viscosity index for Nitrogen and hydrogen chloride is ω = 0.74 and 1, respectively. The figures are modified from figure 1 in Ref. [60]

    图  5  室温下Eucken因子的解析解(77)与DSMC数值解的对比. DSMC中使用可变软球模型,自扩散系数 D取值为 D',菱形、正方形、三角形分别表示平动、内能和总Eucken因子,实心点为解析解,空心点为DSMC结果,虚线表示300 K温度下实验测量的总Eucken因子,图中数据来源于文献[54]

    Figure  5.  The thermal conductivity obtained from the analytical solution (77) and the DSMC at room temperature, as a function of the inelastic collision probability $\varLambda$. The variable-soft-sphere model is used and the self-diffusion coefficient D in DSMC takes the value of D' . Filled diamonds, squares and triangles represent the translational, internal and total Eucken factors from Eq. (77), respectively, while the open symbols are the corresponding results from DSMC. Dashed lines show the total Eucken factor obtained from experiments at a temperature of 300 K. The figures are from Ref. [54]

    图  6  不同动理学模型预测的马赫数为7的氮气正激波的密度、温度、应力偏量σ22和热流的对比

    Figure  6.  Comparisons in the density, temperature, stress, and heat flux between different kinetic models for a normal shock in Nitrogen gas with Mach number 7

    图  7  平板库特流动中的密度、温度和垂直于流动方向的热流分布. 第一行和第二行的克努森数分别为${Kn} =0.1、1$;基于对称性,另一半区域$-0.5\leqslant x_1\leqslant 0$没有显示

    Figure  7.  Profiles of the density, temperature, and heat flux (perpendicular to the plates) in the planar Couette flow of the Knudsen number Kn = 0.1 (first row) and 1 (second row). Due to symmetry, the other half region $-0.5\leqslant{}x_1\leqslant0$ is not shown

    图  8  麦克斯韦妖驱动下的稀薄气体热蠕动, 其中速度和热流均沿$ x_1 $方向. 第二行和第三行图对应的克努森数分别为Kn = 0.1和1,基于对称性,$ 0.5\leqslant{}x_2\leqslant1 $的区域没有显示

    Figure  8.  Profiles of the vertical velocity and heat flux in the thermal creep flow driven by the Maxwell demon, where the Knudsen number in the second and third rows is Kn = 0.1 and 1, respectively. Due to symmetry, the other half region $ 0.5\leqslant{}x_2\leqslant1 $ is not shown

    图  9  克努森数为0.6的稀薄气体在二维方腔内的热蠕动

    Figure  9.  Rarefied gas flow driven by temperature gradient in the solid walls: (a) The streamlines and the contour of translational heat flux in the x1 direction; (b) Velocity profiles at x2 = 0 and 0.5; (b) Velocity profiles at x2 = 0.5; (d) The translational and rotational heat fluxes along the bottom wall

    图  10  总Eucken因子不变时,不同平动Eucken因子对马赫数为4的正激波结构的影响. 图中数据来源于文献[60]

    Figure  10.  Influence of the translational Eucken factor on the structure of normal shock wave with Mach number 4. The figures are from Ref. [60]

    图  11  (第一行)热流弛豫速率对麦克斯韦妖驱动的热蠕动速度和热流分布的影响,以及吴模型中改变热弛豫速率的结果对比. 红色实线对应的${{\boldsymbol{A}}}$数值来自于DSMC,蓝色阴影部分来自吴模型计算结果,对应的取值范围为$ {A_{rt}}\in[-0.3124,0.0] $$ {A_{tr}}\in[-0.1250,0.0] $,其他参数为${Kn} = 0.2$, $ f_{tr} = 2.365 $以及$ f_{rot} = 1.435 $;(第二行)总Eucken因子$f_{eu}$保持不变,改变平动Eucken因子的结果对比,${Kn} = 0.2$.图中数据来源于文献[60]

