Field investigation and analysis of wind-induced vibration of Niujiaoyan cable-suspended bridge
-
摘要: 颤振是大跨度桥梁结构设计的控制性因素之一,一直备受关注;而实桥发生颤振的记载十分稀少,现场音视频记录和振后调研资料十分珍贵。2021年5月1日下午2时许,贵州省思南县香坝镇牛角岩地区两座平拉索桥发生剧烈颤振。本文通过振后桥梁状况的现场调研,发现大幅的弯扭耦合颤振使得桥梁各个构件受损严重,其中1#桥背风侧承重索和稳定索明显伸长,2#桥承重索与稳定索发生断裂;1#桥背风侧主梁低于迎风侧,主梁产生相对高差并发生倾斜,相对高差与扭转角由两岸向跨中不断增加,跨中最大值分别为0.480 m和4.58°。通过对比现场测量与有限元模型分析发现:竖弯与扭转频率在颤振发生前后变化较小,而横摆频率显著减小。现场视频记录分析表明,桥梁发生典型的弯扭耦合颤振,竖向振幅约为5.2 m,扭转振幅约为52°,竖向与扭转振动相位差约为90°;颤振发生时,主梁竖向振动的动能、扭转振动的角动能与势能不断转换,当动能最大时,角动能与势能最小。Abstract: Flutter has been of great interest as one of the control factors in the design of long-span bridges. There are very few flutter recordings of real bridges, hence the audio and video recorded on site and post-vibration studies about flutter are invaluable. At around 2 pm on May 1st, 2021, two cable-suspended bridges in the Niujiaoyan area of Xiangba Town, Sinan County, Guizhou Province, were subjected to violent flutters. This study analyzes the response characteristics of these flutters and summarizes the field investigation of the bridge condition after the flutter. It is found that the large bending-torsional coupled flutter causes severe damage to the bridge elements, including the significant elongation of the bearing and stable cables on the leeward side of bridge 1#, and the fracture of the bearing and stable cables on bridge 2#. The relative height difference and the torsion angle increase continuously from the two sides to the mid-span, reaching the maximum values of 0.480 m and 4.58°, respectively, at the mid-span. By comparing the dynamic characteristics of the bridge under the field measurement and the finite element modelling, it is found that the bending and torsion frequencies change little after the flutter, while the transverse frequency decreases significantly. Analyses of the flutter videos recorded in the field show that the flutter is a classic bending-torsion coupled flutter with a vertical amplitude of about 5.2 m and a torsional amplitude of about 52°, and the phase difference between the vertical and torsional vibrations is about 90°. When the flutter occurs, there is a constant conversion among the kinetic energy of the vertical vibration, the angular kinetic energy of the torsional vibration and the potential energy; when the kinetic energy is at its maximum, the angular kinetic energy and potential energy are at the minimum.
-
表 1 桥面线形测量结果
Table 1. Measurement results of the bridge deck alignment
相对跨度 西侧高程/m 东侧高程/m 相对高差/m 扭转角/(°) 0 442.380 442.300 –0.080 –0.74 1/4 437.520 437.190 –0.330 –3.15 1/2 435.860 435.380 –0.480 –4.58 1 442.415 442.300 –0.115 –1.09 表 2 前十阶模态频率和振型
Table 2. The first ten modal frequencies and shapes
阶数 频率/Hz 振型 1 0.2119 一阶对称横摆 2 0.3595 一阶对称竖弯 3 0.4230 一阶反对称竖弯 4 0.4236 一阶反对称横摆 5 0.4287 一阶对称扭转 6 0.5044 一阶反对称扭转 7 0.6351 二阶对称横摆 8 0.6445 二阶对称竖弯 9 0.7686 二阶对称主缆扭转 10 0.8455 二阶反对称竖弯 -
