留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

牛角岩平拉索桥风致振动现场调研与分析

何旭辉 汪震 刘路路 吴雅歌 敬海泉

何旭辉, 汪震, 刘路路, 等. 牛角岩平拉索桥风致振动现场调研与分析[J]. 空气动力学学报, 2023, 41(2): 83−89 doi: 10.7638/kqdlxxb-2022.0044
引用本文: 何旭辉, 汪震, 刘路路, 等. 牛角岩平拉索桥风致振动现场调研与分析[J]. 空气动力学学报, 2023, 41(2): 83−89 doi: 10.7638/kqdlxxb-2022.0044
HE X H, WANG Z, LIU L L, et al. Field investigation and analysis of wind-induced vibration of Niujiaoyan cable-suspended bridge[J]. Acta Aerodynamica Sinica, 2023, 41(2): 83−89 doi: 10.7638/kqdlxxb-2022.0044
Citation: HE X H, WANG Z, LIU L L, et al. Field investigation and analysis of wind-induced vibration of Niujiaoyan cable-suspended bridge[J]. Acta Aerodynamica Sinica, 2023, 41(2): 83−89 doi: 10.7638/kqdlxxb-2022.0044

牛角岩平拉索桥风致振动现场调研与分析

doi: 10.7638/kqdlxxb-2022.0044
基金项目: 国家自然科学基金(52078502,51925808)
详细信息
    作者简介:

    何旭辉(1975-),男,贵州遵义人,教授,研究方向:桥梁风工程. E-mail:xuhuihe@csu.edu.cn

    通讯作者:

    敬海泉*,副教授,研究方向:桥梁风工程. E-mail:hq.jing@csu.edu.cn

  • 中图分类号: U441+.3

Field investigation and analysis of wind-induced vibration of Niujiaoyan cable-suspended bridge

  • 摘要: 颤振是大跨度桥梁结构设计的控制性因素之一,一直备受关注;而实桥发生颤振的记载十分稀少,现场音视频记录和振后调研资料十分珍贵。2021年5月1日下午2时许,贵州省思南县香坝镇牛角岩地区两座平拉索桥发生剧烈颤振。本文通过振后桥梁状况的现场调研,发现大幅的弯扭耦合颤振使得桥梁各个构件受损严重,其中1#桥背风侧承重索和稳定索明显伸长,2#桥承重索与稳定索发生断裂;1#桥背风侧主梁低于迎风侧,主梁产生相对高差并发生倾斜,相对高差与扭转角由两岸向跨中不断增加,跨中最大值分别为0.480 m和4.58°。通过对比现场测量与有限元模型分析发现:竖弯与扭转频率在颤振发生前后变化较小,而横摆频率显著减小。现场视频记录分析表明,桥梁发生典型的弯扭耦合颤振,竖向振幅约为5.2 m,扭转振幅约为52°,竖向与扭转振动相位差约为90°;颤振发生时,主梁竖向振动的动能、扭转振动的角动能与势能不断转换,当动能最大时,角动能与势能最小。
  • 图  1  牛角岩平拉索桥(1#)

    Figure  1.  Niujiaoyan cable-suspended bridge (1#)

    图  2  风致振动过后的牛角岩平拉索桥

    Figure  2.  Niujiaoyan cable-suspended bridges after the wind-induced vibration

    图  3  人行道板与车道板受损情况

    Figure  3.  Damage to the slabs of the pavement and carriageway after the wind-induced vibration

    图  4  护栏受损情况

    Figure  4.  Damage to the guardrails

    图  5  结构变位与动力测试测点布置

    Figure  5.  Layout of measurement points for the displacement and dynamic test

    图  6  结构变位

    Figure  6.  Structural deflection

    图  7  结构动力特性

    Figure  7.  Structural dynamical behavior

    图  8  颤振过程示意图

    Figure  8.  Sketch of the flutter process

    图  9  颤振过程主梁位移

    Figure  9.  Main beam displacement during the flutter

    表  1  桥面线形测量结果

    Table  1.   Measurement results of the bridge deck alignment

    相对跨度西侧高程/m东侧高程/m相对高差/m扭转角/(°)
    0442.380442.300–0.080–0.74
    1/4437.520437.190–0.330–3.15
    1/2435.860435.380–0.480–4.58
    1442.415442.300–0.115–1.09
    下载: 导出CSV

    表  2  前十阶模态频率和振型

    Table  2.   The first ten modal frequencies and shapes

    阶数频率/Hz振型
    10.2119一阶对称横摆
    20.3595一阶对称竖弯
    30.4230一阶反对称竖弯
    40.4236一阶反对称横摆
    50.4287一阶对称扭转
    60.5044一阶反对称扭转
    70.6351二阶对称横摆
    80.6445二阶对称竖弯
    90.7686二阶对称主缆扭转
    100.8455二阶反对称竖弯
    下载: 导出CSV
  • [1] 陈政清. 桥梁风工程[M]. 北京: 人民交通出版社, 2005.