    Figure  11.  (First row) Influence of the thermal relaxation rates in the creep flow driven by the Maxwell demon, and comparison of the results of varying the thermal relaxation rate in the Wu model. Red solid lines are the results with ${{\boldsymbol{A}}}$ extracted from DSMC, blue shade region shows the results from the kinetic model (103), with $ {A_{rt}}\in[-0.3124,0.0] $ and $ {A_{tr}}\in[-0.1250,0.0] $. Other parameters are ${Kn} = 0.2$, $ f_{tr} = 2.365 $ and $ f_{rot} = 1.435 $. (Second row) Influence of the translational Eucken factor, while $f_{eu}$ is fixed. The Knudsen number is ${Kn} = 0.2$. The figures are from Ref. [60]

    图  12  自发瑞利-布里渊散射示意图[54],在气体中传播的光被气体分子自发的密度涨落散射

    Figure  12.  Schematic of the spontaneous Rayleigh-Brillouin scattering[54], where the light is scattered by the spontaneous density fluctuations in the gas

    图  13  基于实验频谱(圆圈)和吴模型预测结果(线条),提取N2的体积黏性与平动Eucken因子[54]:第一行的实线为计算光谱,通过计算给定$ f_{tr} $$ Z $范围内的最小误差;第二行给出了实验光谱与理论光谱之间的误差. 实验与计算中所用到的参数汇总在表 2中,频率$ f_s $$ v_m/\ell $归一化

    Figure  13.  Extraction of the bulk viscosity and translational Eucken factor of Nitrogen from the experimental spectra (circles)[54]. Lines in the first row show the spectra obtained from the Wu model, while those in the second row show the corresponding residuals between the experimental and theoretical spectra. Experimental conditions and extracted parameters are summarized in Table 2. The frequency $ f_s $ is normalized by $ v_m/\ell $

    表  1  不同动理学模型和DSMC模拟中所使用的Eucken因子与热弛豫速率. N2的Eucken因子为$f_{eu}=1.993$

    Table  1.   Eucken factors and heat flux relaxation rates used in different gas kinetic models and DSMC. The total Eucken factor of the Nitrogen at room temperature is $f_{eu}=1.993$

    ES-BGK Rykov Wu DSMC
    $f_{tr}$ 2.373 2.365 2.365 2.365
    $f_{rot}$ 1.424 1.436 1.436 1.436
    $A_{tt}$ 0.702 0.705 0.786 0.786
    $A_{tr}$ 0 0 –0.201 –0.201
    $A_{rt}$ 0 0 –0.059 –0.059
    $A_{rr}$ 0.702 0.696 0.842 0.842
    下载: 导出CSV

    表  2  自发瑞利-布里渊散射实验中,N2相关参数汇总以及根据吴模型从实验数据中提取的体积黏性与平动/转动Eucken因子(剪切黏性与总热导率均使用国际单位制)

    Table  2.   Experimental conditions in the spontaneous Rayleigh-Brillouin scattering, and the extracted bulk viscosity, translational/rotational Eucken factors from the Wu model. The SI units are adopted for the shear viscosity and thermal conductivity

    实验 $ T $/K $ 10^5\mu_s $ $ 100\kappa $ $ P $/bar $ \omega $ $ \mu_b/\mu_s $ $ f_{tr} $ $ f_{rot} $
    (a) 254.7 1.57 2.28 2.563 0.80 0.48 2.16 1.65
    (b) 275.2 1.67 2.44 2.784 0.78 0.61 2.25 1.53
    (c) 296.7 1.77 2.60 3.000 0.76 0.69 2.31 1.47
    (d) 336.6 1.95 2.88 3.400 0.74 0.94 2.43 1.33
    下载: 导出CSV
  • [1] VOTTA R, SCHETTINO A, BONFIGLIOLI A. Hypersonic high altitude aerothermodynamics of a space re-entry vehicle[J]. Aerospace Science and Technology, 2013, 25(1): 253-265. DOI: 10.1016/j.ast.2012.02.001
    [2] IVANOV M S, GIMELSHEIN S F. Computational hypersonic rarefied flows[J]. Annual Review of Fluid Mechanics, 1998, 30: 469-505. DOI: 10.1146/annurev.fluid.30.1.469
    [3] SCANLON T J, WHITE C, BORG M K, et al. Open-source direct simulation Monte Carlo chemistry modeling for hypersonic flows[J]. AIAA Journal, 2015, 53(6): 1670-1680. DOI: 10.2514/1.j053370
    [4] 李志辉, 梁杰, 李中华, 等. 跨流域空气动力学模拟方法与返回舱再入气动研究[J]. 空气动力学学报, 2018, 36(5): 826-847.

