留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非结构高阶CPR方法的子单元限制中的问题单元侦测

石国权 燕振国 朱华君 马燕凯 贾斐然

石国权, 燕振国, 朱华君, 等. 非结构高阶CPR方法的子单元限制中的问题单元侦测[J]. 空气动力学学报, 2023, 41(2): 38−52 doi: 10.7638/kqdlxxb-2021.0406
引用本文: 石国权, 燕振国, 朱华君, 等. 非结构高阶CPR方法的子单元限制中的问题单元侦测[J]. 空气动力学学报, 2023, 41(2): 38−52 doi: 10.7638/kqdlxxb-2021.0406
SHI G Q, YAN Z G, ZHU H J, et al. Troubled cell detection in subcell limiting for high-order CPR method on unstructured meshes[J]. Acta Aerodynamica Sinica, 2023, 41(2): 38−52 doi: 10.7638/kqdlxxb-2021.0406
Citation: SHI G Q, YAN Z G, ZHU H J, et al. Troubled cell detection in subcell limiting for high-order CPR method on unstructured meshes[J]. Acta Aerodynamica Sinica, 2023, 41(2): 38−52 doi: 10.7638/kqdlxxb-2021.0406

非结构高阶CPR方法的子单元限制中的问题单元侦测

doi: 10.7638/kqdlxxb-2021.0406
基金项目: 国家数值风洞工程(NNW);国家自然科学基金(12172375,11902344);空气动力学国家重点实验室基金(SKLA2019010101)
详细信息
    作者简介:

    石国权(1997-),男,河南人,硕士,研究方向:计算流体力学中的高精度算法及应用. E-mail:sgquan@buaa.edu.cn

    通讯作者:

    朱华君*(1982-),女,浙江人,博士,副研究员,研究方向:计算流体力学中的高精度算法及应用. E-mail:zhuhjgirl@163.com

  • 中图分类号: V211.3

Troubled cell detection in subcell limiting for high-order CPR method on unstructured meshes

  • 摘要: 重构修正(correction procedure via reconstruction, CPR)是一种计算高效、模板紧致、适用于非结构网格的高阶方法,但是无法处理流场含有较强间断的问题。针对这个问题,前期基于二阶非等距非线性加权插值的激波捕捉格式以及非结构四边形网格,发展了高阶CPR方法的一种子单元限制技术。该技术首先通过侦测因子确定出问题单元,然后将问题单元基于CPR求解点划分成非等距子单元,并在子单元中采用二阶激波捕捉格式进行计算。这种子单元限制技术保证了主单元和子单元的求解点重合,可以十分方便地处理主单元和子单元之间的数据交换。问题单元的侦测是该子单元限制技术的关键步骤,侦测出的问题单元的数量以及分布情况都将会影响数值结果。基于此,本文同时考虑了单元侦测和分维侦测两种问题单元侦测方式。通过激波管问题、Shu-Osher问题、双马赫反射问题、激波-旋涡干扰等典型算例对比分析了TVB、MDHE和JST侦测因子对数值格式分辨率的影响。研究结果表明:分维侦测能够减少问题单元的区域,进而提高分辨率。
  • 图  1  子单元划分方式

    Figure  1.  Layout of subcell division

    图  2  二阶非等距非线性插值模板

    圆点是求解点,方块是通量点

    Figure  2.  Stencil for the second-order nonuniform nonlinear interpolation

    图  3  物理空间上插值模板

    Figure  3.  Interpolation stencil in the physical space

    图  4  分维混合CPR-CNNW2示意图

    Figure  4.  Schematic of the hybrid CPR-CNNW2 scheme by dimension

    图  5  Sod激波管的密度分布和问题单元分布图

    Figure  5.  Distributions of the density and problematic cells for the Sod shock tube problem

    图  6  Shu-Osher问题的密度分布和问题单元分布

    Figure  6.  Distributions of the density and prolematic cellsfor the Shu-Osher problem

    图  7  问题单元随时间变化的分布图

    Figure  7.  Distributions of problematic cells over time

    图  8  CPR-CNNW2在不同侦测因子下求解双马赫反射问题(从1.5到21.7的30条密度等值线)

