留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

前缘缝翼开缝改善增升装置失速特性研究

刘中元 褚胡冰 陈迎春 毛俊 张彬乾

刘中元, 褚胡冰, 陈迎春, 等. 前缘缝翼开缝改善增升装置失速特性研究[J]. 空气动力学学报, 2023, 41(2): 21−28 doi: 10.7638/kqdlxxb-2021.0392
引用本文: 刘中元, 褚胡冰, 陈迎春, 等. 前缘缝翼开缝改善增升装置失速特性研究[J]. 空气动力学学报, 2023, 41(2): 21−28 doi: 10.7638/kqdlxxb-2021.0392
LIU Z Y, CHU H B, CHEN Y C, et al. Stall characteristics of high-lift device improved by slotting on leading-edge slat[J]. Acta Aerodynamica Sinica, 2023, 41(2): 21−28 doi: 10.7638/kqdlxxb-2021.0392
Citation: LIU Z Y, CHU H B, CHEN Y C, et al. Stall characteristics of high-lift device improved by slotting on leading-edge slat[J]. Acta Aerodynamica Sinica, 2023, 41(2): 21−28 doi: 10.7638/kqdlxxb-2021.0392

前缘缝翼开缝改善增升装置失速特性研究

doi: 10.7638/kqdlxxb-2021.0392
基金项目: 中央高校基本科研业务费专项资金(3102019JC009,G2016KY0002)
详细信息
    作者简介:

    刘中元(1990-),男,博士研究生,研究方向:飞行器设计空气动力学. E-mail:liuzy@mail.nwpu.edu.cn

    褚胡冰(1983-),为并列第一作者,男,博士,高级工程师,研究方向:船舶总体设计与性能仿真. E-mail:chuhubing@126.com

    通讯作者:

    陈迎春*(1961-),博士,研究员,研究方向:气动力设计、飞机总体设计. E-mail:chenyingchun@comac.cc

  • 中图分类号: V211.41

Stall characteristics of high-lift device improved by slotting on leading-edge slat

  • 摘要: 大型民机高升力构型多采用多段式增升装置,大迎角飞行时,前缘缝翼上表面可能出现流动分离,造成缝翼尾迹流区迅速增厚,加剧缝翼与下游翼段气流的交混作用,导致各翼段环量减小、升力下降,最终发展为失速。针对多段式增升装置大迎角失速问题,本文基于有限体积RANS 方法,研究了前缘缝翼开缝改善增升装置失速特性的作用机理与参数影响规律。研究发现:前缘缝翼开缝可有效推迟缝翼流动分离的发生,抑制缝翼尾迹区发展及缝翼与下游翼段附面层气流的交混,减缓对襟翼流动的不利影响,显著改善增升装置失速特性;开缝位置及射流出口方向对前缘缝翼流动的控制效果影响明显,应根据前缘缝翼形状和工作状态合理设计前缘缝翼开缝方案,以便获取更好的气动性能收益。
  • 图  1  L1T2三段翼型计算网格

    Figure  1.  Computational grids for the multi-element airfoil L1T2

    图  2  L1T2翼型网格收敛性研究(α = 8°)

    Figure  2.  Grid convergence study for the multi-element airfoil L1T2 at α = 8°

    图  3  L1T2翼型升阻特性计算验证

    Figure  3.  Numerical validation of lift and drag coefficients for L1T2

    图  4  L1T2翼型压力分布计算与实验比较

    Figure  4.  Comparison of pressure distributions between experiment and computation for airfoil L1T2

    图  5  前缘缝翼附近流动发展历程

    Figure  5.  Flow development around the slat

    图  6  大迎角状态下 L1T2翼型附近流线图

    Figure  6.  Development of the streamlines around airfoil L1T2 at a high angle-of-attack

    图  7  翼型尾迹流发展历程

    Figure  7.  Development of the airfoil wake

    图  8  压力分布随迎角变化

    Figure  8.  Comparison of pressure distributions at different angles of attack

    图  9  二维增升构型气动特性

    Figure  9.  Aerodynamic characteristics of the high-lift configuration

    图  10  二维增升构型流态演化历程

    Figure  10.  Flow development around the high-lift configuration

    图  11  开缝对二维增升构型流态影响,α = 18°

    Figure  11.  Influence of slotting on flow characteristics around the high-lift configuration at α = 18°