    LI Z H, LIANG J, LI Z H, et al. Simulation methods of aerodynamics covering various flow regimes and applications to aerodynamic characteristics of re-entry spacecraft module[J]. Acta Aerodynamica Sinica, 2018, 36(5): 826-847. (in Chinese)
    [5] 梁杰, 李志辉, 李齐, 等. 返回舱再入跨流域气动及配平特性数值研究[J]. 空气动力学学报, 2018, 36(5): 848-855.

    LIANG J, LI Z H, LI Q, et al. Numerical simulation of aerodynamic and trim characteristics across different flow regimes for reentry module[J]. Acta Aerodynamica Sinica, 2018, 36(5): 848-855. (in Chinese)
    [6] WANG X W, SU T Y, ZHANG W Q, et al. Knudsen pumps: a review[J]. Microsystems & Nanoengineering, 2020, 6: 26. DOI: 10.1038/s41378-020-0135-5
    [7] AOKI K, TAKATA S, TATSUMI E, et al. Rarefied gas flows through a curved channel: application of a diffusion-type equation[J]. Physics of Fluids, 2010, 22(11): 112001. DOI: 10.1063/1.3496315
    [8] KUGIMOTO K, HIROTA Y, KIZAKI Y, et al. Performance prediction method for a multi-stage Knudsen pump[J]. Physics of Fluids, 2017, 29(12): 122002. DOI: 10.1063/1.5001213
    [9] WANG P, SU W, WU L. Thermal transpiration in molecular gas[J]. Physics of Fluids, 2020, 32(8): 082005. DOI: 10.1063/5.0018505
    [10] WU L, HO M T, GERMANOU L, et al. On the apparent permeability of porous media in rarefied gas flows[J]. Journal of Fluid Mechanics, 2017, 822: 398-417. DOI: 10.1017/jfm.2017.300
    [11] 叶友达. 高超声速空气动力学研究进展与趋势[J]. 科学通报, 2015, 60(12): 1095-1103. doi: 10.1360/N972014-01180

    YE Y D. Advances and prospects in hypersonic aerodynamics[J]. Chinese Science Bulletin, 2015, 60(12): 1095-1103. (in Chinese) doi: 10.1360/N972014-01180
    [12] 庄逢甘, 黄志澄. 未来高技术战争对空气动力学创新发展的需求[C]//2003空气动力学前沿研究学术研讨会论文集, 中国空气动力学会, 2003: 73–79.
    [13] DAUDÉ B, ELANDALOUSSI H, JANSSEN C. On the gas dependence of thermal transpiration and a critical appraisal of correction methods for capacitive diaphragm gauges[J]. Vacuum, 2014, 104: 77-87. DOI: 10.1016/j.vacuum.2014.01.002
    [14] WU L, LIU H H, REESE J M, et al. Non-equilibrium dynamics of dense gas under tight confinement[J]. Journal of Fluid Mechanics, 2016, 794: 252-266. DOI: 10.1017/jfm.2016.173
    [15] ALSMEYER H. Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam[J]. Journal of Fluid Mechanics, 1976, 74(3): 497-513. DOI: 10.1017/s0022112076001912
    [16] SCHOTTER R. Rarefied gas acoustics in the noble gases[J]. The Physics of Fluids, 1974, 17(6): 1163-1168. DOI: 10.1063/1.1694859
    [17] WU L, GU X J. On the accuracy of macroscopic equations for linearized rarefied gas flows[J]. Advances in Aerodynamics, 2020, 2: 2. DOI: 10.1186/s42774-019-0025-4
    [18] EWART T, PERRIER P, GRAUR I A, et al. Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes[J]. Journal of Fluid Mechanics, 2007, 584: 337-356. DOI: 10.1017/s0022112007006374
    [19] JIANG D W, MAO M L, LI J, et al. An implicit parallel UGKS solver for flows covering various regimes[J]. Advances in Aerodynamics, 2019, 1: 8. DOI: 10.1186/s42774-019-0008-5
    [20] 李志辉, 蒋新宇, 吴俊林, 等. 转动非平衡玻尔兹曼模型方程统一算法与全流域绕流计算应用[J]. 力学学报, 2014, 46(3): 336-351.