    Figure  8.  Density contours with 30 levels ranging from 1.5 to 21.7 for CPR-CNNW2 with different indicators in the double Mach reflection problem

    图  9  双马赫反射问题的各种侦测因子下的问题单元分布图

    Figure  9.  Distribution of problematic cells under different indicators for the double Mach reflection problem

    图  10  双马赫反射的分维混合CPR-CNNW2的计算结果

    Figure  10.  Numerical results of CPR-CNNW2 with detecting by dimension for the double Mach reflection problem

    图  11  不同侦测因子下CPR-CNNW2求解激波-旋涡干扰问题的计算结果

    Figure  11.  Numerical results of CPR-CNNW2 with different indicators for the shock-vortex interaction problem

    图  12  激波-旋涡干扰问题的问题单元分布

    Figure  12.  Distribution of problematic cells for theshock-vortex interaction problem

    图  13  激波-旋涡干扰问题的参考线位置

    Figure  13.  Reference lines for the shock-vortex interaction problem

    图  14  不同侦测因子下单元混合CPR-CNNW2格式在两条截线上的密度分布图

    Figure  14.  Density distribution along the two sliced lines of CPR-CNNW2 with detecting by cell for different cell indicators

    图  15  单元混合下CPR-CNNW2格式问题单元占比随时间变化图

    Figure  15.  Time variation of the problematic cell proportion for CPR-CNNW2 with detecting by cell

    图  16  分维混合CPR-CNNW2格式在两条截线上的密度分布

    Figure  16.  Density distribution along two sliced lines for CPR-CNNW2 with detecting by dimension

    图  17  分维混合CPR-CNNW2计算激波-旋涡干扰问题的问题单元分布

    Figure  17.  Distribution of problematic cells of CPR-CNNW2 with detecting by dimension for the shock-vortex interaction problem

    图  18  分维混合CPR-CNNW2格式的问题单元占比随时间变化图

    Figure  18.  Time variation of the problematic cell proportion for CPR-CNNW2 with detecting by dimension

    图  19  截线y = 0.40上三种侦测因子在不同阈值下的密度分布

    Figure  19.  Density distributions along the sliced line at y = 0.40 for three indicators under different thresholds

    图  20  全局/局部数值纹影对比

    Figure  20.  Global/local numerical schlieren comparison

    图  21  截线x =1.05上CPR-CNNW2 和WENO的密度分布对比

    Figure  21.  Density distributions along the sliced line at x=1.05 compared between CPR-CNNW2 and WENO

    表  1  单元混合与分维混合的计算时间

    Table  1.   Calculation time for hybrid by cell and by dimension

    混合策略问题单元占比/%侦测时间计算时间/s
    单元混合 16.19 160.53 2 142.20
    分维混合 11.42 180.75 2 130.91
    下载: 导出CSV

    表  2  不同侦测因子对计算时间的影响

    Table  2.   Influence of different indicators on the calculation time

    计算格式问题单元
    占比/%
    侦测
    时间/s
    计算
    时间/s
    侦测时间
    占比/%
    CNNW2 100 0 2 279.13
    CPR 0 0 1 904.50
    CPR-CNNW2
    TVB 0 205.38 2 124.91 9.67
    MDHE 0 136.20 2 031.19 6.71
    JST 0 418.36 2 342.77 17.8
    下载: 导出CSV
  • [1] WANG Z J. High-order methods for the Euler and navier-stokes equations on unstructured grids[J]. Progress in Aerospace Sciences, 2007, 43(1-3): 1-41. DOI: 10.1016/j.paerosci.2007.05.001
    [2] 张来平, 贺立新, 刘伟, 等. 基于非结构/混合网格的高阶精度格式研究进展[J]. 力学进展, 2013, 43(2): 202-236. doi: 10.6052/1000-0992-12-092