    图  12  开缝对尾迹发展影响,α = 18°

    Figure  12.  Influence of slotting on the wake development of the high-lift configurations at α = 18°

    图  13  开缝对二维增升构型压力分布的影响, α = 18°

    Figure  13.  Influence of slotting on the pressure distribution of the high-lift configuration at α = 18°

    图  14  开缝对二维增升构型气动性能影响

    Figure  14.  Influence of slotting on the aerodynamic performance of the high-lift configurations

    图  15  三种前缘开缝出口位置示意图

    Figure  15.  Schematic of three different slot exit positions on the slat

    图  16  不同开缝出口位置的流动控制效果,α = 17°

    Figure  16.  Control effect of slots with different exit positions at α = 17°

    图  17  不同开缝出口位置气动性能比较

    Figure  17.  Comparison of aerodynamic performance for airfoils with different slot exit positions

    图  18  开缝出口位置对最大升力系数和失速迎角影响

    Figure  18.  Influence of the slot exit position on CLmax and αs

    图  19  不同开缝出口位置的极曲线比较

    Figure  19.  Influence of the slot exit position on the lift-drag relationship

    图  20  四种开缝以及射流出口角度θs示意图

    Figure  20.  Schematic of four different slot shapes

    图  21  不同开缝出口射流角度的流动控制效果,α = 17°

    Figure  21.  Control effect of slots with different exiting jet angels at α = 17°

    图  23  射流出口角度对最大升力系数和失速迎角影响

    Figure  23.  Variations of CLmax and αs with the jet exiting angle

    图  22  不同开缝射流出口角度对气动性能的影响

    Figure  22.  The effect of jet exiting angle on the aerodynamic performance

    表  1  计算与试验的CLmaxαs对比

    Table  1.   Comparison of CLmax and αs between experiment and computation

    CLmaxαs
    Exp.4.1321.3°
    Cal.4.0822°
    相对差值–1.2%3.3%
    下载: 导出CSV
  • [1] GARNER P, MEREDITH P, STONER R. Areas for future CFD development as illustrated by transport aircraft applications[C]// 10th Computational Fluid Dynamics Conference, Honolulu, HI, USA. Reston, Virigina: AIAA, 1991. doi: 10.2514/6.1991-1527
    [2] ELIASSON P, CATALANO P, LE PAPE M C, et al. Improved CFD predictions for high lift flows in the European project EUROLIFT II[C]// 25th AIAA Applied Aerodynamics Conference, Miami, Florida. Reston, Virigina: AIAA, 2007. doi: 10.2514/6.2007-4303
    [3] 刘沛清, 戴佳骅, 夏慧, 等. 大型飞机增升装置气动机构一体化设计技术进展[J]. 民用飞机设计与研究, 2021(1): 1-8.

    LIU P Q, DAI J H, XIA H, et al. Overview of integrated design technology for aerodynamic mechanism of large aircraft high lift device[J]. Civil Aircraft Design & Research, 2021(1): 1-8. (in Chinese)
    [4] 李丽雅. 大型飞机增升装置技术发展综述[J]. 航空科学技术, 2015, 26(5): 1-10.

    LI L Y. Review of high-lift device technology development on large aircrafts[J]. Aeronautical Science & Technology, 2015, 26(5): 1-10. (in Chinese)
    [5] STRUBER H. The aerodynamic design of the A350 XWB-900 high lift system [C]//29th Congress of the International Council of the Aeronautical Sciences ICAS. St Petersburg, Russia, 2014.
    [6] RECKZEH D. Aerodynamic design of the high-lift-wing for a Megaliner aircraft[J]. Aerospace Science and Technology, 2003, 7(2): 107-119. DOI: 10.1016/S1270-9638(02)00002-0
    [7] 陈迎春, 李亚林, 叶军科, 等. C919飞机增升装置工程应用技术研究进展[J]. 航空工程进展, 2010, 1(1): 1-5. doi: 10.3969/j.issn.1674-8190.2010.01.002

    CHEN Y C, LI Y L, YE J K, et al. Study progress about high-lift system of C919 airplane[J]. Advances in Aeronautical Science and Engineering, 2010, 1(1): 1-5. (in Chinese) doi: 10.3969/j.issn.1674-8190.2010.01.002
    [8] 陈迎春, 张美红, 张淼, 等. 大型客机气动设计综述[J]. 航空学报, 2019, 40(1): 522759.