    LI Z H, JIANG X Y, WU J L, et al. Gas-kinetic unified algorithm for Boltzmann model equation in rotational nonequilibrium and its application to the whole range flow regimes[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 336-351. (in Chinese)
    [21] CHAPMAN S, COWLING T G, CERCIGNANI C. The mathematical theory of non-uniform gases[M]. Cambridge University Press, 1970.
    [22] GRAD H. On the kinetic theory of rarefied gases[J]. Communications on Pure and Applied Mathematics, 1949, 2(4): 331-407. DOI: 10.1002/cpa.3160020403
    [23] GU X J, EMERSON D R. A high-order moment approach for capturing non-equilibrium phenomena in the transition regime[J]. Journal of Fluid Mechanics, 2009, 636: 177-216. DOI: 10.1017/s002211200900768x
    [24] BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. ‎ New York : Oxford Science Publications, Oxford University Press Inc, 1994.
    [25] WAGNER W. A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation[J]. Journal of Statistical Physics, 1992, 66(3-4): 1011-1044. DOI: 10.1007/BF01055714
    [26] LI Z H, FANG M, JIANG X Y, et al. Convergence proof of the DSMC method and the Gas-Kinetic Unified Algorithm for the Boltzmann equation[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(2): 404-417. DOI: 10.1007/s11433-013-4999-3
    [27] HADJICONSTANTINOU N G, GARCIA A L, BAZANT M Z, et al. Statistical error in particle simulations of hydrodynamic phenomena[J]. Journal of Computational Physics, 2003, 187(1): 274-297. DOI: 10.1016/S0021-9991(03)00099-8
    [28] TCHEREMISSINE F G. Solution to the Boltzmann kinetic equation for high-speed flows[J]. Computational Mathematics and Mathematical Physics, 2006, 46(2): 315-329. DOI: 10.1134/s0965542506020138
    [29] WU L, REESE J M, ZHANG Y H. Solving the Boltzmann equation deterministically by the fast spectral method: application to gas microflows[J]. Journal of Fluid Mechanics, 2014, 746: 53-84. DOI: 10.1017/jfm.2014.79
    [30] WU L, WHITE C, SCANLON T J, et al. Deterministic numerical solutions of the Boltzmann equation using the fast spectral method[J]. Journal of Computational Physics, 2013, 250: 27-52. DOI: 10.1016/j.jcp.2013.05.003
    [31] 吴雷, 张勇豪, 李志辉. Boltzmann方程碰撞积分建模与稀薄空气动力学应用研究[J]. 中国科学 (物理学 力学 天文学), 2017, 47(7): 28-45.