    ZHANG L P, HE L X, LIU W, et al. Reviews of high-order methods on unstructured and hybrid grid[J]. Advances in Mechanics, 2013, 43(2): 202-236. (in Chinese) doi: 10.6052/1000-0992-12-092
    [3] HUYNH H T. A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods[C]//Proc of the 18th AIAA Computational Fluid Dynamics Conference, Miami, Florida. Reston, Virigina: AIAA, 2007: 1-42. doi: 10.2514/6.2007-4079
    [4] WANG Z J, GAO H Y. A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids[J]. Journal of Computational Physics, 2009, 228(21): 8161-8186. DOI: 10.1016/j.jcp.2009.07.036
    [5] WANG Z J, GAO H Y, HAGA T. A unifying discontinuous CPR formulation for the Navier–Stokes equations on mixed grids[C]//Computational Fluid Dynamics 2010, 2011: 59-65. doi: 10.1007/978-3-642-17884-9_5
    [6] VONNEUMANN J, RICHTMYER R D. A method for the numerical calculation of hydrodynamic shocks[J]. Journal of Applied Physics, 1950, 21(3): 232-237. DOI: 10.1063/1.1699639
    [7] PERSSON P O, PERAIRE J. Sub-cell shock capturing for discontinuous Galerkin methods[C]// 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virigina: AIAA, 2006: 1-13. doi: 10.2514/6.2006-112
    [8] 于剑, 阎超. 基于人工粘性的间断Galerkin有限元方法[J]. 空气动力学学报, 2013, 31(3): 371-375.

    YU J, YAN C. Discontinuous Galerkin method based on artificial viscosity[J]. Acta Aerodynamica Sinica, 2013, 31(3): 371-375. (in Chinese)
    [9] ZHU J, ZHONG X H, SHU C W, et al. Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes[J]. Journal of Computational Physics, 2013, 248: 200-220. DOI: 10.1016/j.jcp.2013.04.012
    [10] KIM K H, KIM C. Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows: part I: spatial discretization[J]. Journal of Computational Physics, 2005, 208(2): 527-569. DOI: 10.1016/j.jcp.2005.02.021
    [11] MICHALAK C, OLLIVIER-GOOCH C. Accuracy preserving limiter for the high-order accurate solution of the Euler equations[J]. Journal of Computational Physics, 2009, 228(23): 8693-8711. DOI: 10.1016/j.jcp.2009.08.021
    [12] QIU J X, SHU C W. A comparison of troubled-cell indicators for runge: kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters[J]. SIAM Journal on Scientific Computing, 2005, 27(3): 995-1013. DOI: 10.1137/04061372x
    [13] 张帆, 张力丹, 刘君, 等. 非结构网格上的TV-van Leer混合迎风格式[J]. 空气动力学学报, 2019, 37(5): 855-863. doi: 10.7638/kqdlxxb-2017.0109