    CHEN Z Q. Bridge wind engineering[M]. Beijing: China Communication Press, 2005 (in Chinese).
    [2] 项海帆, 葛耀君, 朱乐东. 现代桥梁抗风理论与实践[M]. 北京: 人民交通出版社, 2005.

    XIANG H F, GE Y J, ZHU L D. Modern theory and practice on bridge wind resistance[M]. Beijing: China Communications Press, 2005 (in Chinese).
    [3] XU Y L. Wind effects on cable-supported bridges[M]. Singapore: John Wiley & Sons Singapore Pte. Ltd. , 2013. doi: 10.1002/9781118188293
    [4] GIMSING NJ, GEORGAKIS CT. Cable-supported bridges: concept and design (Third edition)[J]. Bridge design & engineering, 2012, 2012(67): 25-25.
    [5] CHEN W F, DUAN L. Bridge engineering handbook[M]. Boca Raton: CRC Press, 2014. doi: 10.1201/b15616
    [6] GRAHAM J M R, LIMEBEER D J N, ZHAO X W. Aeroelastic modelling of long-span suspension bridges[J]. IFAC Proceedings Volumes, 2011, 44(1): 9212-9217. DOI: 10.3182/20110828-6-IT-1002.03156
    [7] HOLMES J D. Wind loading of structures[M]. Boca Raton: CRC Press, 2018. doi: 10.1201/b18029
    [8] 廖海黎, 王骑, 李明水. 大跨桥梁颤振分析理论研究进展[J]. 中国公路学报, 2019, 32(10): 19-33. doi: 10.19721/j.cnki.1001-7372.2019.10.002

    LIAO H L, WANG Q, LI M S. Advance on flutter analytical theory of long span bridges[J]. China Journal of Highway and Transport, 2019, 32(10): 19-33. (in Chinese) doi: 10.19721/j.cnki.1001-7372.2019.10.002
    [9] FUJINO Y, YOSHIDA Y. Wind-induced vibration and control of trans-Tokyo bay crossing bridge[J]. Journal of Structural Engineering, 2002, 128(8): 1012-1025. DOI:10.1061/(asce)0733-9445(2002)128: 8(1012)
    [10] LARSEN A, ESDAHL S, ANDERSEN J E, et al. Storebælt suspension bridge - vortex shedding excitation and mitigation by guide vanes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88(2-3): 283-296. DOI: 10.1016/S0167-6105(00)00054-4
    [11] LI H, LAIMA S J, OU J P, et al. Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements[J]. Engineering Structures, 2011, 33(6): 1894-1907. DOI: 10.1016/j.engstruct.2011.02.017
    [12] GE Y J, ZHAO L, CAO J X. Case study of vortex-induced vibration and mitigation mechanism for a long-span suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 220: 104866. DOI: 10.1016/j.jweia.2021.104866
    [13] 贵州省质量技术监督局. 平拉索桥设计规范: DB52/T 1087—2016[S]. 2016.
    [14] 交通运输部. 公路桥梁抗风设计规范: JTG/T 3360-01—2018[S]. 北京: 人民交通出版社.

    Ministry of Transport. Wind-resistant design specification for highway bridges: JTG/T 3360-01—2018[S]. Beijing: China Communications Press. (in Chinese)
    [15] SATO H, HIRAHARA N, FUMOTO K, et al. Full aeroelastic model test of a super long-span bridge with slotted box girder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12-15): 2023-2032. DOI: 10.1016/S0167-6105(02)00318-5
    [16] ABBAS T, KAVRAKOV I, MORGENTHAL G. Methods for flutter stability analysis of long-span bridges: a review[J]. Proceedings of the Institution of Civil Engineers - Bridge Engineering, 2017, 170(4): 271-310. DOI: 10.1680/jbren.15.00039
    [17] 魏志刚, 葛耀君, 杨詠昕. 抗风缆对大跨悬索桥颤振控制的有效性研究[J]. 同济大学学报(自然科学版), 2008, 36(12): 1628-1632. doi: 10.3321/j.issn:0253-374X.2008.12.006

    WEI Z G, GE Y J, YANG Y X. Effectiveness of storm ropes for long suspension bridge's flutter control[J]. Journal of Tongji University (Natural Science), 2008, 36(12): 1628-1632. (in Chinese) doi: 10.3321/j.issn:0253-374X.2008.12.006
    [18] YANG Y X, ZHANG L, DING Q S, et al. Flutter performance and improvement for a suspension bridge with central-slotted box girder during erection[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 118-124. DOI: 10.1016/j.jweia.2018.05.016
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  15
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-21
  • 录用日期:  2022-07-23
  • 修回日期:  2022-07-22
  • 网络出版日期:  2022-08-19
  • 刊出日期:  2023-03-01

目录

    /

    返回文章
    返回