    WU L, ZHANG Y H, LI Z H. Computable model on the collision integral of Boltzmann equation and application to rarefied aerodynamics[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2017, 47(7): 28-45. (in Chinese)
    [32] BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3): 511-525. DOI: 10.1103/physrev.94.511
    [33] HOLWAY L H. New statistical models for kinetic theory: methods of construction[J]. The Physics of Fluids, 1966, 9(9): 1658-1673. DOI: 10.1063/1.1761920
    [34] ANDRIES P, LE TALLEC P, PERLAT J P, et al. The Gaussian-BGK model of Boltzmann equation with small Prandtl number[J]. European Journal of Mechanics - B/Fluids, 2000, 19(6): 813-830. DOI: 10.1016/S0997-7546(00)01103-1
    [35] SHAKHOV E M. Approximate kinetic equations in rarefied gas theory[J]. Fluid Dynamics, 1968, 3(1): 112-115. DOI: 10.1007/BF01016254
    [36] LI Z H, ZHANG H X. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J]. Journal of Computational Physics, 2004, 193(2): 708-738. DOI: 10.1016/j.jcp.2003.08.022
    [37] LI Z H, PENG A P, MA Q, et al. Gas-kinetic unified algorithm for computable modeling of Boltzmann equation and application to aerothermodynamics for falling disintegration of uncontrolled Tiangong-No. 1 spacecraft[J]. Advances in Aerodynamics, 2019, 1: 4. DOI: 10.1186/s42774-019-0009-4
    [38] WU J L, LI Z H, ZHANG Z B, et al. On derivation and verification of a kinetic model for quantum vibrational energy of polyatomic gases in the gas-kinetic unified algorithm[J]. Journal of Computational Physics, 2021, 435: 109938. DOI: 10.1016/j.jcp.2020.109938
    [39] LI Z H, ZHANG H X. Gas-kinetic numerical studies of three-dimensional complex flows on spacecraft re-entry[J]. Journal of Computational Physics, 2009, 228(4): 1116-1138. DOI: 10.1016/j.jcp.2008.10.013
    [40] XU K, HUANG J C. A unified gas-kinetic scheme for continuum and rarefied flows[J]. Journal of Computational Physics, 2010, 229(20): 7747-7764. DOI: 10.1016/j.jcp.2010.06.032
    [41] YANG L M, SHU C, YANG W M, et al. An improved discrete velocity method (DVM) for efficient simulation of flows in all flow regimes[J]. Physics of Fluids, 2018, 30(6): 062005. DOI: 10.1063/1.5039479
    [42] YUAN R F, ZHONG C W. A conservative implicit scheme for steady state solutions of diatomic gas flow in all flow regimes[J]. Computer Physics Communications, 2020, 247: 106972. DOI: 10.1016/j.cpc.2019.106972
    [43] GUO Z L, XU K, WANG R J. Discrete unified gas kinetic scheme for all Knudsen number flows: low-speed isothermal case[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2013, 88(3): 033305. DOI: 10.1103/PhysRevE.88.033305
    [44] SU W, ZHU L H, WANG P, et al. Can we find steady-state solutions to multiscale rarefied gas flows within dozens of iterations? [J]. Journal of Computational Physics, 2020, 407: 109245. Doi: 10.1016/j.jcp.2020.109245
    [45] SU W, ZHU L H, WU L. Fast convergence and asymptotic preserving of the general synthetic iterative scheme[J]. SIAM Journal on Scientific Computing, 2020, 42(6): B1517. DOI: 10.1137/20m132691x
    [46] ZHU L H, PI X C, SU W, et al. General synthetic iterative scheme for nonlinear gas kinetic simulation of multi-scale rarefied gas flows[J]. Journal of Computational Physics, 2021, 430: 110091. DOI: 10.1016/j.jcp.2020.110091
    [47] SU W, ZHANG Y H, WU L. Multiscale simulation of molecular gas flows by the general synthetic iterative scheme[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113548. DOI: 10.1016/j.cma.2020.113548
    [48] ANDRIES P, BOURGAT J F, LE TALLEC P, et al. Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(31): 3369-3390. DOI: 10.1016/S0045-7825(02)00253-0
    [49] MIEUSSENS L, STRUCHTRUP H. Numerical comparison of Bhatnagar-Gross-Krook models with proper Prandtl number[J]. Physics of Fluids, 2004, 16(8): 2797-2813. DOI: 10.1063/1.1758217
    [50] GORJI M H, TORRILHON M, JENNY P. Fokker–Planck model for computational studies of monatomic rarefied gas flows[J]. Journal of Fluid Mechanics, 2011, 680: 574-601. DOI: 10.1017/jfm.2011.188
