Stall characteristics of high-lift device improved by slotting on leading-edge slat
-
摘要: 大型民机高升力构型多采用多段式增升装置,大迎角飞行时,前缘缝翼上表面可能出现流动分离,造成缝翼尾迹流区迅速增厚,加剧缝翼与下游翼段气流的交混作用,导致各翼段环量减小、升力下降,最终发展为失速。针对多段式增升装置大迎角失速问题,本文基于有限体积RANS 方法,研究了前缘缝翼开缝改善增升装置失速特性的作用机理与参数影响规律。研究发现:前缘缝翼开缝可有效推迟缝翼流动分离的发生,抑制缝翼尾迹区发展及缝翼与下游翼段附面层气流的交混,减缓对襟翼流动的不利影响,显著改善增升装置失速特性;开缝位置及射流出口方向对前缘缝翼流动的控制效果影响明显,应根据前缘缝翼形状和工作状态合理设计前缘缝翼开缝方案,以便获取更好的气动性能收益。Abstract: High-lift devices are widely used on multi-element wings of large civil aircrafts. At large angles of attack, flow separation may occur over upper surfaces of leading-edge slats of multi-element airfoils. The flow separation would increase the thickness of the induced wake flow rapidly and enhance the interaction between the wake and the downstream boundary. This will reduce the circulation and lift and finally result in the stall. This paper puts forward a method to improve the aerodynamic performance of high-lift devices by slotting on leading-edge slats. Flow fields and parametric effect of the slotting are investigated based on numerical simulations by solving Reynolds-Averaged Navier-Stokes equations. Results show that the slots on leading-edge slats can effectively delay the flow separation by inhibiting the development of the wake flow and its interaction with downstream boundary layers. The adverse impact induced by the stall can be alleviated significantly as a result. However, the control effect is closely related to the slot position and the direction of the exiting jet. Therefore, to obtain a favorable improvement of aerodynamic performance, the slot should be reasonably designed according to the shape of the leading-edge slat and also to the surrounding flow field.
-
Key words:
- high-lift device /
- flow separation /
- flow control /
- slotting on slat /
- numerical simulation
-
表 1 计算与试验的CLmax和αs对比
Table 1. Comparison of CLmax and αs between experiment and computation
CLmax αs Exp. 4.13 21.3° Cal. 4.08 22° 相对差值 –1.2% 3.3% -
[1] GARNER P, MEREDITH P, STONER R. Areas for future CFD development as illustrated by transport aircraft applications[C]// 10th Computational Fluid Dynamics Conference, Honolulu, HI, USA. Reston, Virigina: AIAA, 1991. doi: 10.2514/6.1991-1527 [2] ELIASSON P, CATALANO P, LE PAPE M C, et al. Improved CFD predictions for high lift flows in the European project EUROLIFT II[C]// 25th AIAA Applied Aerodynamics Conference, Miami, Florida. Reston, Virigina: AIAA, 2007. doi: 10.2514/6.2007-4303 [3] 刘沛清, 戴佳骅, 夏慧, 等. 大型飞机增升装置气动机构一体化设计技术进展[J]. 民用飞机设计与研究, 2021(1): 1-8.LIU P Q, DAI J H, XIA H, et al. Overview of integrated design technology for aerodynamic mechanism of large aircraft high lift device[J]. Civil Aircraft Design & Research, 2021(1): 1-8. (in Chinese) [4] 李丽雅. 大型飞机增升装置技术发展综述[J]. 航空科学技术, 2015, 26(5): 1-10.LI L Y. Review of high-lift device technology development on large aircrafts[J]. Aeronautical Science & Technology, 2015, 26(5): 1-10. (in Chinese) [5] STRUBER H. The aerodynamic design of the A350 XWB-900 high lift system [C]//29th Congress of the International Council of the Aeronautical Sciences ICAS. St Petersburg, Russia, 2014. [6] RECKZEH D. Aerodynamic design of the high-lift-wing for a Megaliner aircraft[J]. Aerospace Science and Technology, 2003, 7(2): 107-119. DOI: 10.1016/S1270-9638(02)00002-0 [7] 陈迎春, 李亚林, 叶军科, 等. C919飞机增升装置工程应用技术研究进展[J]. 