[1] 陈政清. 桥梁风工程[M]. 北京: 人民交通出版社, 2005.CHEN Z Q. Bridge wind engineering[M]. Beijing: China Communication Press, 2005 (in Chinese). [2] 项海帆, 葛耀君, 朱乐东. 现代桥梁抗风理论与实践[M]. 北京: 人民交通出版社, 2005.XIANG H F, GE Y J, ZHU L D. Modern theory and practice on bridge wind resistance[M]. Beijing: China Communications Press, 2005 (in Chinese). [3] XU Y L. Wind effects on cable-supported bridges[M]. Singapore: John Wiley & Sons Singapore Pte. Ltd. , 2013. doi: 10.1002/9781118188293 [4] GIMSING NJ, GEORGAKIS CT. Cable-supported bridges: concept and design (Third edition)[J]. Bridge design & engineering, 2012, 2012(67): 25-25. [5] CHEN W F, DUAN L. Bridge engineering handbook[M]. Boca Raton: CRC Press, 2014. doi: 10.1201/b15616 [6] GRAHAM J M R, LIMEBEER D J N, ZHAO X W. Aeroelastic modelling of long-span suspension bridges[J]. IFAC Proceedings Volumes, 2011, 44(1): 9212-9217. DOI: 10.3182/20110828-6-IT-1002.03156 [7] HOLMES J D. Wind loading of structures[M]. Boca Raton: CRC Press, 2018. doi: 10.1201/b18029 [8] 廖海黎, 王骑, 李明水. 大跨桥梁颤振分析理论研究进展[J]. 中国公路学报, 2019, 32(10): 19-33. doi: 10.19721/j.cnki.1001-7372.2019.10.002LIAO H L, WANG Q, LI M S. Advance on flutter analytical theory of long span bridges[J]. China Journal of Highway and Transport, 2019, 32(10): 19-33. (in Chinese) doi: 10.19721/j.cnki.1001-7372.2019.10.002 [9] FUJINO Y, YOSHIDA Y. Wind-induced vibration and control of trans-Tokyo bay crossing bridge[J]. Journal of Structural Engineering, 2002, 128(8): 1012-1025. DOI:10.1061/(asce)0733-9445(2002)128: 8(1012) [10] LARSEN A, ESDAHL S, ANDERSEN J E, et al. Storebælt suspension bridge - vortex shedding excitation and mitigation by guide vanes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88(2-3): 283-296. DOI: 10.1016/S0167-6105(00)00054-4 [11] LI H, LAIMA S J, OU J P, et al. Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements[J]. Engineering Structures, 2011, 33(6): 1894-1907. DOI: 10.1016/j.engstruct.2011.02.017 [12] GE Y J, ZHAO L, CAO J X. Case study of vortex-induced vibration and mitigation mechanism for a long-span suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 220: 104866. DOI: 10.1016/j.jweia.2021.104866 [13] 贵州省质量技术监督局. 平拉索桥设计规范: DB52/T 1087—2016[S]. 2016. [14] 交通运输部. 公路桥梁抗风设计规范: JTG/T 3360-01—2018[S]. 北京: 人民交通出版社.Ministry of Transport. Wind-resistant design specification for highway bridges: JTG/T 3360-01—2018[S]. Beijing: China Communications Press. (in Chinese) [15] SATO H, HIRAHARA N, FUMOTO K, et al. Full aeroelastic model test of a super long-span bridge with slotted box girder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12-15): 2023-2032. DOI: 10.1016/S0167-6105(02)00318-5 [16] ABBAS T, KAVRAKOV I, MORGENTHAL G. Methods for flutter stability analysis of long-span bridges: a review[J]. Proceedings of the Institution of Civil Engineers - Bridge Engineering, 2017, 170(4): 271-310. DOI: 10.1680/jbren.15.00039 [17] 魏志刚, 葛耀君, 杨詠昕. 抗风缆对大跨悬索桥颤振控制的有效性研究[J]. 同济大学学报(自然科学版), 2008, 36(12): 1628-1632. doi: 10.3321/j.issn:0253-374X.2008.12.006WEI Z G, GE Y J, YANG Y X. Effectiveness of storm ropes for long suspension bridge's flutter control[J]. Journal of Tongji University (Natural Science), 2008, 36(12): 1628-1632. (in Chinese) doi: 10.3321/j.issn:0253-374X.2008.12.006 [18] YANG Y X, ZHANG L, DING Q S, et al. Flutter performance and improvement for a suspension bridge with central-slotted box girder during erection[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 118-124. DOI: 10.1016/j.jweia.2018.05.016 -