    [51] 欧阳水吾, 谢中强. 高温非平衡空气绕流[M]. 北京: 国防工业出版社, 2001.
    [52] WANG-CHANG C S, UHLENBECK G E. Transport phenomena in polyatomic gases[R]. University of Michigan, UMR4405, 1951. http://deepblue.lib.umich.edu/bitstream/2027.42/8195/5/bad7743.0001.001.pdf
    [53] MASON E A, MONCHICK L. Heat conductivity of polyatomic and polar gases[J]. The Journal of Chemical Physics, 1962, 36(6): 1622-1639. DOI: 10.1063/1.1732790
    [54] WU L, LI Q, LIU H H, et al. Extraction of the translational Eucken factor from light scattering by molecular gas[J]. Journal of Fluid Mechanics, 2020, 901: A23. DOI: 10.1017/jfm.2020.568
    [55] BORGNAKKE C, LARSEN P S. Statistical collision model for Monte Carlo simulation of polyatomic gas mixture[J]. Journal of Computational Physics, 1975, 18(4): 405-420. DOI: 10.1016/0021-9991(75)90094-7
    [56] BOYD I D. Rotational-translational energy transfer in rarefied nonequilibrium flows[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(3): 447-452. DOI: 10.1063/1.857740
    [57] HAAS B L, HASH D B, BIRD G A, et al. Rates of thermal relaxation in direct simulation Monte Carlo methods[J]. Physics of Fluids, 1994, 6(6): 2191-2201. DOI: 10.1063/1.868221
    [58] GIMELSHEIN N E, GIMELSHEIN S F, LEVIN D A. Vibrational relaxation rates in the direct simulation Monte Carlo method[J]. Physics of Fluids, 2002, 14(12): 4452-4455. DOI: 10.1063/1.1517297
    [59] PORODNOV B T, KULEV A N, TUCHVETOV F T. Thermal transpiration in a circular capillary with a small temperature difference[J]. Journal of Fluid Mechanics, 1978, 88(4): 609-622. DOI: 10.1017/s002211207800230x
    [60] LI Q, ZENG J N, SU W, et al. Uncertainty quantification in rarefied dynamics of molecular gas: rate effect of thermal relaxation[J]. Journal of Fluid Mechanics, 2021, 917: A58. DOI: 10.1017/jfm.2021.338
    [61] RYKOV V A, SKOBELKIN V N. Macroscopic description of the motions of a gas with rotational degrees of freedom[J]. Fluid Dynamics, 1978, 13(1): 144-147. DOI: 10.1007/BF01094479
    [62] SHARIPOV F. Influence of quantum intermolecular interaction on internal flows of rarefied gases[J]. Vacuum, 2018, 156: 146-153. DOI: 10.1016/j.vacuum.2018.07.022
    [63] SONE Y. Kinetic Theory and Fluid Dynamics[M]. Boston, MA: Birkhäuser Boston, 2002. DOI: 10.1007/978-1-4612-0061-1
    [64] HILBERT D. Begründung der kinetischen gastheorie[J]. Mathematische Annalen, 1912, 72(4): 562-577. DOI: 10.1007/BF01456676
    [65] Chapman S. VI. On the law of distribution of molecular velocities, and on the theory of viscosity and thermal conduction, in a non-uniform simple monatomic gas[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1916, 216(538-548): 279-348. DOI: 10.1098/rsta.1916.0006
    [66] ENSKOG D. Kinetische theorie der vorgänge in mässig verdünnten gasen (German edition)[M]. University of Michigan Library, 1917. (in German)
    [67] STRUCHTRUP H. Macroscopic transport equations for rarefied gas flows: approximation methods in Kinetic theory[M]// Interaction of Mechanics and Mathematics, Heidelberg, Germany: Springer, 2021. doi: 10.1007/3-540-32386-4
    [68] CHEN S Z, XU K, CAI Q D. A comparison and unification of ellipsoidal statistical and shakhov BGK models[J]. Advances in Applied Mathematics and Mechanics, 2015, 7(2): 245-266. DOI: 10.4208/aamm.2014.m559
    [69] WU L. Deterministic numerical simulation of the Boltzmann and kinetic model equations for classical and quantum dilute gases[D]. Glasgow: University of Strathclyde, 2013.
    [70] BEYLICH A. An interlaced system for Nitrogen gas[R]//Proceedings of CECAM Workshop, ENS de Lyon, France, 2000.
    [71] TCHEREMISSINE F G, AGARWAL R K, ABE T. Computation of hypersonic shock waves in diatomic gases using the generalized Boltzmann equation[C]//AIP Conference Proceedings 1084, Kyoto, Japan, 2008: 427-433. doi: 10.1063/1.3076515
    [72] MORSE T F. Kinetic model for gases with internal degrees of freedom[J]. The Physics of Fluids, 1964, 7(2): 159-169. DOI: 10.1063/1.1711128
    [73] 李馨东, 胡宗民, 姜宗林. 可压缩流体体积黏性的连续介质理论[J]. 中国科学 (物理学 力学 天文学), 2016, 46(3): 034701.