    CHEN Y C, ZHANG M H, ZHANG M, et al. Review of large civil aircraft aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522759. (in Chinese)
    [9] 张明辉, 陈真利, 毛俊, 等. 翼身融合布局民机克鲁格襟翼设计[J]. 航空学报, 2019, 40(9): 623048.

    ZHANG M H, CHEN Z L, MAO J, et al. Design of Krueger flap for civil aircraft with blended-wing-body[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623048. (in Chinese)
    [10] 王刚, 张彬乾, 张明辉, 等. 翼身融合民机总体气动技术研究进展与展望[J]. 航空学报, 2019, 40(9): 623046.

    WANG G, ZHANG B Q, ZHANG M H, et al. Research progress and prospect for conceptual and aerodynamic technology of blended-wing-body civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623046. (in Chinese)
    [11] 王刚, 张明辉, 毛俊, 等. 翼身融合民机扰流板增升技术[J]. 航空学报, 2019, 40(9): 623045.

    WANG G, ZHANG M H, MAO J, et al. High-lift technology for spoiler on blended-wing-body civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623045. (in Chinese)
    [12] 朱国林, 王开春, 金刚, 等. 飞机增升装置气动力特性计算方法研究[J]. 空气动力学学报, 2001, 19(2): 148-155. doi: 10.3969/j.issn.0258-1825.2001.02.003

    ZHU G L, WANG K C, JIN G, et al. The calculation of aerodynamic characteristics for high lift devices of airplane[J]. Acta Aerodynamica Sinica, 2001, 19(2): 148-155. (in Chinese) doi: 10.3969/j.issn.0258-1825.2001.02.003
    [13] 李伟鹏. 大型客机增升装置噪声机理与噪声控制综述[J]. 空气动力学学报, 2018, 36(3): 372-384, 409.

    LI W P. Review of the mechanism and noise control of high-lift device noise[J]. Acta Aerodynamica Sinica, 2018, 36(3): 372-384, 409. (in Chinese)
    [14] RUMSEY C L, YING S X. Prediction of high lift: review of present CFD capability[J]. Progress in Aerospace Sciences, 2002, 38(2): 145-180. DOI: 10.1016/S0376-0421(02)00003-9
    [15] CHAFFIN M, PIRZADEH S. Unstructured navier-stokes high-lift computations on a trapezoidal wing[C]// 23rd AIAA Applied Aerodynamics Conference, Toronto, Ontario, Canada. Reston, Virginia: AIAA, 2005: 5084. doi: 10.2514/6.2005-5084
    [16] YOKOKAWA Y, MURAYAMA M, UCHIDA H, et al. Aerodynamic influence of a half-span model installation for high-lift configuration experiment[C]// 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida. Reston, Virginia: AIAA, 2010: 684. doi: 10.2514/6.2010-684
    [17] ELIASSON P. Numerical validation of a half model high lift configuration in a wind tunnel[C]// 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virginia: AIAA, 2007: 262. doi: 10.2514/6.2007-262
    [18] WILLY F, DORNIER L G. Calculation of maximum and high lift characteristics of multi element airfoils [R]. Neuilly sur Seine, France, 1993. AGARD-CP-515.
    [19] BALAJI R, BRAMKAMP F, HESSE M, et al. Effect of flap and slat riggings on 2-D high-lift aerodynamics[J]. Journal of Aircraft, 2006, 43(5): 1259-1271. DOI: 10.2514/1.19391
    [20] 桑为民, 李凤蔚. 自适应直角切割网格民机增升装置绕流数值模拟[J]. 空气动力学学报, 2004, 22(4): 427-431, 442. doi: 10.3969/j.issn.0258-1825.2004.04.010

    SANG W M, LI F W. Adaptive Cartesian grid method in numerical simulation of flow field about civil-plane high-lift system[J]. Acta Aerodynamica Sinica, 2004, 22(4): 427-431, 442. (in Chinese) doi: 10.3969/j.issn.0258-1825.2004.04.010
    [21] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. DOI: 10.2514/3.12149
  • 加载中
图(24) / 表(1)
计量
  • 文章访问数:  232
  • HTML全文浏览量:  46
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-27
  • 录用日期:  2022-02-12
  • 修回日期:  2022-01-30
  • 网络出版日期:  2022-04-07
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回