航空工程进展, 2010, 1(1): 1-5. doi: 10.3969/j.issn.1674-8190.2010.01.002CHEN Y C, LI Y L, YE J K, et al. Study progress about high-lift system of C919 airplane[J]. Advances in Aeronautical Science and Engineering, 2010, 1(1): 1-5. (in Chinese) doi: 10.3969/j.issn.1674-8190.2010.01.002 [8] 陈迎春, 张美红, 张淼, 等. 大型客机气动设计综述[J]. 航空学报, 2019, 40(1): 522759.CHEN Y C, ZHANG M H, ZHANG M, et al. Review of large civil aircraft aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522759. (in Chinese) [9] 张明辉, 陈真利, 毛俊, 等. 翼身融合布局民机克鲁格襟翼设计[J]. 航空学报, 2019, 40(9): 623048.ZHANG M H, CHEN Z L, MAO J, et al. Design of Krueger flap for civil aircraft with blended-wing-body[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623048. (in Chinese) [10] 王刚, 张彬乾, 张明辉, 等. 翼身融合民机总体气动技术研究进展与展望[J]. 航空学报, 2019, 40(9): 623046.WANG G, ZHANG B Q, ZHANG M H, et al. Research progress and prospect for conceptual and aerodynamic technology of blended-wing-body civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623046. (in Chinese) [11] 王刚, 张明辉, 毛俊, 等. 翼身融合民机扰流板增升技术[J]. 航空学报, 2019, 40(9): 623045.WANG G, ZHANG M H, MAO J, et al. High-lift technology for spoiler on blended-wing-body civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623045. (in Chinese) [12] 朱国林, 王开春, 金刚, 等. 飞机增升装置气动力特性计算方法研究[J]. 空气动力学学报, 2001, 19(2): 148-155. doi: 10.3969/j.issn.0258-1825.2001.02.003ZHU G L, WANG K C, JIN G, et al. The calculation of aerodynamic characteristics for high lift devices of airplane[J]. Acta Aerodynamica Sinica, 2001, 19(2): 148-155. (in Chinese) doi: 10.3969/j.issn.0258-1825.2001.02.003 [13] 李伟鹏. 大型客机增升装置噪声机理与噪声控制综述[J]. 空气动力学学报, 2018, 36(3): 372-384, 409.LI W P. Review of the mechanism and noise control of high-lift device noise[J]. Acta Aerodynamica Sinica, 2018, 36(3): 372-384, 409. (in Chinese) [14] RUMSEY C L, YING S X. Prediction of high lift: review of present CFD capability[J]. Progress in Aerospace Sciences, 2002, 38(2): 145-180. DOI: 10.1016/S0376-0421(02)00003-9 [15] CHAFFIN M, PIRZADEH S. Unstructured navier-stokes high-lift computations on a trapezoidal wing[C]// 23rd AIAA Applied Aerodynamics Conference, Toronto, Ontario, Canada. Reston, Virginia: AIAA, 2005: 5084. doi: 10.2514/6.2005-5084 [16] YOKOKAWA Y, MURAYAMA M, UCHIDA H, et al. Aerodynamic influence of a half-span model installation for high-lift configuration experiment[C]// 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida. Reston, Virginia: AIAA, 2010: 684. doi: 10.2514/6.2010-684 [17] ELIASSON P. Numerical validation of a half model high lift configuration in a wind tunnel[C]// 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virginia: AIAA, 2007: 262. doi: 10.2514/6.2007-262 [18] WILLY F, DORNIER L G. Calculation of maximum and high lift characteristics of multi element airfoils [R]. Neuilly sur Seine, France, 1993. AGARD-CP-515. [19] BALAJI R, BRAMKAMP F, HESSE M, et al. Effect of flap and slat riggings on 2-D high-lift aerodynamics[J]. Journal of Aircraft, 2006, 43(5): 1259-1271. DOI: 10.2514/1.19391 [20] 桑为民, 李凤蔚. 自适应直角切割网格民机增升装置绕流数值模拟[J]. 空气动力学学报, 2004, 22(4): 427-431, 442. doi: 10.3969/j.issn.0258-1825.2004.04.010SANG W M, LI F W. Adaptive Cartesian grid method in numerical simulation of flow field about civil-plane high-lift system[J]. Acta Aerodynamica Sinica, 2004, 22(4): 427-431, 442. (in Chinese) doi: 10.3969/j.issn.0258-1825.2004.04.010 [21] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. DOI: 10.2514/3.12149 -