    LI X D, HU Z M, JIANG Z L. The continuum theory of bulk viscosity in compressible fluids[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2016, 46(3): 034701. (in Chinese)
    [74] BRUNO D, FREZZOTTI A, GHIROLDI G P. Oxygen transport properties estimation by classical trajectory-direct simulation Monte Carlo[J]. Physics of Fluids, 2015, 27(5): 057101. DOI: 10.1063/1.4921157
    [75] MEADOR W E, MINER G A, TOWNSEND L W. Bulk viscosity as a relaxation parameter: fact or fiction? [J]. Physics of Fluids, 1996, 8(1): 258-261. DOI: 10.1063/1.868833
    [76] MEIJER A S, DE WIJN A S, PETERS M F E, et al. Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory[J]. The Journal of Chemical Physics, 2010, 133(16): 164315. DOI: 10.1063/1.3491513
    [77] JAEGER F, MATAR O K, MÜLLER E A. Bulk viscosity of molecular fluids[J]. The Journal of Chemical Physics, 2018, 148(17): 174504. DOI: 10.1063/1.5022752
    [78] HANSON F B, MORSE T F. Kinetic models for a gas with internal structure[J]. The Physics of Fluids, 1967, 10(2): 345-353. DOI: 10.1063/1.1762114
    [79] GROSS E P, JACKSON E A. Kinetic models and the linearized Boltzmann equation[J]. The Physics of Fluids, 1959, 2(4): 432-441. DOI: 10.1063/1.1724415
    [80] BOLEY C D, DESAI R C, TENTI G. Kinetic models and Brillouin scattering in a molecular gas[J]. Canadian Journal of Physics, 1972, 50(18): 2158-2173. DOI: 10.1139/p72-286
    [81] TENTI G, BOLEY C D, DESAI R C. On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases[J]. Canadian Journal of Physics, 1974, 52(4): 285-290. DOI: 10.1139/p74-041
    [82] PAN X G, SHNEIDER M N, MILES R B. Coherent Rayleigh-Brillouin scattering in molecular gases[J]. Physical Review A, 2004, 69(3): 033814. DOI: 10.1103/physreva.69.033814
    [83] WU L, WHITE C, SCANLON T J, et al. A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases[J]. Journal of Fluid Mechanics, 2015, 763: 24-50. DOI: 10.1017/jfm.2014.632
    [84] WANG Z, YAN H, LI Q B, et al. Unified gas-kinetic scheme for diatomic molecular flow with translational, rotational, and vibrational modes[J]. Journal of Computational Physics, 2017, 350: 237-259. DOI: 10.1016/j.jcp.2017.08.045
    [85] 彭傲平, 李志辉, 吴俊林, 等. 含振动能激发Boltzmann模型方程气体动理论统一算法验证与分析[J]. 物理学报, 2017, 66(20): 197-214. doi: 10.7498/aps.66.204703