    ZHANG F, ZHANG L D, LIU J, et al. Hybrid TV-van leer upwind scheme on unstructured grids[J]. Acta Aerodynamica Sinica, 2019, 37(5): 855-863. (in Chinese) doi: 10.7638/kqdlxxb-2017.0109
    [14] PARK J S, KIM C. Hierarchical multi-dimensional limiting strategy for correction procedure via reconstruction[J]. Journal of Computational Physics, 2016, 308: 57-80. DOI: 10.1016/j.jcp.2015.12.020
    [15] N. Discacciati, J. S. Hesthaven, D. Ray. Cotrolling oscillations in high-order Discontinuous Galerkin schemes using artificial viscosity tuned by neuralnet works[J]. Journal of Computational Physics, 2020, 409: 109304. DOI: 10.1016/j.jcp.2020.109304
    [16] LI Y N, WANG Z J. A convergent and accuracy preserving limiter for the FR/CPR method[C]//Proc of the 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas. Reston, Virginia: AIAA, 2017: 1-16. doi: 10.2514/6.2017-0756
    [17] DU J, SHU C W, ZHANG M P. A simple weighted essentially non-oscillatory limiter for the correction procedure via reconstruction (CPR) framework[J]. Applied Numerical Mathematics, 2015, 95: 173-198. DOI: 10.1016/j.apnum.2014.01.006
    [18] HUERTA A, CASONI E, PERAIRE J. A simple shock-capturing technique for high-order discontinuous Galerkin methods[J]. International Journal for Numerical Methods in Fluids, 2012, 69(10): 1614-1632. DOI: 10.1002/fld.2654
    [19] DUMBSER M, ZANOTTI O, LOUBÈRE R, et al. A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws[J]. Journal of Computational Physics, 2014, 278: 47-75. DOI: 10.1016/j.jcp.2014.08.009
    [20] DUMBSER M, LOUBÈRE R. A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes[J]. Journal of Computational Physics, 2016, 319: 163-199. DOI: 10.1016/j.jcp.2016.05.002
    [21] KOCHI S R S P, RAMAKRISHNA M. A compact subcell WENO limiting strategy using immediate neighbors for runge-kutta discontinuous Galerkin methods for unstructured meshes[J]. Journal of Scientific Computing, 2021, 90(1): 1-24. DOI: 10.1007/s10915-021-01725-3
    [22] GUO J, ZHU H J, YAN Z G, et al. High-order hybrid WCNS-CPR scheme for shock capturing of conservation laws[J]. International Journal of Aerospace Engineering, 2020, 2020: 1-13. DOI: 10.1155/2020/8825445
    [23] HENNEMANN S, RUEDA-RAMÍREZ A M, HINDENLANG F J, et al. A provably entropy stable subcell shock capturing approach for high order split form DG for the compressible Euler equations[J]. Journal of Computational Physics, 2021, 426: 109935. DOI: 10.1016/j.jcp.2020.109935
    [24] SONNTAG M, MUNZ C D. Efficient parallelization of a shock capturing for discontinuous Galerkin methods using finite volume sub-cells[J]. Journal of Scientific Computing, 2017, 70(3): 1262-1289. DOI: 10.1007/s10915-016-0287-5
    [25] ZHU H J, LIU H Y, YAN Z G, et al. Shock capturing schemes based on nonuniform nonlinear weighted interpolation for conservation laws and their application as subcell limiters for FR/CPR[J]. 2021: arXiv: 2107.06471 [math. NA].
    [26] SHI G Q, ZHU H J, YAN Z G. A priori subcell limiting approach for the FR/CPR method on unstructured meshes[EB/OL]. 2021: arXiv: 2108.03446[math.NA]. https://arXiv.org/abs/2108.03446
    [27] COCKBURN B, SHU C W. TVB runge-kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework[J]. Mathematics of Computation, 1989, 52(186): 411-435. doi: 10.2307/2008474
    [28] JAMESON A., SCHMIDT W, TUTKEL E. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes. In: Fluid Dynamics and Co-located Conferences. American Institute of Aeronautics and Astronautics, 1981.doi: 10.2514/6.1981-1259
    [29] KLÖCKNER A, WARBURTON T, HESTHAVEN J S. Viscous shock capturing in a time-explicit discontinuous Galerkin method[J]. Mathematical Modelling of Natural Phenomena, 2011, 6(3): 57-83. DOI: 10.1051/mmnp/20116303
    [30] 傅德薰, 马延文. 计算流体力学[M]. 北京: 高等教育出版社, 2002.

    FU D X, MA Y W. Computational Fluid Dynamics[M]. Beijing: Higher Education Press, 2002(in Chinese).
    [31] LI W, WANG Q, REN Y X. A p-weighted limiter for the discontinuous Galerkin method on one-dimensional and two-dimensional triangular grids[J]. Journal of Computational Physics, 2020, 407: 109246 doi: 10.1016/j.jcp.2020.109246
    [32] WANG C S. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[R]. 1997. doi: 10.1023/A: 1025316311633
    [33] RAULT A, CHIAVASSA G, DONAT R. Shock-vortex interactions at high Mach numbers[J]. Journal of Scientific Computing, 2003, 19(1-3): 347-371 doi: 10.1023/A:1025316311633
    [34] LU Q L, LIU G M, MING P J, et al. A parameter-free gradient-based limiter for the FR/CPR method on mixed unstructured meshes[C]//Proc of the AIAA Aviation 2019 Forum, Dallas, Texas. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-3210
    [35] 骆信, 吴颂平. 改进的五阶WENO-Z+格式[J]. 力学学报, 2019, 51(6): 1927-1939. doi: 10.6052/0459-1879-19-249

    LUO X, WU S P. An improved fifth-order weno-z+ scheme[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1927-1939. (in Chinese) doi: 10.6052/0459-1879-19-249
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  64
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-14
  • 录用日期:  2022-02-07
  • 修回日期:  2022-01-30
  • 网络出版日期:  2022-03-14
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回