    PENG A P, LI Z H, WU J L, et al. Validation and analysis of gas-kinetic unified algorithm for solving Boltzmann model equation with vibrational energy excitation[J]. Acta Physica Sinica, 2017, 66(20): 204703. (in Chinese)[万方] doi: 10.7498/aps.66.204703
    [86] TITAREV V A, FROLOVA A A. Application of model kinetic equations to calculations of super- and hypersonic molecular gas flows[J]. Fluid Dynamics, 2018, 53(4): 536-551. DOI: 10.1134/s0015462818040110
    [87] MATHIAUD J, MIEUSSENS L. BGK and Fokker-Planck models of the Boltzmann equation for gases with discrete levels of vibrational energy[J]. Journal of Statistical Physics, 2020, 178(5): 1076-1095. DOI: 10.1007/s10955-020-02490-7
    [88] RYKOV V A. A model kinetic equation for a gas with rotational degrees of freedom[J]. Fluid Dynamics, 1975, 10(6): 959-966. DOI: 10.1007/BF01023275
    [89] GORJI M H, JENNY P. A Fokker-Planck based kinetic model for diatomic rarefied gas flows[J]. Physics of Fluids, 2013, 25(6): 062002. DOI: 10.1063/1.4811399
    [90] MASON E A. Molecular relaxation times from thermal transpiration measurements[J]. The Journal of Chemical Physics, 1963, 39(3): 522-526. DOI: 10.1063/1.1734288
    [91] GUPTA A D, STORVICK T S. Analysis of the heat conductivity data for polar and nonpolar gases using thermal transpiration measurements[J]. The Journal of Chemical Physics, 1970, 52(2): 742-749. DOI: 10.1063/1.1673048
    [92] GREEN M S. Markoff random processes and the statistical mechanics of time-dependent phenomena. II. irreversible processes in fluids[J]. The Journal of Chemical Physics, 1954, 22(3): 398-413. DOI: 10.1063/1.1740082
    [93] KUBO R. Statistical-mechanical theory of irreversible processes. I. general theory and simple applications to magnetic and conduction problems[J]. Journal of the Physical Society of Japan, 1957, 12(6): 570-586. DOI: 10.1143/jpsj.12.570
    [94] PAN X G, SHNEIDER M N, MILES R B. Coherent Rayleigh-Brillouin scattering[J]. Physical Review Letters, 2002, 89(18): 183001. DOI: 10.1103/physrevlett.89.183001
    [95] VIEITEZ M O, VAN DUIJN E J, UBACHS W, et al. Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures[J]. Physical Review A, 2010, 82(4): 043836. DOI: 10.1103/physreva.82.043836
    [96] GU Z Y, UBACHS W. Temperature-dependent bulk viscosity of nitrogen gas determined from spontaneous Rayleigh-Brillouin scattering[J]. Optics Letters, 2013, 38(7): 1110-1112. DOI: 10.1364/OL.38.001110
    [97] SUGAWARA A, YIP S, SIROVICH L. Spectrum of density fluctuations in gases[J]. The Physics of Fluids, 1968, 11(5): 925-932. DOI: 10.1063/1.1692060
    [98] REICHL L E. A Modern Course in Statistical Physics[M]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. doi: 10.1002/9783527690497
    [99] DAGDIGIAN P J. Vibrational and rotational relaxation in gases (Lambert J D)[J]. Journal of Chemical Education, 1979, 56(1): A42. https://pubs.acs.org/doi/pdf/10.1021/ed056pA42.1 doi: 10.1021/ed056pA42.1
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  683
  • HTML全文浏览量:  273
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-21
  • 修回日期:  2021-12-28
  • 录用日期:  2022-01-01
  • 网络出版日期:  2022-01-28
  • 刊出日期:  2022-05-05

目录

    /

    返回文章
    返回